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Abstract: In this paper, a deep learning optimization algorithm is proposed, which is based on the
Grünwald–Letnikov (G-L) fractional order definition. An optimizer fractional calculus gradient
descent based on the G-L fractional order definition (FCGD_G-L) is designed. Using the short-
memory effect of the G-L fractional order definition, the derivation only needs 10 time steps. At
the same time, via the transforming formula of the G-L fractional order definition, the Gamma
function is eliminated. Thereby, it can achieve the unification of the fractional order and integer
order in FCGD_G-L. To prevent the parameters falling into local optimum, a small disturbance is
added in the unfolding process. According to the stochastic gradient descent (SGD) and Adam, two
optimizers’ fractional calculus stochastic gradient descent based on the G-L definition (FCSGD_G-L),
and the fractional calculus Adam based on the G-L definition (FCAdam_G-L), are obtained. These
optimizers are validated on two time series prediction tasks. With the analysis of train loss, related
experiments show that FCGD_G-L has the faster convergence speed and better convergence accuracy
than the conventional integer order optimizer. Because of the fractional order property, the optimizer
exhibits stronger robustness and generalization ability. Through the test sets, using the saved optimal
model to evaluate, FCGD_G-L also shows a better evaluation effect than the conventional integer
order optimizer.

Keywords: deep learning optimizer; stochastic gradient descent; fractional order; Adam; time
series prediction

MSC: 34A08

1. Introduction

In the field of deep learning, the research of optimization algorithms has been an
important direction. Among them, the optimization algorithms based on the gradient
descent method have become the mainstream. Gradient Descent (GD) is the most basic
optimization algorithm. Currently, various improved optimization algorithms in deep
learning are based on it. It has a faster convergence speed, its convergence rule can be
illustrated simply as θn+1 = θn − η∇J(θn), where η is the learning rate and ∇J(θn) is the
gradient of J(θ) at θn [1]. GD is hardly practical in deep learning. It evaluates the entire
datasets at each iteration, and the current datasets are getting larger and larger, which
can easily make video memory and memory insufficient. SGD accelerates the conver-
gence speed and solves the problem of excessive video memory and memory occupation.
However, it causes the direction of the gradient to fluctuate too much at each iteration.
Due to the disadvantages of GD and SGD, MBGD is proposed, which does not cause
video memory and memory overflow and overcomes the problem of gradient direction
fluctuation [2]. It is a compromise between GD and SGD. It degenerates to SGD when
the batch size is 1. It becomes GD when the batch size is the total sample size. In deep
learning, a moderate batch size can speed up sample training [3]. Thus, the batch size is
generally set. Namely, SGD is also equated to MBGD in the application scenario. The same
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is true for the fractional order gradient descent optimizer in the paper (FCGD_G-L). Polyak
introduced the concept of momentum [4], which was discussed in detail theoretically by
Nesterov in the context of convex optimization [5]. The introduction of momentum in deep
learning has long been shown to be beneficial for parameters’ convergence [6]. It speeds up
the convergence and prevents the parameters from falling into local optimal solutions. In
addition, scholars have proposed some algorithms for adaptive learning rates. For example,
AdaGrad proposed by Duchi [7], RMSProp proposed by Thieleman [8], and Adadelta
proposed by Zeiler [9]; all of them use the current gradient state to change the learning rate
or as a calibration for changes. Kingma proposed Adam [10] by combining the momentum
method and the adaptive learning rate algorithm. Although the above algorithms and their
improvements have their own characteristics, their gradients are based on the first-order
derivative. Therefore, further development is limited.

