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Abstract: The First Come First Served (FCFS) queuing policy is routinely assumed to be the bench-
mark policy for “fairness” in waiting-time performance. In this article, we propose a slight modifica-
tion of the FCFS policy based on a natural extension of the well-established David and Yechiali (DY)
rule and analyze it in the context of managing a waiting list for kidney transplants. In the proposed
policy, the queuing agents are sequentially offered a stochastically arriving organ on a “first come,
first served” basis while applying the individually optimal DY stopping rule. Through a realistic
simulation, we show that the proposed policy, which we term Extended David and Yechiali (EDY),
favorably compares to the FCFS policy in terms of medical efficiency while maintaining a comparable
level of equity (i.e., fairness). Possible implications and practical aspects of the EDY are discussed.

Keywords: fairness in queuing; transplantation; efficiency-equity trade-off; transplantation waiting
list; optimal stopping; operations research
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1. Introduction

Kidney transplantation is the most effective treatment for End Stage Renal Disease
(ESRD) patients. Without transplantation, patients must undergo dialysis treatments to
survive [1]. However, the kidney supply for transplantation is insufficient to meet the
increasing demand. According to a recent study [2], at the start of 2019, 100,998 adult
patients had been waiting for a kidney transplant. During that year, 42,934 patients were
added to the waiting list, while the total number of kidney transplants performed during
that period was only 24,273. Even in the unlikely case of sufficient (or excess) kidneys for
all patients, one is still faced with a complex allocation problem. Namely, a specific kidney
is not suitable for all candidate patients, and even if it is, it is rarely a “perfect match”. Thus,
from the potential recipient’s perspective, the question is whether s/he “wants” a given
kidney or prefers to wait for the next one (if and when one becomes available).

Managing an organ transplant waiting list is a highly complex process guided by several
factors that do not necessarily align. These include (1) medical urgency (e.g., how long can a
person survive without a transplant?), (2) donor-recipient compatibility (e.g., donor-recipient
ethnicity, age, blood type, etc.), (3) logistical factors (e.g., geographical distance between
the available organ and the recipient) and (4) fairness considerations (e.g., is there another
candidate that has waited longer in the queue?), to name a few [3]. While many allocation
policies were proposed in the literature, one of the key ongoing challenges in determining an
appropriate organ allocation policy is the inherent possible trade-off between clinical efficiency
and equity. Simply put, clinical efficiency and fairness might be partially conflicting since
a clinically efficient allocation may be arbitrarily far from any definition of a fair allocation.
Moreover, while clinical efficiency is often measured by standard metrics such as the QALY
(Quality Adjusted Life Years), there is currently no consensus measure for fairness.

This paper builds on the theoretically grounded David and Yechiali (DY) optimal
stopping rule [4]. The rule is devised for the simple case in which only a single candidate
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patient waits for a kidney transplant. The candidate needs to decide if s/he wants to accept
a stochastically arriving organ or if s/he prefers to refuse a given organ and wait for a
(hopefully) better one to arrive in the future. In the real world, where organs are a scarce
resource compared to the number of waiting patients, the DY rule does not readily apply.
Therefore, in this study, we propose and investigate a serial version of the DY rule that
we term the Extended David-Yechiali (EDY) policy. The EDY works iteratively. Once a
kidney arrives, it is offered to the first candidate in the queue (ordered by registration,
as in the FCFS policy). Then, the candidate applies the DY rule as if s/he were the only
patient in the queue. If the organ is rejected, the kidney is offered to the next candidate in
the queue, and so on. Clearly, applying the DY rule in this way is not necessarily optimal
for a candidate who is not the first in line, as it does not explicitly account for the (likely)
possibility that other candidates will accept future arriving organs before they are offered
to that candidate. Given the decentralized manner in which most organ allocation policies
are applied (i.e., candidates are unaware of other registered candidates’ characteristics and
preferences), it seems unreasonable to assume that candidates can effectively make “fully
rational” strategic decisions that account for the complete profile of other candidates in
the system [5]. Alternatively, in the proposed EDY, the individually applied DY rule is
sensitive to the arrival rate of organs for each candidate in the queue separately. As such,
in the EDY policy, each candidate implicitly considers the preferences of other candidates
in the system practically.

Since there is no consensus measure for fairness, it is common to compare any given
allocation policy to the benchmark “First Come, First Served” (FCFS) policy, routinely
assumed to be the gold standard for fairness (e.g., [6]). Thus, simulation is a practical
way to represent the dynamic nature of organ allocation and address the multi-faceted
challenge of determining whether one organ allocation policy is preferable to another [7].
Hence, in this work, we investigate the proposed EDY policy using a realistic simulation
and compare it to the classic FCFS.

