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Abstract: In this article, we constructed an artificial neural networking model for the stagnation point
flow of Casson fluid towards an inclined stretching cylindrical surface. The Levenberg–Marquardt
training technique is used in multilayer perceptron network models. Tan–Sig and purelin transfer
functions are carried in the layers. For better novelty, heat and mass transfer aspects are taken
into account. The viscous dissipation, thermal radiations, variable thermal conductivity, and heat
generation effects are considered by way of an energy equation while the chemical reaction effect is
calculated by use of the concentration equation. The flow is mathematically modelled for magnetic
and non-magnetic flow fields. The flow equations are solved by the shooting method and the
outcomes are concluded by means of line graphs and tables. The skin friction coefficient is evaluated
at the cylindrical surface for two different flow regimes and the corresponding artificial neural
networking estimations are presented. The coefficient of determination values’ proximity to one and
the low mean squared error values demonstrate that each artificial neural networking model predicts
the skin friction coefficient with high accuracy.

Keywords: Casson fluid; mixed convection; thermal radiations; shooting method; artificial neural
networking; Levenberg–Marquardt technique
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1. Introduction

Alfven [1] was the pioneer of the field of magnetohydrodynamics (MHD) and since
the study of MHD is still a subject that researchers are quite interested in Due to its
extensive applications in daily life, for example blood flow control during surgery, magnetic
endoscopy, cell separation, magnetic devices, tumor treatment, and drug targeting to
mention just a few. Collectively, MHD plays a key role in industrial and biomedical
sciences [2]. Owing to such importance, various recent studies performed by researchers
such as Mustafa [3] have studied magnetized viscous flow by way of nonlinear surfaces. It
has been demonstrated that temperature and flow fields have a straightforward analytical
expression. He offered precise formulations for wall shear stress. He concludes that strong
magnetic fields thin both the momentum and temperature layers. Additionally, as opposed
to lower branches, upper branch solutions were more thoroughly chilled, resulting in
increased heat transfer rates. The magnetized fluid by way of a porous channel with a
radiation assumption was investigated by Akinbowale [4]. Heat and mass transfer are
examined in relation to important rheological parameters such as the magnetic and pressure
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gradient, the radiation parameter, and Prandtl and Reynolds numbers. It was found that
increasing the pressure results in an increase in velocity, with the greatest effect occurring
toward the center of the flow channel, whereas increasing the radiation parameter causes
the temperature distribution to decrease, with the greatest effect occurring toward the
electrically conducting wall. Hanumesh et al. [5] studied MHD peristaltic flow through
an asymmetric tapered tube. Through a porous material, fluid with varied transport
characteristics is transported. A low Reynolds number and a long wavelength were the
fundamental assumptions used to formulate the problem. The momentum and energy
equations’ solutions were obtained using the perturbation method. The graphed answers
show that a key factor in controlling the fluid velocity in the channel’s center is the varying
viscosity. The MHD fluid caused by an unstable stretched sheet with an expanded heat
flux was into consideration by Ahmed et al. [6]. It was presumed that thermal conductivity
and viscosity would change with the temperature. The flow equations were solved by
an efficient shooting method and the Runge–Kutta algorithm. Graphical representations
and in-depth analysis were carried out to examine the flow field. Liaqat et al. [7] studied
heat transfer using self-propelled bioconvective microorganisms submerged in a water-
based MHD nanofluid that included Cattaneo–Christov characteristics. Through Matlab
programming, a finite element method was used to establish the numerical outcomes of
the collection of non-linear equations. An important finding was that the density of the
liquid was enhanced toward the melting factor. MHD micropolar tangent hyperbolic fluid
flow toward the stretched surface was investigated by Pardeep et al. [8]. The collection of
partial differential equations was transformed using similarity transformations to obtain the
theoretically specified ordinary differential system. The issue was mathematically resolved
using the bvp4c method. The major goal of this extensive investigation was to enhance
heat transformation under the influence of numerous parameters. A number of physical
factors were used to depict the heat transfer, skin friction, temperature, and velocity. It
was discovered that changes in velocity and temperature profiles drove changes in the
parameters that affected the size of the nanoparticles and the rate of heat transfer.