As the research on fractional order gradient descent and deep learning optimization
algorithms has intensified, more and more scholars have introduced fractional order cal-
culus into deep learning optimization algorithms. Thus, it is possible for deep learning
optimization algorithms to rely on fractional order derivation. Some scholars have achieved
some good results on related research by exploiting the fractional order property. Under the
convexity condition and Caputo, Li studied the convergence rate of different orders of GD,
by jointly using the integer order and fractional order, parameters that finally converge to
the integer order extreme value points [11]. By using Riemann–Liouville (R-L) and Caputo,
Chen studied GD under convexity conditions and proposed a deformation’s formula; the
formula can converge quickly to integer order extreme value points [12]. By transforming
R-L and looking for special initial parameters, Wang designed a deep learning optimization
algorithm that can guarantee the same convergence result as the integer order under the
convexity condition, and the related optimizer is validated using the MNIST dataset by
experiments [13]. Yu designed a deep learning optimizer using G-L by setting the step
size to two. Its current gradient is determined by the gradient in the past fixed size time
window according to a specific weight [14]. Kan studied the deep learning optimization
algorithm using G-L and validated the relevant optimizers using the MNIST dataset and
the CIFAR-10 dataset with the inclusion of momentum, discussing the effect of different
step sizes on the results [15]. Khan designed a deep learning optimizer using a power series
of fractional order, which was applied to a recommender system with good results [16–18].
Due to the constraints of the fractional order power series, it is limited in the kinds of
loss functions. In addition, the update of the parameters can only be kept in the positive
range [19]. Constrained optimization problems have been studied by Yaghooti [20] using
Caputo, and Viola [21] using R-L.

There are various fractional order definitions. The commonly used ones are the G-L
fractional order definition, R-L fractional order definition, and Caputo fractional order
definition [22]. SGD is rarely used directly in deep learning, but it is the basis for improved
optimization algorithms. SGDM is an optimization algorithm with momentum [23]. Ada-
Grad, RMSProp and Adadelta are a class of optimization algorithms with an adaptive
learning rate [24]. Adam is an optimization algorithm for combining momentum and
adaptive learning rate property [25,26].

Based on the above discussion, FCGD_G-L is designed in this paper using the G-
L fractional order definition. Its current α order gradient is obtained by summing the
current first order gradient and the first order gradients of the past 10 time steps according
to the fractional order property. Compared with the integer order, which can only add
momentum and disturbances to the gradient descent, FCGD_G-L can add perturbations
to its own derivation process to accelerate the descent and prevent falling into the local
optimum solution. At the same time, the integer order needs additional momentum per
iterative process, and this increases the computational workloads. Because of the fractional
order property, the fractional order is equivalent to self-contained momentum. Thus,
these computational workloads are eliminated in FCGD_G-L. The designed optimizer
in this paper adds small perturbations to the fractional order derivation process; this
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maximizes the ability of finding the global optimal solution while ensuring the fractional
order properties. The major contributions of this paper are as follows:

1. In this paper, a novel deep learning optimizer is designed, written according to Py-
torch documentation specification, with the same invocation methods as the existing
optimizers of Pytorch, enriching the variety of optimizers.

2. Compared to other fractional order deep learning optimizers, the use of the G-L
fractional order definition reduces the work of adding momentum and perturbation
to the gradient at each iteration; thus, reducing the computational workload and
improving the efficiency of the fractional order deep learning optimizer.

3. The new G-L fractional order definition uses improved Grünwald coefficients, avoid-
ing the use of the Gamma function. In addition, it solves the problem that the previous
fractional order optimizer is not perfectly compatible with the integer order.

4. In this paper, obtaining the global optimal solution is the best result. However, it is
easy to fall into local optimal solutions during training. Thus, a constant factor cj is
added before each term of the G-L fractional order definition, and a small internal
perturbation is added to the current time step by fine-tuning cj, which can prevent
the parameters from falling into the local optimal solutions well.

5. The deep learning algorithm in this paper provides a new way of thinking; by intro-
ducing fractional order, the optimizer adds a hyperparameter α. By adjusting α, the
optimizer can be adapted to different application scenarios well, and a faster conver-
gence speed and higher convergence accuracy can be obtained than the integer order.