Our results show that the EDY policy seems to strike a reasonable compromise between
clinical efficiency and fairness. The average and standard deviation of waiting times is
almost identical to the classic FCFS policy while receiving a more biologically suitable
kidney, thus improving candidates’ longevity.

The paper is organized as follows:

• Section 2 commences by discussing the issue of fairness in queues and the FCFS
policy, then introduces several efficiency measures on our work and the efficiency
determinants in transplantation. It also discusses the DY rule and its characteristics.

• Section 3 defines the EDY policy, which is the focus of this work.
• Section 4 demonstrates an overview of the simulation model and exhibits the model

assumptions. We developed a loop-time-based simulation engine to implement the
model using Python based on statistical data from the OPTN [2]. In addition, the
section displays the methodology of comparison.

• Section 5 presents the simulation results.
• Section 6 depicts the conclusion.

2. Background
2.1. Fairness and Efficiency

The concept of fairness in queueing systems is a topic of ongoing debate and research.
In the context of kidney allocation, many studies have compared different allocation policies
to the classic First-Come-First-Served (FCFS) policy, which is often used as a benchmark for
fairness. In addition to fairness, clinical efficiency is essential in organ allocation. Factors
that impact the success of kidney transplantation can be divided into two main categories:
mandatory factors and chance factors. Mandatory factors include the compatibility of the
donor and recipient’s ABO blood types and the availability and willingness of the recipient
to undergo transplantation. Chance factors include the compatibility of the donor and
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recipient’s HLA tissue type and the PRA score of the recipient. These and other factors
must be considered in order to develop effective and fair organ allocation policies.

Unfortunately, determining how to combine these and other similar measures into a
single score is an ongoing challenge. One possible solution, which we advocate for in this
article, is delegating the decision to accept or reject a given organ to the candidates, thus
allowing for flexibility and distributed decision process. To that end, we propose a natural
extension of the DY rule, as discussed next.

2.2. The David-Yechiali Rule

David and Yechiali [4] studied a time-dependent stopping problem and its application
to the decision-making process associated with organ transplanting. The DY rule changes
the traditional standpoint, and instead of examining who is the right candidate for a given
organ, they scan for the appropriate organ for a specific candidate. The researchers assume
only one candidate is in the system; therefore, the rule is called “The Single Candidate
problem”.

The DY rule works as follows. When an organ arrives, a decision about whether to
accept it or not is made based on the “value” of that organ and the prospective expected
“value” of waiting for a (hopefully) better one in the future. If the organ is accepted, the
process terminates, and the candidate goes through the transplantation process. Otherwise,
the offer is lost, and the process continues until the next kidney arrives or until the candidate
dies. The rule is illustrated in Figure 1.
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Figure 1. Graphical illustration of the DY rule.

In the original paper, the authors assumed that candidates base their decision on three
known parameters: (1) the inter-arrival time, (2) the HLA distribution, and (3) the blood
type distribution. According to these parameters, the candidates calculate the time they are
willing to wait for each matching level.

3. The Extended David-Yechiali Policy

The DY rule was designed for an organ allocation system with only a single candidate.
However, more than a single candidate is registered in the system in realistic settings.
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Thus, we propose a natural serialization of the DY rule, which applies to any number of
candidates. We refer to the resulting policy as the Extended David-Yechiali (EDY) policy.
The policy is depicted in Figure 2.
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The policy states that when a kidney arrives, it is offered to the first candidate (based
on their registration time in the system). Then, the candidate is screened to ensure the
mandatory efficiency factors are met (see Section 2.1). If the candidate does not pass the
screening, the offer is considered “rejected” and the kidney is offered to the next candidate
in line, and the process is repeated. Otherwise, the candidate calculates the time s/he is
willing to wait for each matching level as per the DY rule. If the candidate accepts the offer,
the transplant takes place, and the candidate leaves the queue. Otherwise, the kidney is
offered to the next candidate, and the process is repeated. In the unrealistic case where all
candidates are incompatible and reject the organ, the process terminates and waits for the
next available organ.

Naturally, for the first candidate in the queue, the EDY policy entails a simple “single
candidate” setting where the applied DY rule is known to be optimal. However, if the
candidate is not first on the list, the DY rule does not explicitly consider that future
arriving organs could be taken by one of the candidates that stand before them on the list.
Nevertheless, it is essential to note that the DY rule is applied separately for each individual
in the queue. Specifically, each candidate’s organs’ arrival rate is directly influenced by
the candidates’ decisions who stand before them in the queue. Therefore, the decision is
calculated differently for each candidate and implicitly accounts for their preferences.

4. Evaluation

We use simulation to evaluate the proposed EDY policy. The simulation consists of
several components discussed next, followed by the main results and their interpretation.
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4.1. EDY Implementation

Our EDY implementation uses the classic FCFS strategy to rank the candidates in
the queue.