The Casson fluid model [9] has received a lot of attention from researchers due to its
unique characteristics. Compared to conventional viscoplastic models, the Casson fluid
model more closely matches rheological data for a variety of materials. Casson fluid, a shear-
thinning fluid, is predicted to have a yield stress below which there is no flow, an infinite
viscosity at a zero shear rate, and zero viscosity at an infinite shear rate. Casson fluids
include intense fruit liquids, tomato sauce, soup, honey, and jellies. Furthermore, it is an
approximate rheological model for chocolate and blood. Additionally, Casson fluid exhibits
yield stress and is crucial in the biomechanics and polymer processing sectors. Owing to
such importance, various researchers have considered the examination of the Casson flow
field in various configurations such as Reddy et al. [10] who investigated the importance
of the Soret and Hall effects on Casson fluid toward a vertical surface. The dimensional
equations that control flow were converted into dimensionless equations by dimensionless
variables, leading to the discovery of the analytical solution via the homotopy analysis
method (HAM), which was then contrasted with the Adomain decomposition method
(ADM) solution. With a particular focus on the physical factors involved in the current
investigation, the heat and mass transfer rates against the Casson fluid parameter were
visually illustrated. When the upper disk is assumed to be impermeable and the bottom
one is assumed to be porous, Mohyud-Din and Khan [11] explored the time-dependent
Casson fluid flow. The controlling equations were transformed by using transformations.
The formulas for the temperature and velocity were obtained using HAM. The effects
of several physical parameters were explored towards Eckert, squeeze numbers, and
dimensionless length. The system’s overall inaccuracy was calculated for both the suction
and injection situations using Mathematica Package BVPh2.0. For emerging parameters,
surface quantities were reported. For both the presence and absence of a magnetic field,
Casson fluid was studied by Abro and Khan [12]. The Fabrizio–Caputo fractional derivative
was used to obtain the flow formulation. Analytical solutions were identified. The Fox-H



Mathematics 2023, 11, 326 3 of 25

and Mittag–Leffler functions were used to express the generic solutions for the flow field.
Finally, a graphical representation was provided using the relevant parameters, and it was
seen that the behavior of the Caputo–Fabrizio and ordinary fractional fluid models for the
fluid flow was reciprocal. The analysis of time independent naturally convective flow was
identified by Kataria and Patel [13]. A vertical plate was passed over by a Casson fluid flow.
The flow equations were resolved numerically in Matlab and resolved analytically using
the Laplace transform method. Sherwood, Nusselt numbers, and skin friction expressions
were discovered. By creating graphs, the properties of the flow field were examined, and
the physical elements were thoroughly explained. The examination of the Casson liquid
over a disk as a semi-infinite zone was presented by Rehman et al. [14]. The Casson
nano-liquid flow was achieved by rotating a rigid disk at a fixed angular frequency. By
creating a homogenous magnetic field normal to the axial direction, magnetic interaction
was taken into consideration. The chemical reaction, heat generation, heat absorption, and
Navier’s slip condition were manifested during disk rotation. In order to create an ordinary
differential system, the obtained flow narrating differential equations was reduced. The
Von Karman method of the scheme was used to achieve this. Instead of continuing with
the standard built-in system, a computational approach was developed to produce correct
trends. By using graphical and tabular structures, the effects of the flow parameters were
studied. It was found that the Casson fluid parameter caused both the tangential and radial
velocities to decrease. Neeraja et al. [15] explored convective and viscous dissipation effects
on magnetized Casson fluid. Using the gunshot method, the flow equations were resolved.
The governing parameters affected the temperature, solid displacement, liquid velocity,
and concentration. For the Casson parameter, the liquid velocity and consequently the
solid displacement were reduced. When compared to the previous results, the current
results showed a logical agreement. In the context of emerging mass and heat transfer
technologies, Rasool et al. [16] examined the properties of Casson nanofluid flow via porous
media across a non-linear stretching surface. The Darcy–Forchheimer relation allows for an
incompressible viscous nanofluid of the Casson type to pass through the specified porous
material. For the nanoparticles’ velocity, temperature, and concentration, slip boundary
conditions were applied. Attendance was made to Brownian diffusion and thermophoresis.
To numerically solve the problem, a Runge–Kutta (RK) scheme of fourth order was used.
Graphs were created for a range of progressive non-dimensionalized parameter values,
and numerical data were used to examine changes in wall drag factor, heat transfer rates,
and mass transfer rates. The results show that the porous media offer resistance to fluid
flow and the strength of the inertial impact decreases the momentum boundary layer. The
thermophoresis and Brownian motion were discovered to have a progressive relationship
with temperature. For increasing values of the slip parameters, there is a decrease in the
magnitude of the rate of heat and mass transfers. Over a horizontal plate the Casson
nanofluid flow through use of the non-Darcy porous medium, Farooq et al. [17] reported
their findings. By utilizing the proper non-similar transformations, the equations were
converted into a dimensionless model. Through the use of bvp4c, local non-similarity was
used to solve the dimensionless partial differential system. In-depth research was carried
out on the effects of the newly discovered non-dimensional characteristics on the flow field.
Additionally, the influences of variables on the skin friction and the rate of heat transfer
were investigated. Finally, using publicly available data, comparisons between locally
similar solutions and non-similar solutions were completed. Ramesh et al. [18] investigated
the time-dependent and incompressible Casson squeezing flow in between disks. In the
flow phenomena, the nanofluid theory (Buongiorno model) was realized. For the lower
disks, concentration, temperature, and velocity slip were also included. The similarity
functions were completed first to ultimate flow equations and they were solved by the
RK-5 scheme. The results were presented in relation to the various physical quantities. A
higher Reynolds number caused a decline in radial velocity. The vortex viscosity parameter
first increases and subsequently decreases the microrotational field.
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Owing to the importance of the Casson fluid model, artificial neural networking mod-
els are constructed for two different boundary layer flow regimes, namely non-magnetized
and magnetized flow fields. The Casson fluid flow towards the stretching cylinder is mathe-
matically formulated in the presence of a heat generation effect, viscous dissipation, mixed
convection, temperature-dependent variable thermal conductivity, thermal radiations, and
first-order chemical reaction effects. The ultimate flow equations are solved by the use
of the shooting method. The skin friction coefficient (SFC) is estimated at the cylindrical
surface. We constructed artificial neural networking models for better estimation of the skin
friction coefficient. We believe that by following the present outcomes of the Casson fluid
flow regime, one can extend the idea to investigate the time-independent shear rate and
shear stress characteristics of molten chocolate, yogurt, blood, and many other culinary and
biological materials. The present research contributes to answering the following concerns:

• Formulation of Casson fluid flow towards cylindrical surfaces with pertinent physical
effects.

• Comparative examination of Casson velocity for magnetized and non-magnetized
flow fields.

• Examination of Casson concentration for chemically reactive and non-reactive flow
fields.

• Evaluation of the SFC at the cylindrical surface for non-magnetized and magnetized
flow fields.

• Estimation of the SFC by using an artificial neural networking model.

2. Mathematical Formulation

The Casson fluid flow field is considered towards the inclined surface in the presence of
mixed convection, a magnetic field, and stagnation point flow. Both heat and mass transfer
aspects are considered for better novelty. Thermal effects, namely thermal radiations,
viscous dissipation, variable thermal conductivity, and heat generation, are considered by
way of an energy equation while the first-order chemical reaction effect is calculated by the
use of a concentration equation. Both the concentration and temperature at the cylindrical
surface are presumed higher in strength as compared to the field far away from the surface.

The geometry of the problem is given in Figure 1a. The ultimate mathematical equa-
tions [19,20] for the present problem are stated as follows:

∂(R̃Ũ)

∂X̃
+

∂(R̃Ṽ)

∂R̃
= 0 , (1)

Ũ ∂Ũ
∂X̃

+ Ṽ ∂Ũ
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(
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)(
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)
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∂Ũe
∂X̃
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0
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(
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=
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∂

∂R̃

(
κ

∂T̃
∂R̃

)
− 1

R̃
∂

∂R̃

(
R̃q
)
+ µ

(
1 +

1
β

)(
∂Ũ
∂R̃

)2

+ Q0

(
T̃ − T̃∞

)
. (3)

Ũ
∂C̃
∂X̃

+ Ṽ
∂C̃
∂R̃

= Dm
∂2C̃
∂R̃2
− kc(C̃− C̃∞). (4)

In Equations (1)–(4), B0 is the uniform magnetic field, Dm is the mass diffusivity, C̃ is
the concentration, βC denotes the solutal expansion coefficient, βT is the thermal expansion
coefficient, and kc is the rate of the chemical reaction,. The relation for radioactive heat flux
is given as:

q = − ∂T̃
∂R̃

16σ∗T3
∞

3k∗
. (5)
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The variable thermal conductivity relation is given as:

κ
(

T̃
)
=

(
ε

T̃ − T̃∞

∆T
+ 1

)
κ∞, (6)

with
∆T = T̃w − T̃∞. (7)

The flow endpoint conditions are particularized as:

Ũ(X̃, R̃) = Ũw = aX̃, Ṽ(X̃, R̃) = 0 ,C̃ = C̃w, T̃ = T̃w, at R̃ = R1 , (8)

Ũ = Ũe = dX̃ , C̃ → C̃∞, T̃ → T̃∞, as R̃→ ∞ . (9)

To obtain a reduced differential system, we have:

Ũ = X̃ U0
L F′C(η), Ṽ = − R1

R̃

√
νU0

L FC(η),

θC(η) =
T̃−T̃∞

T̃w−T̃∞
, φC(η) =

C̃−C̃∞
C̃w−C̃∞

, η = r̃2−R1
2

2R1

√
U0
νL .

(10)

With Equation (10) in Equations (2)–(4), we obtain:

(1 + 1/β)(FC
′′′ (1 + 2γη) + 2γFC

′′ )− FC
′2 + FCFC

′′ + GTθC cos(α) + GCφC cos(α)

−M2(FC
′ − A) + A2 = 0 ,

(11)

(
1 + 4

3 R
)(

θC
′′ (1 + 2ηγ) + 2γθC

′)+ ε
(
(θCθC

′′ + θC
′2)(1 + 2ηγ) + 2γθCθC

′
)

+PrE(1 + 2ηγ)
(

1 + 1
β

)
FC
′′ 2 + PrHθC + PrFCθC

′ = 0 ,
(12)

φC
′′ (1 + 2ηγ) + 2γφC

′ + Sc f φC
′ − ScRcφC = 0 , (13)