The remainder of this paper is organized as follows. Section 2 introduces the G-L
fractional order definition and SGD and its related improvement algorithm. Section 3
introduces the definition of fractional order gradient descent in this paper and gives
the corresponding fractional order optimizer algorithms for SGD and Adam. Section 4
validates the optimizers of this paper on deep neural network models using two time series
datasets, compares the corresponding integer order optimizers, analyzes the train loss
of each optimizer’s loss function, and evaluates the effectiveness of the resulting models
on test sets. Section 5 summarizes FCGD_G-L, pointing out its shortcomings and future
improvement directions.

2. Derivation of Fractional Calculus Gradient Descent Based on G-L Fractional Order

To better illustrate the optimizer in this paper, this section focuses on some of the basic
concepts mentioned above.

2.1. The Definition of G-L Fractional Order

Definition 1. The G-L fractional order definition is defined as follows [22,27]:

G
t0

Dα
t f (t) = lim

h→0
h−α

[(t−t0)/h]

∑
j=0

(−1)j Γ(α + 1)
Γ(j + 1)Γ(α− j + 1)

f (t− jh) (1)

where h is step size, and [t0, t] is the upper and lower bound on the number of steps. The α is the
order of the G-L fractional order definition.

wj = (−1)j Γ(α + 1)
Γ(j + 1)Γ(α− j + 1)

(2)

Theorem 1. The limit finding operation in Equation (1) can be neglected if the chosen computational
step is small enough. The G-L fractional order definition can be written as follows [22]:

G
t0

Dα
t f (t) ≈ h−α

[(t−t0)/h]

∑
j=1

(1− α + 1
j

)wj−1 f (t− jh) (3)
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Proof. We begin by proving Theorem 1:
With Equation (2), obviously, w0 = 1. Thus, Equation (4) is given in the paper.

wj
wj−1

= −Γ(j)Γ(α−j+2)
Γ(j+1)Γ(α−j+1)

= − α+1−j
j

= 1− α+1
j

(4)

Namely, Theorem 1 is proved.
Through Equation (4), the calculation of Equation (2) by the Gamma function can be

avoided. Since Equation (4) does not need to compute double float [20], the computational
efficiency and robustness of the algorithm are improved. �

2.2. Preliminaries Algorithms

Let a data set sample be n, the fi(x) is the loss function of the training samples with
index i, and t is a variable of time. This means that the parameter x is iterated at the t time
node, i ⊂ n, x0 = 0. Accordingly, the following definitions are obtained:

Definition 2. SGD’s parameter update equation is as follows [1]:

xt ← xt−1 − η∇ fi(xt−1) (5)

where η is the learning rate (lr), and ∇ fi(xt−1) is the gradient of fi(xt−1) at parameter xt−1.

The stochastic gradient method with momentum (SGDM) [3] is the accumulation of
past historical gradients on top of the current gradient, in order to achieve faster conver-
gence and prevent falling into local optima. SGDM is defined as follows:

Definition 3. SGDM’s parameter update equation is as follows [4]:

vt ← βvt−1 +∇ fi(xt−1),
xt ← xt−1 − ηvt.

(6)

where β is the momentum coefficient, and vt is the momentum, this accumulates past gradients to
the current gradient to improve the descent speed and reduce the fluctuation of parameter updates.
The default β = 0.9, v0 = 0.

Adaptive learning rate algorithms are a class of deep learning optimization algorithms
created by adjusting the learning rate and gradient according to their current state [2]. In
addition, AdaGrad, RMSProp and Adadelta are the three main representatives, which are
defined as follows:

Definition 4. AdaGrad’s parameter update equation is as follows [7]:

st ← st−1 +∇ fi
2(xt−1),

xt ← xt−1 − η√
st+ε
∇ fi(xt−1).

(7)

where st is used to accumulate the variance of past gradients and then construct a different learning
rate for each iteration, to optimize the process of iteration. The default s0 = 0. ε = 1e− 8, and the ε
is to prevent the denominator from being 0.

Definition 5. RMSProP’s parameter update equation is as follows [8]:

st ← γst−1 + (1− γ)∇ fi
2(xt−1),

xt ← xt−1 − η√
st+ε
∇ fi(xt−1).