As for a screening strategy, we follow the standard practice and perform a blood type
matching test, a negative crossmatch test and check whether the candidate is available for
transplant at the current time.

As in the original DY rule, we assume that the lifetime distribution of kidneys is
Gamma with shape parameter α = 2 and scale parameter θ = 1/2.5 (normalization for
2.5 years’ time-period). We calculate the minimal time to accept the current offer (see
Appendix A); the effective average fit kidney for a specific candidate depends on two
personal parameters and is calculated as follows:

µe f f = Pblood · Plocation · µ

where:
µ is the donor’s yearly arrival rate.
Pblood is the probability of finding a compatible blood type kidney. For example, if the

candidate’s blood type is A, s/he can accept a kidney with A or O blood type.
Plocation is the arrival rate for each candidate according to the place on the waiting list.

The Plocation of the first candidate is 1 because all the offers pass through him/her.
For example, assuming the average kidney arrival rate is 100 per year and a candidate

with blood type A is placed on the 20th slot in the waiting list; the candidate’s actual kidney
arrival rate is 17.5 per year: if 30% of the population have an O blood type and 40% have
an A blood type, the Pblood of the candidate is 0.3 + 0.4 = 0.7, and if the 20th place in line
receives only 25% of the offers, the Plocation is 0.25; then, the actual rate that the candidate
considers is 0.7 · 0.25 · 100 = 17.5.

4.2. FCFS Implementation

We compare the EDY policy to the classic FCFS policy. In our FCFS implementation,
when a kidney enters the system, it is allocated to the first candidate in the queue that is a
suitable match (i.e., passes the screening test). In our context, the FCFS is considered the
gold standard for fairness.

4.3. Core Models

We constructed a modular simulation model that mimics the operation of a real
allocation system.

The implementation consists of four supporting components and eight key compo-
nents for the kidney transplant model in Table 1:

Table 1. The simulation’s components. Bolded headers represent the context of the component in
the simulation.

Candidates
• Initialization
• Candidate Generation
• Candidate Aging
• Waiting-list Death
• Post-Transplant

Kidneys • Donor Generation
• Kidney Expiration

Process
• Organ Allocation
• Statistics
• Metrics

Support • Simulation Engine • Settings • Bio-Data • Logging

4.3.1. Supporting Components

The simulation engine component is based on a loop that advances time (steps) using
the simulation time unit (default: days). The simulation ends when the time advances to
the total time. Events’ timing is normalized to the “whole” step, e.g., if a candidate is to
arrive at time t = 2.2, it will occur at the t = 3 step.
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The settings components read the settings from a file and provide them for all the
other components. The available settings are detailed in Appendix B.

The bio-data component includes all biological data (based on OPTN) and logic.
The logging component writes logs to a file that can be read afterward to evaluate the

simulation’s run.

4.3.2. Kidney-Transplant Components

All key components are registered to the simulation engine and have a process function
that will be invoked at each step of the simulation.

The candidates’ initialization component is based on the OPTN data report. We ini-
tialize a set of candidates before the simulation starts with distributed waiting times.

The candidate generation component is based on the OPTN data report. We set the
candidates’ arrival times using an exponential distribution and generate synthetic data for
each candidate, e.g., age, blood type, gender, etc. (Appendix D).

The candidate aging component: each candidate arrives at the model at a specific time
and age, and as the simulation advances, the age changes appropriately. If a candidate
becomes too old for transplantation, s/he is removed from the system.

The waiting-list death component: in our model, we simulate a patient’s death on the
waiting list. According to [2], 6.8% died while waiting between 2016 and 2019. To simulate
that, we set inter-arrival death time:

Interarival− time =
365

(Candidates queue length) · 0.068

When the time comes and death occurs, we remove a random patient from the waiting
list. In our model, we assume that all patients on the waiting list have an equal chance of
dying, regardless of their attributes (age, health condition, etc.). The health condition, a
crucial factor, is not considered in the simulation, as it is unknown to us.

The post-transplant component: over time, two events can occur after a kidney is
transplanted into a candidate. (1) organic death (death of a patient with a functioning graft)
leading to leaving the system or (2) organ failure, which can result in a re-list (putting the
patient back on the waiting list) or in a decision to leave. The transplanted candidates have
a checkup period of 1 year, and we simulate the events for expanded times (next year).

The donor generation component: this is based on the OPTN data report. We set the
donors’ arrival times using an exponential distribution and generate synthetic data, e.g., blood
type, antigens, gender, etc. For each donor, two kidneys are extracted, but only a portion is fit
for transplant; in our simulation, only 77% of the kidneys are suitable for transplant.

The kidney expiration component: in our model, we simulate the shelf-life of an ex-
tracted kidney. Each kidney is available for 72 h after extraction (donor arrival time). When
the kidney’s shelf-life passes, it is removed from the organ storage (leaving the system) and
cannot be allocated anymore.