The reduced endpoint conditions are:

FC = 0, FC
′ = 1 ,θC = 1, φC = 1, at η = 0 (14)

FC
′ = A, θC = 0, φC = 0, as η → ∞ . (15)

The flow parameters are identified as:

β = µ
√

2πc
τr

, R = 4σ∗ T̃3
∞

κk∗ , A = d
a ,γ =

√
υL

c2U0
,

GC = g0βC(C̃w−C̃∞)L2

U0 x̃ , GT = g0βT(T̃w−T̃∞)L2

U0 x̃ , M =

√
σB2

0 L
ρU0

, Pr = µcp
κ ,

E =
U2

0 (x̃/L)2

cp(T̃w−T̃∞)
, H = LQ0

U0ρcp
, Sc = ν

Dm
, Rc = kc L

U0
.

(16)

The chemical reaction parameter, radiation, magnetic field, heat generation parameters,
Prandtl, Schmidt, Eckert, concentration Grashof, temperature Grashof numbers, Casson
fluid parameter, curvature parameter, and velocities ratio parameter are symbolized as Rc,
R, M, H, Pr, Sc, E, GC, GT , β, γ and A, respectively. For the present case, our interest lies in
evaluating the SFC at the cylindrical surface. Therefore, the mathematical relationship for
SFC is as followes:

C f =
2τw
ρU2

w
,

τw = µ
(

∂ũ
∂r̃

)
r̃=c

,
√

Rex̃C f =
(

1 + 1
β

)
f ′′ (0)

 . (17)
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3. Non-Magnetized Mathematical Model

The heat transfer characteristics in the magnetized flow field of Casson fluid at the
cylindrical surface are considered. Mixed convection, stagnation point flow, viscous dis-
sipation, heat generation, variable thermal conductivity, thermal radiation effects, and
first-order chemical reaction effects are combined for better novelty. The flow narrating the
differential system for a non-magnetized flow regime can be obtained by using M = 0 in
Equations (11)–(15) and we have:

(1 + 1/β)(FC
′′′ (1 + 2γη) + 2γFC

′′ ) + FCFC
′′ − FC

′2 + GTθC cos(α) + GCφC cos(α) + A2 = 0 , (18)(
1 + 4

3 R
)(

θC
′′ (1 + 2ηγ) + 2γθC

′)+ ε
(
(θCθC

′′ + θC
′2)(1 + 2ηγ) + 2γθCθC

′
)

+PrE(1 + 2ηγ)
(

1 + 1
β

)
FC
′′ 2 + PrHθC + PrFCθC

′ = 0 ,
(19)

φC
′′ (1 + 2ηγ) + 2γφC

′ + Sc f φC
′ − ScRcφC = 0 , (20)

The boundary conditions for the present cases remain the same:

FC = 0, FC
′ = 1 ,θC = 1, φC = 1, at η = 0 (21)

FC
′ = A, θC = 0, φC = 0, as η → ∞ . (22)

It is important to note that for the evaluation of SFC, see Equation (17) to see that the
mathematical relationship remains the same.

4. Solution Methodology

The flow equations are highly non-linear therefore one cannot obtain an exact solution.
For the numerical solution, we choose the shooting scheme along with the Runge–Kutta
algorithm due to higher convergence. To implement the shooting method [21,22], we need
to transform Equations (11)–(15) into a set of first-order initial value systems (IVSs). To
achieve such IVSs, we considered:

Y1 = FC(η), Y2 = FC
′(η), Y3 = FC

′′ (η), Y4 = θC(η),

Y5 = θC
′(η), Y6 = φC(η), Y7 = φC

′(η),
(23)

Using Equation (23) into Equations (11)–(15), we have:

Y1
′ = Y2, (24)

Y2
′ = Y3, (25)

Y′3 =
1(

1 + 1
β

)
(1 + 2ηγ)

[
−2γY3

(
1 + 1

β

)
+ Y2

2 −Y1Y3 − GTY4 cos α− GCY6 cos α

−M2(Y2 − A)− A2

]
, (26)

Y4
′ = Y5, (27)

Y5
′ = − 1(

1 + 4
3 R
)
(1 + 2ηγ) + ε(1 + 2ηγ)Y4

[
(1 + 4

3 R)(2γY5) + ε((1 + 2ηγ)Y2
5 + 2γY4Y5)+

PrY1Y5 + PrE(1 + 2ηγ)(1 + 1
β )Y

2
3 + PrHY4

]
, (28)

Y6
′ = Y7, (29)

Y7
′ =

ScRcY6 − ScY1Y6 − 2γY7

(1 + 2ηγ)
. (30)



Mathematics 2023, 11, 326 9 of 25

Meanwhile, the conditions are transformed as:

Y6 = 1, Y4 = 1, Y2 = 1, Y1 = 0, at η = 0,

Y6 → 0, Y4 → 0 , Y2 → A, as η = ∞.
(31)