(8)
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where γ is the weight coefficient of s.

Definition 6. Adadelta’s parameter update equation is as follows [9]:

gt = ∇ fi(xt−1)
st ← ρst−1 + (1− ρ)g2

t ,
g′t ←

√
ut−1+ε√

st+ε
gt,

ut ← ρut−1 + (1− ρ)g′t
2,

xt ← xt−1 − ηg′t.

(9)

where ut is the leaked average of g′t with rescaled gradients. Together with st, it constructs a learning
rate for gt. The default u0 = 0.

Adam’s algorithm combines the advantages of an adaptive learning rate algorithm
and momentum to achieve fast convergence. However, its gradient is easy to oscillate and
the convergence accuracy is slightly poor. It is defined as follows.

Definition 7. Adam’s parameter update equation is as follows [10]:

gt = ∇ fi(xt−1),
vt ← β1vt−1 + (1− β1)gt,
st ← β2st−1 + (1− β2)g2

t ,
_
v t ← vt

1−βt
1
,

_
s t ← st

1−βt
2
,

g′t ←
η
_
v t√

_
s t+ε

,

xt ← xt−1 − g′t.

(10)

3. G-L Fractional Order Definition

The fractional order derivative formula of this paper is first given to illustrate its
rationality. Its SGD algorithm and Adam’s algorithm are also given in the paper.

3.1. G-L Fractional Order Definition of the Model

From the G-L fractional order definition of Equation (1), due to the characteristics
of computers, it is clear that the algorithm cannot be expanded infinitely in practical
calculations; therefore, a finite expansion is required. Some scholars have shown that, in
neural networks, the expansion to the 10th term already characterizes the properties of
fractional order derivatives well [15,28,29]. Let q(j) = Γ(α+1)

Γ(j+1)Γ(α−j+1) and make a graph of

the variation of q(j) with j ∈ Q+ for Equation (2), as shown in Figure 1.
Figure 1 shows the curves of α = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5]. When Equation (2)

is expanded to the 10th term, the effect of the coefficients on the overall fractional order
derivation becomes small. Therefore, the fractional order derivation in this paper only
accumulates the past 10 time steps.
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On the other hand, the step size in Equation (1) is not a continuous value in the
parameter update of the neural network [14,15], namely h ∈ N∗. In this paper, let the
step size be the minimum value, namely h = 1, and according to Equations (3) and (4), a
derivative equation is obtained that can be used for updating the parameters:

G
a Dα

t f (t) ≈ h−α
[(t−a)/h]

∑
j=0

wj f (t− jh)

≈ f (t) +
10
∑

j=1
wj f (t− j)

, (11)

Equation (11) can eliminate the computation of the Gamma function and achieve the
unification of the fractional order and integer order optimizers. In order to improve the
ability of the algorithm to find the global optimal solution, a coefficient cj is added before
each accumulated term. At the same time, the probability of each coefficient having 0.9 is 1,
and the probability of 0.1 is 0. To obtain Equation (12):

G
a Dα

t f (t) = f (t) +
10

∑
j=1

cjwj f (t− j) (12)

According to Equation (12), when α = 0, the algorithm degenerates to SGD without
momentum. In order to make α = 1 and the SGD equal, Equation (4) is improved further
in the paper and obtains Equation (13):

w0 = 1, wj = (1− α + 1
j + 1

)wj−1, j = 1, 2, ...10. (13)

By using Equation (13), when the order α = 1, the fractional order derivative becomes
the integer order derivative, and corresponds to SGD. Thus, the unification of the fractional
order gradient descent and integer order gradient descent is achieved. In the original
formula, α < 0 denotes integral and α > 0 denotes differential. Because of the transforma-
tion of Equation (4), α ≤ 0 in this paper also has good gradient descent capability, while
retaining the fractional order property.
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3.2. FCGD_G-L Algorithm

From Equations (12) and (13), an SGD based on FCGD_G-L and an Adam based on
FCGD_G-L are proposed. In these two algorithms, the integer order derivation process
becomes a fractional order derivation process. In addition, the extra momentum is no
longer needed by taking advantage of the long memory property of the fractional order
derivation.