The organ allocation component: the waiting list is sorted by the patient’s arrival time
in this model. According to EDY, the organ is offered to the first candidate on the waiting
list. Then three actions are performed: in the first stage, the kidney blood type compatibility
with the candidate is checked. The second step, called “crossmatch”, must be passed for the
candidate to accept the kidney. The third step is the “candidate decision”. The candidates
contemplate if they should accept the offer (kidney) and leave the system or wait for
the next arrival. This decision is made using mathematical calculations that combine the
“single-candidate algorithm” and EDY. If the kidney successfully goes through those three
steps, the candidate receives the kidney and leaves the waiting list. If it does not, the next
candidate on the list goes through the above steps. Finally, if none of the candidates decides
to take the kidney before it passes its shelf-life, it is disposed of and logged in a file.

The statistics component: at the end of each step of the simulation (default: end of the
day), we generate statistics for waiting times, waiting-list size, number of deaths, number
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of arrivals, etc. Additional data during the simulation is recorded using “recorders”, based
on an observer design pattern for each component.

The metrics component: at the end of each simulation step (default: end of the day), we
record the data needed to calculate metrics (for clinical efficiency and equity) at each segment.

For statistical analysis of the results, we divided the simulation into 20-time segments,
so the calculation of each metric refers only to the specific time segment and not to the ones
before it.

4.3.3. Further Assumptions

The lifetime distribution of kidneys is Gamma with shape parameters α = 2 and the
scale parameter θ = 1/2.5. To simplify calculations, we assume θ = 1, bearing in mind that
the time unit is 2.5 years. µ is the rate of kidney offers for 2.5 years.

Each kidney arrival results in an A, B, C, D, E, F, or G Match, as in Table 2.

Table 2. Graft survivability probability within one year per HLA mismatch level according to the OPTN.

HLA Mismatch Level X (%)

0 HLA MM 96
1 HLA MM 96.7
2 HLA MM 96.2
3 HLA MM 95.5
4 HLA MM 94.4
5 HLA MM 94.1
6 HLA MM 93.4

Table 3 depicts the blood type distribution according to the OPTN website.

Table 3. Blood type frequency in the US population according to the OPTN annual report.

Blood Type Frequency in the Population (%)

A 27.3
B 16.7

AB 2.5
O 53.5

It is important to note that candidates unavailable when the kidney arrives are not
considered. Furthermore, candidates, organs’ attributes, and arrival times are taken from
OPTN’s past data. The PRA of the candidates does not change during the simulation.
Matching the blood type is performed according to Table 4.

Table 4. Blood type compatibility matrix.

Blood Type Can Receive a Donation from Blood Types: Can Donate to the Following Blood Types:

A A, O A, AB
B B, O B, AB

AB A, B, AB, O AB
O O A, B, AB, O

When death is supposed to occur, a random candidate is chosen and removed from
the waiting list. Additionally, rejection will not cause a candidate who underwent a kidney
transplant to return to the waiting list.

4.4. Implementation Summary

In order to run our model, we developed the simulation of the system operation in
Python and based our synthetic data generation on the statistics of the OPTN data reports.
Figure 3 summarizes the model implementation:
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4.5. Evaluation Metrics

During each simulation run, 430,000 candidates joined the waiting list (starting with
100,000 patients), and only 180,000 transplantations were performed over 3660 days (the
number of days closest to 10 years divided into 20-time segments giving a whole number,
183 days per segment). According to the OPTN data reports [2], over 40,000 applicants join
the kidney transplant waiting list every year. In addition, to test the effect on the quality of
life over five years between transplant and the time of death, we will perform a twice as
long (10 years) simulation. The results exhibit equity and clinical efficiency, waiting time
STD, and the number of transplantations for any match level (A to G), as discussed next.

4.5.1. Clinical Efficiency

Clinical efficiency measures the suitability between a kidney and a particular candidate.
If an allocation process is chiefly based on stringent suitability criteria, the chances for
successful transplantation will increase (yet the number of transplants may decrease). We
consider two standard metrics: (1) The Graft survivability percentage; and (2) Discounted
QALYs. Starting with Graft survivability, as was discussed in Section 2.1, a better HLA
match does not mean only a better chance of survival. It also means improved patient
general health. When patients receive a kidney with a better match, they do not need to use
as many medications targeted toward the immune system; thus, their chance of catching
another disease is reduced. As for the discounted QALY, quality-adjusted life years measure
the value of health outcomes [6]. The higher the metric, the better the medical effectiveness
of the allocation policy. Zenios et al. [6] claim that when calculating the value of QALYs,
it is customary to use the discounting of the value on the assumption that the value of a
current year is higher than the value of a future year. In this study, discounting is carried
out using the discount factor, calculated as follows: 1

(1+r)Tnow , where r is the daily interest,

and Tnow is the current time in the system, i.e., the time that has passed since the start of
the simulation. According to the assumption, the QOL (quality of life) score for waiting
candidates is 0.65, the QOL score for transplanted candidates is 0.7, and the daily interest
rate is 0.014%. The calculation is performed the same way as the undiscounted QALYs
index, but each index update is multiplied by the discount factor.