5. Numerical Outcomes

The numerical outcomes are detailed as line graphs and tables. Figure 1b–d is plotted
for the examination of velocity while Figure 2a,b offers the concentration outcomes. In
detail, for the velocity analysis, two separate flow fields, namely the magnetic flow field
and the non-magnetic flow field, are taken into consideration. We possess a non-magnetic
flow field by selecting M = 0 and M = 0.5 for the magnetic regime. For velocity dependency,
we focused on the following inputs, namely the curvature, Casson fluid [23], and velocities
ratio parameters for these two regimes.
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Figure 1b displays the influence of the Casson fluid parameter on the velocity in
scenarios involving magnetic and non-magnetic fields. For higher Casson parameters, the
velocity profile significantly increases. Both magnetic and non-magnetic fluid flows have
the same effect. It is important to remember that greater Casson fluid parameter values
cause the viscosity to decrease and as a result the velocity increases. In addition, it should
be noted that the velocity is greater for a non-magnetic flow regime than it is in a magnetic
flow field. When an external magnetic field was taken into consideration, the Lorentz
force existed as a resistive force. The effect of the curvature parameter on the Casson fluid
velocity is shown in Figure 1c for the flow regimes. The Casson fluid velocity noticeably
increases for positive variations in the curvature parameter, and this effect is shared by
both flow fields. This is due to the fact that the radius of the curvature decreases when
the curvature parameter is iterated positively. As a result, there is less of a surface area
in contact with the fluid flow, resulting in reduced resistance for the fluid particles. It is
important to keep in mind that the strength of the velocity is higher for non-magnetic flow
fields than for magnetic flow fields. This is because of Lorentz force’s existence when a
magnetic field is applied externally.

The effect of the velocities ratio is seen in Figure 1d. We have seen that the Casson
fluid velocity is directly dependent on the velocities ratio parameter, and that larger values
in the velocities ratio parameter led to higher magnitudes of fluid velocity. It is key to
remember that the velocities ratio parameter is the ratio of free stream velocity to stretching
velocity. When the ratio parameter has a value lower than one, it is inferred that the role
of the free stream is less important than the stretching velocity. As a result, the inclined
stretched cylindrical surface causes a considerable disturbance in fluid flow. It is necessary
to keep in mind that the effect of the velocities ratio parameter on the Casson fluid flow is
the same for the magnetic and non-magnetic flow fields for the stagnation point flow. The
study of the impact of flow parameters on Casson fluid concentration is seen in Figure 2a,b.
For the purpose of examining concentrations, we specifically took into account the reactive
and non-reactive flows. We take Rc = 0 for a non-reactive flow field and Rc = 0.5 for a
chemically reactive environment.

We took into account differences in the curvature parameter and Schmidt number for
these two regimes. The combined effect of the Sc on the concentration for reactive and
non-reactive scenarios is depicted in Figure 2a. We noticed that the concentration profile
greatly declines for higher values of the Schmidt number. Both reactive and non-reactive
fluid flow scenarios have the same effect. In addition, it is important to remember that the
strength of the concentration profile is higher in the case of a reactive flow regime than it is
in a non-reactive flow field. The influence of the curvature parameter on the concentration
of Casson fluid is shown in Figure 2b for both reactive and non-reactive flow patterns.

The Casson fluid concentration decreases noticeably for positive variations In the
curvature parameter, as we have seen. The effects are the same in both flow fields. This
is because the radius of curvature decreases when we iterate the curvature parameter
affirmatively. As a result, there is a reduced surface area in contact with the fluid flow, which
lowers the resistance that the fluid particles must overcome. In the current flow problem,
SFC is physical quantity at cylindrical surfaces; see Tables 1–8. The deviation in skin friction
is noticed when chemically reactive Casson fluid flow at cylindrical surfaces is assumed
along with magnetic, mixed convection, stagnation point flow, heat generation, viscous
dissipation, and variable thermal conductivity effects. Tables 1–8 offer an investigation into
the impact of flow parameters on skin friction for two distinct values of the magnetic field
parameter, M = 0, and M = 0.2. In detail, Tables 1 and 2 provide an analysis of the effect of
the Casson fluid parameter [24] on the SFC.

Here, M = 0 denotes the flow of non-magnetized Casson fluid, whereas M = 0.2 denotes
the flow of magnetized Casson fluid. Tables 1 and 2 demonstrate that the SFC exhibits
a decreasing trend as the Casson fluid parameter values increase. These findings hold
true for both flow fields. It is noticeable that the magnetic flow field has stronger skin
friction coefficients than the non-magnetic flow field. The fluctuation in the SFC for positive
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variations in the velocities ratio parameter is shown in Tables 3 and 4. Such observations
are evaluated for both flow fields. We have seen that the SFC decreases noticeably for
higher values of the velocities ratio parameter. Additionally, in the case of non-magnetized
Casson fluid, the SFC is lower in magnitude. For two distinct values of the magnetic field
parameter, Tables 5 and 6 display the impact of the curvature parameter on the SFC. We
have seen that the SFC considerably rises with an increasing curvature parameter.