The FCSGD_G-L Algorithm 1, which combines FCGD_G-L and SGD:

Algorithm 1: The SGD optimization Algorithm based on FCGD_G-L

Input: η(lr),x0(params), f (x)(objective), λ(weight decay), α(order), c(disturbance coefficient),
w(fractional coefficient)
Initialize: x0 = 0, g0 = 0,c = [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],w0 = 1,wj = (1− α+1

j+1 )wj−1

gt = ∇x ft(xt−1)
for t = 1 to . . . do

random.shu f f le(c)
G
a Dα

xt−1
f (xt−1) = gt + c[0]w1gt−1 + c[1]w2gt−2 + c[2]w3gt−3 + c[3]w4gt−4

+c[4]w5gt−5 + c[5]w6gt−6 + c[6]w7gt−7 + c[7]w8gt−8
+c[8]w9gt−9 + c[9]w10gt−10

if λ 6= 0
G
a Dα

xt−1
f (xt−1)← G

a Dα
xt−1

f (xt−1) + λxt−1

xt ← xt−1 − ηG
a Dα

xt−1
f (xt−1)

return xt

In Algorithm 1, because fractional order derivatives are used, the algorithm adds a
hyperparameter α that can adjust the order. In addition, the momentum and Nesterov are
removed from the algorithm.

The FCAdam_G-L Algorithm 2, which combines FCGD_G-L and Adam:

Algorithm 2: The Adam optimization Algorithm based on FCGD_G-L

Input: η(lr), β1, β2(betas), x0(params), f (x)(objective), λ(weight decay), α(order), c(disturbance
coefficient), w(fractional coefficient)
Initialize: m0 = 0(first moment), v0 = 0(second moment), ε = 1e− 8(eps), x0 = 0, g0 = 0,
c = [1, 1, 1, 1, 1, 1, 1, 1, 1, 0], w0 = 1, wj = (1− α+1

j+1 )wj−1

gt = ∇x ft(xt−1)
for t = 1 to . . . do

random.shu f f le(c)
G
a Dα

xt−1
f (xt−1) = gt + c[0]w1gt−1 + c[1]w2gt−2 + c[2]w3gt−3 + c[3]w4gt−4

+c[4]w5gt−5 + c[5]w6gt−6 + c[6]w7gt−7 + c[7]w8gt−8
+c[8]w9gt−9 + c[9]w10gt−10

if λ 6= 0
G
a Dα

xt−1
f (xt−1)← G

a Dα
xt−1

f (xt−1) + λxt−1

mt ← β1mt−1 + (1− β1)
G
a Dα

xt−1
f (xt−1)

vt ← β2vt−1 + (1− β2)[
G
a Dα

xt−1
f (xt−1)]

2

_
mt ← mt

1−βt
1

_
v t ← vt

1−βt
2

xt ← xt−1 −
η
_
mt√
_
v t+ε

return xt

In Algorithm 2, a hyperparameter α that can adjust the order is added.
The above two algorithms are based on FCGD_G-L and two classical gradient descent

algorithms. They have the same time complexity as the original algorithm. Because of
FCGD_G-L, the deep learning optimization algorithm becomes more flexible.
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4. Experiment

In this section, two time series datasets are used to validate FCSGD_G-L and
FCAdam_G-L. One of the datasets is the Dow Jones Industrial Average (DJIA), prepro-
cessed with 24,298 rows of data, spanning from 3 February 1930 to 13 October 2022, with
five dimensions: Open, High, Low, Volume and Close, predicting Close, and the training
sets and test sets are cut according to 8:2 [30]. The other dataset is the Electricity Trans-
former dataset (ETTh1), with 17,420 rows of data, which has seven dimensions HUFL,
HULL, MUFL, MULL, LUFL, LULL and OT, predicting OT, and the training sets and test
sets are cut according to 8:2 [31].