4.5.2. Fairness and Equity

The average waiting time in a queuing system is, arguably, the most logical metric
for measuring fairness. However, in our setting, this is not necessarily correct. This is due,
in part, to the fact that the service time (performing the allocation and kidney transplant
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surgery) is negligible, and the average waiting time is only measured according to the
candidates who have already had enough time to receive the service (i.e., transplant).
Specifically, this metric does not consider candidates who died while waiting or are still
waiting for a kidney. Although one of the system’s outputs is average waiting time, this
metric should be treated with caution.

The regular calculation of average waiting time is,
∑n

i=1(xi
transplant−xi

arrival)

n , where xi
arrival

is the arrival time of candidate i, xi
transplant is the time of performing the transplant of

candidate i, and n is the number of transplanted candidates. As explained, the regular
average waiting time does not consider candidates still waiting in line or candidates who
died while waiting. Therefore, we would like to partially correct the distortion in the

revised average waiting time. The revised calculation is as follows:
∑m

i=1 xi
waiting time
m where

xi
waiting time =


xi

transplant − xi
arrival transplanted

xi
dead − xi

arrival dead
TEND − xi

arrival still waiting

, xi
dead the death time of candidate i, m

is the number of total candidates and TEND is the ending time of the simulation. If the
candidate manages to receive a transplant, the waiting time is equal to the time from the
moment of arrival until the transplant is performed. If the candidate dies while waiting,
his/her waiting time is equal to the time from the moment of arrival until death. If the
simulation is over and the candidate has not yet received a kidney, his/her waiting time is
equal to the time from the moment of arrival until the end of the simulation.

Based on the above definition of waiting time, we consider two standard metrics:
(1) The standard deviation of a candidate’s waiting time in the queue; and (2) The WTI
(according to Equation (11) in [6]). The WTI index is quite similar to the standard deviation
index; however, it is calculated between groups, while the standard deviation is calculated
among individuals. For instance, say we divide the population into 13 groups. Concerning
the WTI index, closer average waiting times within a group translate to a lower WTI index,
meaning a better WTI index.

It is important to note that other fairness measures exist other than waiting time.
For instance, patient age is a known parameter often connected with fairness. Namely,
when a donation is given, a younger candidate should be preferred over an older one.
Nevertheless, we do not use the patient’s age parameter in our allocation policy and leave
the investigation of other measures for future work.

Another way to examine EDY waiting time fairness is by the waiting time std. error
parameter. While checking waiting time results, there are two parameters: average waiting
time and waiting time STD. In a regular queuing system, average waiting time could be
relevant. However, in this kind of queuing system, it is not because the average waiting time
depends on a parameter that cannot be changed: the donor arrival times. In each candidate
arrival rate and a given donor arrival rate, the average waiting time will be the same, no
matter what our allocation policy is, as long as we assume that when the simulation ends,
all the candidates receive kidneys, and none die. The only result that changed from one
policy to another is the waiting time STD error. Let’s examine a hypothetical case in which
all the candidates received a kidney after precisely three years. In this case, the waiting
time STD error is 0, the best possible result.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Results
5.1. Clinical Efficiency

We compare the allocation policies according to the matching level metric. The
comparison is provided in Table 5. In this table, each row represents an HLA mismatch
level. The columns for each allocation method are the number of transplants, the number
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of transplant patients who survived at least five years, and the percentage of survivors.
The total, without the division to HLA mismatch levels, for each allocation policy is shown
in the last row and the numbers in bold indicate statistical significance at p < 0.05.

Table 5. Transplants Graft Survival per HLA mismatch level.

FCFS EDY

HLA Mismatch Level Transplants At Least 5 Years Percentage Transplants At Least 5 Years Percentage

A 0 0 - 1 1 100.00%
B 4 3 75.00% 337 112 33.23%
C 75 25 33.33% 10,579 3461 32.72%
D 1389 390 28.08% 96,727 29,095 30.08%
E 12,102 3277 27.08% 24,798 6234 25.14%
F 56,842 14,582 25.65% 43,709 10,961 25.08%
G 110,411 27,787 25.17% 4052 1309 32.31%

Total 180,823 46,064 25.47% 18,0203 51,173 28.40%

Note: The difference in survivability percentage on the same HLA mismatch level is probably due to the differences
in the number of samples since a higher number of samples can lead to more accurate data and analysis. This is
especially evident at levels D and G, where most samples are found in EDY and FCFS, respectively.