It should be noted that for magnetic flow fields, the skin friction coefficient values are
higher. The fluctuation in the SFC for positive values of the thermal Grashof number is seen
in Tables 7 and 8. We have seen that as for initial values of the thermal Grashof number,
the skin friction coefficient tends to decrease but for positive values of the thermal Grashof
number, the SFC increases. It can be seen that the strength of skin friction is substantially
higher for non-magnetic flow fields than for magnetic flows.

Table 1. Impact of the Casson fluid parameter on the SFC for the nonmagnetic flow field.

β
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.8224 −4.9344 5.205703
0.3 −0.8633 −3.7409 3.64113
0.4 −0.8965 −3.1377 3.207106
0.5 −0.9241 −2.7723 2.685965
0.6 −0.9474 −2.5264 2.468694
0.7 −0.9673 −2.3492 2.21511
0.8 −0.9846 −2.2154 2.107406
0.9 −0.9998 −2.1106 2.041828
1.0 −1.0131 −2.0262 1.926957
2.0 −1.0928 −1.6392 1.526076

Table 2. Impact of the Casson fluid parameter on the SFC for the magnetic flow field.

β
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.8517 −5.1102 5.127272
0.3 −0.9017 −3.9074 3.906281
0.4 −0.9420 −3.1377 3.142552
0.5 −0.9752 −2.9256 2.913623
0.6 −1.0039 −2.6771 2.689821
0.7 −1.0271 −2.4944 2.491419
0.8 −1.0478 −2.3575 2.352806
0.9 −1.0659 −2.2503 2.252857
1.0 −1.0818 −2.1639 2.16358
2.0 −1.1763 −2.3526 2.370091
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Table 3. Impact of the velocities ratio parameter on the SFC for the nonmagnetic flow field.

A
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.4365 −1.8913 1.798471
0.3 −0.4153 −1.7995 1.775878
0.4 −0.3859 −1.6721 1.761253
0.5 −0.3486 −1.5105 1.47786
0.6 −0.3036 −1.3154 1.397436
0.7 −0.2511 −1.0881 1.114926
0.8 −0.1914 −0.8293 0.84088
0.9 −0.1245 −0.5395 0.560701
1.0 −0.0497 −0.2154 0.221825
2.0 −0.0097 −0.0421 0.044358

Table 4. Impact of the velocities ratio parameter on the SFC for the nonmagnetic flow field.

A
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.4757 −2.0612 2.061184
0.3 −0.4457 −1.9312 1.937046
0.4 −0.4081 −1.7683 1.776405
0.5 −0.3633 −1.5742 1.580536
0.6 −0.3114 −1.3494 1.351205
0.7 −0.2526 −1.0945 1.090686
0.8 −0.1871 −0.8107 0.81182
0.9 −0.1146 −0.4965 0.498124
1.0 −0.0344 −0.1491 0.150031
2.0 −0.0067 −0.0291 0.028967

Table 5. Impact of the curvature parameter on the SFC for the nonmagnetic flow field.

γ
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.5089 −2.2052 2.054256
0.3 −0.5595 −2.4243 2.433774
0.4 −0.6068 −2.6293 2.688039
0.5 −0.6523 −2.8264 2.789083
0.6 −0.6965 −3.0179 3.168692
0.7 −0.7396 −3.2046 3.04553
0.8 −0.7820 −3.3884 3.265665
0.9 −0.8236 −3.5686 3.535665
1.0 −0.8647 −3.7467 3.75129
2.0 −1.2520 −5.4249 5.194255
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Table 6. Impact of the curvature parameter on the SFC for the magnetic flow field.

γ
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.5547 −2.4035 2.397728
0.3 −0.6038 −2.6163 2.618119
0.4 −0.6499 −2.8161 2.820131
0.5 −0.6944 −3.0088 3.010963
0.6 −0.7377 −3.1964 3.195347
0.7 −0.7800 −3.3797 3.376525
0.8 −0.8216 −3.5599 3.55692
0.9 −0.8626 −3.7376 3.738581
1.0 −0.9030 −3.9126 3.923491
2.0 −1.2857 −5.5709 5.600951

Table 7. Impact of the temperature Grashof number on the SFC for the nonmagnetic flow field.

GT
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.3822 −1.6561 1.545852
0.3 −0.3107 −1.3463 1.296924
0.4 −0.2319 −1.0048 1.027428
0.5 −0.1363 −1.0016 0.938263
0.6 −1.1515 −4.9894 5.305239
0.7 −1.1315 −4.9027 4.950683
0.8 −1.1115 −4.8162 4.683114
0.9 −1.0715 −4.6428 4.742156
1.0 −1.0915 −4.7295 4.449012
2.0 −2.0515 −8.8892 8.987435

Table 8. Impact of the temperature Grashof number on the SFC for the magnetic flow field.