The computer configuration for the experiment is as follows: CPU is an AMD Ryzen 7
5800H with Radeon Graphics 3.20 GHz; GPU is a RTX 3060 Laptop.

The selection criteria of the order are their fastest convergence speed and highest
accuracy when training.

The neural network structure of the whole experiment consists of a three-layer
LSTM [32] and two Linear, whose structure is shown in Figure 2.
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In Figure 2, let X be the size of each input sample; it is a matrix with rows of Feature
size and columns of Sliding window size. The y′ is a 64× 1 vector. The y′′ is a 32× 1 vector.
The

_
y is a predicted value; it is a scalar. As can be seen from Figure 2, X passes through the

three-layer LSTM. After that, the h′′t+1 is obtained on the last layer; it is equal to the y′. The
y′ is processed by the first Linear, and the y′′ is obtained. Finally, the y′′ is processed by the
second Linear, and the

_
y is obtained.

4.1. Metrics

In this paper, the Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) are used as evaluation
metrics [32]. They are defined as follows:

Let n be the total number of samples, yi is the true value, and f (xi) is the predicted
value, and y is the sample mean. The following equation is obtained:

MSE =
1
n

n

∑
i=1

(yi − f (xi))
2 (14)

RMSE =

√
1
n

n

∑
i=1

(yi − f (xi))
2 (15)

MAE =
1
n

n

∑
i=1
|yi − f (xi)| (16)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − f (xi)

yi

∣∣∣∣ (17)

4.2. Training for DJIA

In the training of DJIA, FCSGD_G-L and FCAdam_G-L are used as optimizers, re-
spectively. In addition, the train loss and convergence accuracy of different optimizers are
recorded. The hyperparameters are set as: epoch = 250; weight_deacy = 0. The sliding
window size is 30 and the batch size is 256. MSE is used as the loss function, and the lr of
FCSGD_G-L during the training is set as in Equation (18):

lr =


0.01, 0 ≤ epoch < 50.

0.005, 50 ≤ epoch < 100.
0.001, 100 ≤ epoch < 150.

0.0005, 150 ≤ epoch < 200.
0.0001, 200 ≤ epoch < 250.

(18)

After 250 iterations, the train loss of different orders of FCSGD_G-L is shown in
Figure 3.

Figure 3 shows the decreasing trend of train loss with epoch, where the FCSGD_G-L
fractional order is −0.1, 0.0, 0.1, 0.2, 0.3, 0.4. From Figure 3, it can be seen that train
loss of DJIA converges the fastest, and the convergence accuracy is the highest when the
hyperparameter α = 0.1 of FCSGD_G-L. Therefore, FCSGD_G-L with α = 0.1 is used for
comparison with SGD and SGD with momentum = 0.9 (SGDM); the other hyperparameters
are default, as shown in Figure 4.
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It can be seen from Figure 4, on DJIA, that the train loss convergence speed of
FCSGD_G-L is faster than the SGD and the SGDM, and when α = 0.1, FCSGD_G-L
has a higher convergence accuracy.

When using FCAdam_G-L to train DJIA, due to the characteristics of Adam, the lr
smaller than the SGD is selected in this paper to avoid divergence, and the other hyperpa-
rameters remain unchanged. The lr setting is as shown in Equation (19):

lr =


0.0001, 0 ≤ epoch < 50.

0.00005, 50 ≤ epoch < 100.
0.00001, 100 ≤ epoch < 150.
0.000005, 150 ≤ epoch < 200.
0.000001, 200 ≤ epoch < 250.

(19)

After 250 iterations, Figure 5 shows the decreasing trend of train loss with epoch,
where the FCAdam_G-L fractional order is −0.1, 0.0, 0.1, 0.2, 0.3, 0.4.