5.1.1. Graft Survivability Percentage

Graft survivability percentage refers to the percentage of candidates that enjoyed
longevity and survival of the graft for at least five years after transplantation.

In the comparison between FCFS and EDY in Table 5, one can see that the percentage
of graft survival is statistically significantly higher in the latter policy (last row). This is due
to the distribution of transplants between the matching levels, as shown above. Although
the difference is not significant in nominal terms (~3%), it is substantial compared to the
differences in the chance of graft survival (approx. 7.1% difference between 0 and 6 HLA
mismatches after five years; Appendix C rows in bold). In the FCFS policy, clinical efficiency
is not directly considered, resulting in fewer transplants with good match levels and many
low-quality transplants. In the FCFS policy, 99.19% of allocations are made at match levels
E, F, and mostly G (over 60%). On the other hand, as seen in Figure 4, using the EDY policy,
~70% of the allocations are made around the D level (C, D, and E), and most of the rest
(over 25%) are made in F and G levels.
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5.1.2. Discounted QALY’s Index

In the simulation, each segment calculates the Discounted QALYs’s score. This score is
divided by the number of days in each segment to receive the Discounted QALYs’ daily average.

According to the simulation’s results in Table 6, the FCFS and EDY policies have
statistically indistinguishable Discounted QALYs scores. The explanation for this result is
that there is not much difference between the number of transplants (Table 5) performed
between the two policies and the number of years each transplanted candidate lives. They
are similar because the graft survival rate does not differ much between the levels after a
patient has lived with the graft for at least five years (Appendix C).

Table 6. Discounted QALY’s index per segment in the simulation.

Mean Discounted QALY

Segment FCFS EDY

1 68,946.33 68,855.13
2 78,408.71 78,335.45
3 86,128.19 86,037.84
4 93,481.47 93,567.76
5 99,485.48 99,690.60
6 105,197.91 105,386.73
7 109,833.45 110,054.88
8 114,122.82 114,374.40
9 117,557.81 117,850.93
10 120,528.18 120,932.28
11 123,070.99 123,513.04
12 125,201.04 125,787.35
13 126,828.27 127,541.87
14 128,307.62 129,064.10
15 129,547.66 130,296.77
16 130,529.66 131,366.04
17 131,183.06 132,052.52
18 131,662.66 132,684.00
19 131,775.41 132,957.21
20 131,863.67 133,037.02

Average 114,183.02 114,669.30

5.2. Fairness and Equity
5.2.1. The Standard Deviation of Waiting Times

As can be seen in Table 7, the results are almost identical between the FCFS and EDY
policies. This result is very encouraging since, with the EDY policy, a person can “give
up” a certain kidney if the candidate believes s/he has a good chance to obtain a better
matching kidney in the (near) future, that is, even though the candidate may wait longer.
According to the results, the candidate will wait a similar time to the method in which s/he
would receive the kidney in the fastest way (FCFS).

Table 7. Average and standard deviations of each algorithm’s regular and revised (Section 4.5.2)
waiting times.

Waiting Times (Days)

FCFS EDY

Regular Mean 1878.34 1876.43
Regular Standard Deviation 249.00 249.80

Revised Mean 1421.03 1421.93
Revised Standard Deviation 663.87 662.82
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5.2.2. The Standard Deviation of Waiting Times

In the simulation model, the WTI score in each segment is calculated, as shown in Table 8.

Table 8. WTI index for each segment in the simulation for both algorithms.

WTI Index per Segment

Segment FCFS EDY

1 1,160,340,430 1,211,589,350
2 1,447,710,920 1,376,859,960
3 4,120,772,520 3,701,723,650
4 4,033,725,620 4,248,733,020
5 10,589,228,200 10,916,202,100
6 12,278,197,500 13,077,990,800
7 21,009,880,800 21,674,598,900
8 22,745,380,900 23,467,586,600
9 30,254,562,600 30,451,523,100
10 34,992,552,300 34,016,055,700
11 40,688,033,600 41,744,451,100
12 44,554,868,500 45,450,862,100
13 48,712,335,800 50,809,433,900
14 51,332,443,300 55,794,970,500
15 57,599,598,000 62,401,088,100
16 62,385,433,800 673,83,600,200
17 68,990,068,900 73,501,858,500
18 75,177,374,700 77,998,303,000
19 80,491,123,000 84,494,956,400
20 85,331,221,700 90,032,148,500

Average 37,894,742,654.50 39,687,726,774.00
Average/108 378.95 396.88

Unsurprisingly, the EDY algorithm scored higher because it allows people to wait
longer than they would have to under FCFS, increasing the WTI.