GT
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.8802 −3.8139 3.786153
0.3 −0.8563 −3.7103 3.708539
0.4 −0.8324 −3.6067 3.609377
0.5 −0.8084 −3.5027 3.498244
0.6 −0.7845 −3.3993 3.403159
0.7 −0.7606 −3.2956 3.298737
0.8 −0.7367 −3.1921 3.187463
0.9 −0.7128 −3.0885 3.082916
1.0 −0.6889 −2.9850 2.986601
2.0 −0.4509 −1.9537 1.955074

6. Artificial Neural Networking Outcomes

The Casson flow field was mathematically modelled and solved by use of the shooting
method. At the surface, skin friction is a quantity of interest. We evaluated the values of the
skin friction coefficient at the cylindrical surface by assuming two different flow regimes.

In the first case, we considered the flow regime without an externally applied magnetic
field while in another case the flow regime was assumed in the presence of the externally
applied magnetic field. For both cases, we have developed an artificial neural networking
(ANN) model. For a non-magnetic flow field, we selected M = 0, and for the magnetic
flow field, we selected M = 0.2. Multilayer perceptron (MLP) is used because of its strong
structural characteristics. MLP networks are made up of layers, and each layer is coupled
to the next. Because the input factors influencing each estimated skin friction coefficient
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(SFC) value vary, two distinct ANN models were created, with distinct input and output
values produced for each. Figure 3a depicts the MLP architecture, which depicts the layered
structure of the produced ANN models. Table 9 shows the input and output parameters for
each generated model. It is critical to optimize the data set used in the construction of ANN
models [25]. Seventy percent of the data set used to create the two separate models was
set aside for training, 15% for validation, and 15% for testing [26]. One of the challenges
in developing ANN models is the lack of a rule for identifying the neurons in the hidden
layer [27]. Figure 3b,c depicts the structural topologies of two different ANN models. From
both figures, one can see that four input values are defined in the input layer of each of the
given structural topologies, while the number of neurons in the hidden layers is 20 and
10, respectively. In the output layer, it is seen that the SFC parameter, which is the only
value, is obtained. For ANN models, it is important to ideally optimize the data set being
used [28]. Seventy percent of the data set used for the two different models developed was
reserved for training the model, 15% for testing, and 15% for validation. The lack of a set
formula for calculating the number of neurons in the hidden layer is one of the challenges
in designing ANN models. For this reason, the performance of ANN models with different
numbers of neurons in the hidden layer has been examined and the number of neurons in
the hidden layer has been ideally optimized.
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Table 9. The output and input parameters for each developed model.

Model Inputs Output

Model 1 (M = 0) A γ GT β SFC
Model 2 (M = 0.2) A γ GT β SFC

Table 10 contains information about the data set utilized in each ANN model as well
as the number of neurons in each models hidden layer. The Levenberg–Marquardt training
technique, which is extensively utilized due to its great learning performance, is used in
MLP network models. The hidden and output layers both have access to purelin and
tan–sig transfer functions. The following are the mathematical expressions for the transfer
functions utilized:

f (x) =
1

1 + exp(−x)
, (32)

purelin(x) = x. (33)

Table 10. Information about the data set used in each ANN model and the number of neurons.

Model Number of Neuron Training Validation Test Total

Model 1 (M = 0) 20 28 6 6 40
Model 2 (M = 0.2) 10 28 6 6 40

Mean squared error (MSE), coefficient of determination (R), and margin of deviation
(MoD) parameters, which are extensively used in the literature, were chosen to evaluate
the performance of two different ANN models [29,30]. The mathematical equations used
to calculate the performance parameters are as follows:

MSE =
1
N

N

∑
i=1

(Xtarg(i) − Xpred(i))
2, (34)

R =

√√√√√√√√1−

N
∑

i=1
(Xtarg(i) − Xpred(i))

2

N
∑

i=1
(Xtarg(i))

2,
, (35)

MoD(%) =

[Xtarg − Xpred

Xtarg

]
× 100. (36)
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The training accuracy of the ANN models designed to predict SFC values in two
different situations has been thoroughly studied. Training performance graphs for two
ANN models are shown in Figure 4a,b for M = 0 and M = 0.2, respectively. The graphs in
both figures depict the training cycle (epoch) that occurs in an MLP network. Furthermore,
the MSE values of each ANN model are greater at the start of the training period and drop
as the model progresses.
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It is seen that the ANN model’s training phases ended with the MSE values obtained
for each data set meeting the most optimal position. The error histograms for the ANN
model of both magnetized (M = 0.2) and non-magnetized (M = 0) flow fields are shown in
Figure 5a,b. It should be observed that the calculated error rates for three different data sets
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are positioned quite close to the zero-error line in the error histograms. The error levels in
the error histograms are also quite low. The results of the performance and error histograms
reveal that the training stages of the ANN models designed for estimating SFC values have
been completed optimally.
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Figure 6a,b shows the SFC values for both magnetic (M = 0.5) and non-magnetized
(M = 0) flow fields, as well as the values produced using the ANN models (b).
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When the outcomes for each data point are analyzed, the graphs clearly show that
the ANN model results are in very good agreement with the goal values. This excellent fit
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of the goal and ANN outputs demonstrates that the created ANN models can accurately
anticipate SFC values.