5.3. Summary and Interpretation

While selecting the optimum allocation algorithm, we must consider the following
competing goals: efficiency and equity. It can safely be concluded that, considering both
aspects, using an EDY system is preferable because, in the end, people wait the same
amount of time on average and receive a biologically more suitable kidney. This preferable
match leads to longevity with the same transplanted kidney. It should be noted that EDY
maximizes the individual’s utility depending on his/her place in the queue. However, we
agree that the candidate who arrived earlier in the system has the right to receive a kidney
before a candidate who came later, but is not obliged to use it. However, we must refer to
the fact that our results showed that the quality of life of transplanted candidates does not
change much after using the EDY algorithm. As stated above, candidates who survived for
at least five years have similar survival chances whether they had an implant with low or
with high biological compatibility.

Another conclusion derived from the study results that we should address is the
meaning of utility aspects. Suppose organ allocation is carried out without considering
utility aspects, as currently implemented in the FCFS algorithm. In that case, the medical
match between the candidate and the donor will be low for most transplants, which may
lead to reduced implant longevity.

6. Conclusions

In conclusion, the EDY policy seems to strike a reasonable compromise between
clinical efficiency and fairness. As noted, the average and standard deviation of waiting
times is almost identical to the classic FCFS policy while receiving a more biologically
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suitable kidney. In addition, we believe a better algorithm may be identified for clinical
efficacy. The EDY algorithm is modular enough to be integrated into existing systems since
most allocation policies consist of screening and ranking strategies, which are two of the
building blocks of the EDY system. Using a score-based ranking strategy depending on
biological aspects may improve clinical efficacy. In conclusion, to examine the waiting
time fairness of any new algorithm that considers the whole system’s clinical efficiency, we
should compare it to EDY and not to FCFS as was customary before.

Author Contributions: Conceptualization, A.E.; methodology, O.R.; software, A.R.; validation, A.E.,
A.R. and O.R.; formal analysis, O.R.; investigation, A.E., A.R. and O.R.; resources, A.E., A.R. and O.R.;
data curation, O.R; writing—original draft preparation, A.E., A.R. and O.R.; writing—review and editing,
A.E., A.R. and O.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available within the article or
supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Calculating the minimal time for the “Single Candidate” Algorithm:
The calculation is based on Equation (26) in [4].
X is the current offer/kidney’s HLA mismatch level.
While F(x) = P(X ≤ x) is the distribution function and F(X)complements = P(X > x)

is the probability X is above x.
We need to solve the following:

λ(t) =
B
A
− B

A2(1 + t)
+

De−At

1 + t

Parameter A is defined as: A = −(c + θ)
The parameters A, B, and D are determined by solving the following equation where

µF(λ(t)) ≡ c is constant:

cλ(t) + B = −µ

∞∫
λ(t)

F(x)dx

Since both sides are linear functions, by comparing coefficients, we get the
following equations:

c = µF(x)

B = −µF(x)x + k

Next, we define the constants using the HLA mismatch levels for the current offer:

cMM = µkidneyF(XMM)

BMM = −cMMXMM + KMM−1

According to the assumptions, θ is normalized to 1, so we get the formula:
AMM = −(cMM + 1)

Find L:
Lupper is the probability of kidney survival for one year of MM level.
Lbottom is the probability of kidney survival for one year of the previous MM level.
For example, calculating for MM level A:
Lupper = Probability of kidney survival for one year of MM level A (XA)
Lbottom = Probability of kidney survival for one year of MM level B
Edge-case: level G, where the bottom is 0.
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lim
t→∞

λ(t) ≡ Lregion = µ

XMM∫
Lregion

F(x)dx

Find L using induction:
Base case: when L is in the first region index = 1 (MM level = A) [opposite index in [4]

but regular in [8]] and

L1 = µ
XA∫
L1

F(x)dx = µF(x)[XA − L1] = c1[XA − L1]

L1 = c1[XA − L1]
L1(1 + c1) = c1XA

Using equation BMM = −cMMXMM + KMM−1

L1(1 + c1) = −B1 + KA−1

When KA−1 = 0
Resulting

L1 = − B1

1 + c1
next case: when L is in the second region index = 2 (MM level = B)

L2= µ

XA∫
L2

F(x)dx = µ

 XA∫
XB

F1(x)dx +

XB∫
L2

F2(x)dx


= µF1(x)[XA − XB] + µF2(x)[XB − L2]

= c1[XA − XB] + c2[XB − L2]

L2 = c1[XA − XB] + c2[XB − L2]

L2 = c1[XA − XB] + c2XB − c2L2

L2 + c2L2 = c2XB + c1[XA − XB]

Using equation B2 = −c2XB + KA → −B2 = c2XB − KA

L2(1 + c2) = −B2

When KA = −c1[XA − XB]
Resulting

L2 = − B2

1 + c2

Generalization:
LMM = − BMM

1 + cMM

Using edge-cases and dynamic programming:

1. After finding the region in which the boundary conditions are met (Lvariable = 1)
several variables can be found.

2. All D values from this region (inclusive) onwards are equal to 0.
3. All t values from this region (not included) onwards are equal to 100 years (meaning

a very large number).
4. The goal now is to find the t of the first domain where Lvariable = 1, in this domain D = 0.

Where Li > L f ound → t∗ = 100 (100 years)
Where Li ≥ L f ound → D = 0
If Li = L f ound

If Li = G:
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t∗ = Bisect between (0, large number of years)

Else:

t∗ = Bisect between (0, upper t∗ (t∗i+1))

Where Li < L f ound:

DMM =

[(
1 + t∗MM+1

)
·
(

XMM+1 −
BMM
AMM

)
+

BMM

A2
MM

]
eAMM ·t∗MM+1

t∗ = Bisect between (0, upper t∗ (t∗i+1))
Edge-case, where no value is found in the bisection, use 0.

Appendix B

Table A1. Settings/controls for the simulation.

Parameter Description and Used Values

Allocation Policy Available policies: FCFT, SC_FCFT
Random Seed 1234 (an integer)

Total Time (days) 3660 (approx. 10 years)
Simulation Time Unit (days) 1

Segment Length (days) 183 (for 20 segments)
Donor Daily Arrival Rate 32.022771

Probability for a Suitable Kidney 0.77
Kidney Shelf Life (days) 3

Candidate Daily Arrival Rate 117.808219
Number of Candidates to Generate at initialization 100,000
Candidates Waitlisted Death Average Percentage 0.068

Candidate Availability Probability 0.9
SN Start 10,000 (starting serial number for entities)

Survival Rate After Graft Failure 0.7 (want to re-list)
QOL-Score for Waiting List 0.65
QOL-Score for Transplanted 0.7
Capitalized QALY Interest 0.00014

Appendix C

Table A2. Graft Survival Rates.

Kidney Kaplan-Meier Graft Survival Rates for Transplants Performed: 2008–2015
HLA Mismatch Level Years Post Transplant Survival Rate 95% Confidence Interval

0 HLA MM 1 Year 96 (95.4, 96.5)
1 HLA MM 1 Year 96.7 (95.7, 97.5)
2 HLA MM 1 Year 96.2 (95.6, 96.6)
3 HLA MM 1 Year 95.5 (95.1, 95.9)
4 HLA MM 1 Year 94.4 (94.0, 94.7)
5 HLA MM 1 Year 94.1 (93.7, 94.4)
6 HLA MM 1 Year 93.4 (92.9, 93.9)
0 HLA MM 3 Year 90.6 (89.7, 91.4)
1 HLA MM 3 Year 90.3 (88.7, 91.7)
2 HLA MM 3 Year 90.6 (89.8, 91.4)
3 HLA MM 3 Year 89.3 (88.7, 89.8)
4 HLA MM 3 Year 87.3 (86.8, 87.8)
5 HLA MM 3 Year 86.4 (85.9, 86.9)
6 HLA MM 3 Year 85.7 (85.0, 86.4)
0 HLA MM 5 Year 82.8 (81.7, 83.8)
1 HLA MM 5 Year 83.9 (82.1, 85.6)
2 HLA MM 5 Year 83.1 (82.1, 84.1)
3 HLA MM 5 Year 80.8 (80.1, 81.5)
4 HLA MM 5 Year 77.8 (77.1, 78.5)
5 HLA MM 5 Year 75.9 (75.2, 76.5)
6 HLA MM 5 Year 75.7 (74.8, 76.6)
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Appendix D

Table A3. Characteristics of Adults on the Kidney transplant waiting list.

Characteristics of Adults on the Kidney Transplant Waiting List

Table Characteristic Value N Percent

KI 1 Demographic Age 18–34 years 8363 0.083
35–49 years 24,329 0.24
50–64 years 44,087 0.435
≥65 years 24,558 0.242

Sex Female 38,596 0.381
Male 62,741 0.619

Race/ethnicity White 35,995 0.355
Black 32,716 0.323

Hispanic 20,977 0.207
Asian 9871 0.097

Other/unknown 1778 0.018

KI 2 Clinical Blood Type A 27,676 0.273
B 16,921 0.167

AB 2534 0.025
O 54206 0.535

CPRA <1% 63,049 0.622
1–<20% 9484 0.094
20–<80% 16,515 0.163
80–<98% 5458 0.054
98–100% 6729 0.066

Unknown 102 0.001

KI 3 Listing Wait time <1 year 33,298 0.329
1–<2 years 21,788 0.215
2–<3 years 14,528 0.143
3–<4 years 10,553 0.104
4–<5 years 7279 0.072
≥5 years 13,891 0.137

All Candidates 10,1337 1
Note: Based on OPTN data report tools as of 15 April 2022.
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