Figure 7a,b demonstrates the deviation ratio between the SFC values derived from
two different ANN models with the goal data. Such observations are completed for M = 0
and M = 0.2, respectively. Examining the MoD values obtained for each data point utilized
in the creation of the ANN models reveals that the data are often concentrated around
the zero-error line. The MoD data to the zero-error line indicate that the ANN outputs
have low deviation rates. For a close error study of the ANN models (M = 0, M = 02), the
discrepancies between the ANN model outputs and the target data are designed for the
individual data points and are shown in Figure 8a,b. When the difference values for the
two different ANN models are considered, it is apparent that for all of the data points, the
calculated differences are quite low. The examination of the MoD and difference values
reveals that both ANN models can predict SFC values with relatively low error values. The
target values are on the x-axis in Figure 9a,b, and the ANN outputs are on the y-axis. When
the data for two distinct ANN models (M = 0, M = 02) were reviewed, the data points were
found to be quite close to the zero-error line. The numbers also show that the data points
are inside the +10% error band range. Table 11 shows the performance parameters derived
for two different ANN models created to estimate SFC values under different scenarios.
The MoD values calculated for the ANN models are quite low, as can be observed. The low
MoD values suggest that the deviation rates of the ANN model outputs are quite low. The
R values’ proximity to one and the low MSE values demonstrate that each ANN model can
make predictions with high accuracy. The collected results suggest that each ANN model
can accurately calculate the output parameter that is the SFC.
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Table 11. The performance parameters calculated for the two different ANN models.

Model MSE R MoDmin (%) MoDmax (%)

Model 1 (M = 0) 5.28 × 10−2 0.96081 −0.12 6.9
Model 2 (M = 0.2) 2.39 × 10−5 0.99998 0.0008 −0.74

7. Conclusions

The stagnation point flow of Casson fluid has been mathematically modelled for
magnetized and non-magnetized flow fields. The novelty was enhanced by considering
heat generation, viscous dissipation, mixed convection, temperature-dependent variable
thermal conductivity, thermal radiations, and chemical reaction effects. The ultimate flow
equations were solved by using the shooting method. The SFC values were evaluated at
the cylindrical surface and the corresponding ANN models were constructed. The key
outcomes are as follows:

• The margin of deviation and difference values reveals that both ANN models can
predict SFC values with relatively low error values.

• The error levels in the error histograms are also quite low. Furthermore, for both ANN
models, we noticed that the data points were inside the +10% error band range.

• The coefficient of determination values’ proximity to one and the low mean squared
error values demonstrate that each ANN model can carry out predictions with high
accuracy.

• The magnitude of velocity is higher for the case of non-magnetized Casson fluid flow
as compared to non-magnetic flow.

• For both chemically reactive and non-reactive flows, the concentration profiles show a
declining nature towards the Schmidt number and curvature parameter.

• The SFC is found to be the decreasing function of the Casson fluid parameter and the
velocities ratio parameter while the opposite is the case for the curvature parameter.
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• For variation in the Casson fluid parameter, thermal Grashof number, and curvature
parameter, the magnitude of SFC is higher for the case of magnetized flow as compared
to the non-magnetized flow regime.
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Nomenclature

X̃, R̃ Cylindrical coordinates
Ũ, Ṽ Velocity components
ν Kinematic viscosity
β Casson fluid parameter
βT Thermal expansion coefficient
g0 Gravitational acceleration
α Angle of inclination
βC Solutal expansion coefficient
T̃∞ Ambient temperature
T̃ Temperature of fluid
B0 Magnetic field constant
C̃ Concentration of fluid
C̃∞ Ambient concentration
Ũe Free stream velocity
σ Fluid electrical conductivity
cp Specific heat at constant pressure
ρ Fluid density
q Radiative heat flux
κ Variable thermal conductivity
µ Dynamic viscosity
Q0 Heat generation coefficient
L Characteristic length
ε Small parameter
R1 Radius of cylinder
kc Chemical reaction rate
C̃w Surface concentration
U0 Reference velocity
T̃w Surface temperature
Dm Mass diffusivity
FC′(η) Fluid velocity
θC(η) Fluid temperature
φC(η) Fluid concentration
GT Temperature Grashof number
GC Concentration Grashof number
Pr Prandtl number
A Velocities ratio parameter
R Radiation parameter
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γ Curvature parameter
k∗ Coefficient of mean absorption
E Eckert number
M Magnetic field parameter
Rc Chemical reaction parameter
Sc Schmidt number
σ∗ Stefan–Boltzmann constant
H Heat generation parameter
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