As can be seen from Figure 5, when the hyperparameter α = 0.3 of FCAdam_G-L,
DJIA has the highest precision of train loss convergence, and the convergence rate of each
order are roughly the same. Therefore, FCAdam_G-L with α = 0.3 is used to compare with
Adam, and the other hyperparameters are default, resulting in Figure 6.
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As can be seen from Figure 6, the train loss of FCAdam_G-L with α = 0.3 demonstrates
a higher convergence accuracy than Adam on DJIA. In terms of convergence speed, Adam
and FCAdam_G-L with α = 0.3 are the same; and combined with Figure 5, it can be seen
that FCAdam_G-L and Adam converge at the same speed on DJIA.

4.3. Training for ETTh1

In the training of ETTh1, FCSGD_G-L and FCAdam_G-L are used as optimizers, re-
spectively, and the train loss and convergence accuracy of different optimizers are recorded.
The hyperparameters are set as: epoch = 250; weight_deacy = 0. The sliding window size is
72 and the batch size is 256. MSE is used as the loss function. The lr of FCSGD_G-L during
the training is set as in Equation (18), and the lr of FCAdam_G-L during the training is set
as in Equation (19). After 250 iterations, Figure 7 shows the decreasing trend of train loss
with epoch, where the FCSGD_G-L fractional order is −0.7, −0.6, −0.5, −0.4, −0.3, −0.2,
−0.1, 0.0, 0.1, 0.2, 0.3, 0.4. Figure 8 shows the decreasing trend of train loss with epoch,
where the FCAdam_G-L fractional order is −0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5.
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Figure 8. Train loss at ETTh1 by FCAdam_G-L.

In Figure 7, for ETTh1, FCSGD_G-L performs best when α = −0.6, and its convergence
speed and convergence accuracy reach the highest. In Figure 8, when α = 0.4, FCSGD_G-
L performs the best and its convergence accuracy reaches the highest. The two figures
show roughly the same train loss descent domain. So, on ETTh1, the SGD, SGDM, Adam,
FCSGD_G-L and FCAdam_G-L are compared together in this paper in Figure 9.
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In Figure 9, FCSGD_G-L with α = −0.6 has the fastest decrease in train loss and
the highest convergence accuracy. The SGDM with momentum = 0.8 also performs
well, except that the convergence accuracy is worse than FCSGD_G-L, but at the default
momentum = 0.9, the SGDM diverges without other hyperparameters being changed.
FCGD_G-L in this paper is also essentially an algorithm with momentum, but as can be
seen from Figures 7 and 8, FCGD_G-L on ETTh1 not only converges quickly and with high
convergence accuracy, but is also robust and less likely to diverge. On ETTh1, both Adam
and FCAdam_G-L perform poorly; however, using FCAdam_G-L is better than Adam.
Among the various optimizers that achieve convergence, the SGD is the least effective,
converges slowly, and has the lowest accuracy.

4.4. Evaluation of DJIA and ETTh1

Four evaluation metrics: MSE, RMSE, MAE, and MAPE were obtained by Equations
(14)–(17). They are used in this paper to evaluate the effects of the two test sets. The results
are recorded in Tables 1 and 2. Further, these metrics are used in order to compare the
FCSGD_G-L correlation optimizer without considering the existing optimal network model.
Further, the main hyperparameters are also initially set in Section 4, with the order and
momentum settings based on the best results discussed above, namely, on DJIA, the lr is as
in Equation (18), momentum = 0.9, α = 0.1 for FCSGD_G-L and α = 0.3 for FCAdam_G-L;
on ETTh1, lr is as in Equation (19), momentum = 0.8, α = −0.6 for FCSGD_G-L and α = 0.4
for FCAdam_G-L. At the end of each epoch, the train loss is compared, the model with the
smallest train loss is saved, and then the model is evaluated by using test sets.

Table 1. The best results for DJIA are bolded at MSE, RMSE, MAE, and MAPE.

Optimizer MSE RMSE MAE MAPE

SGD 0.0344 0.1855 0.1428 0.1825
SGDM 0.0313 0.1769 0.1363 0.1731

FCSGD_G-L 0.0270 0.1643 0.1268 0.1595
Adam 0.0055 0.0744 0.0564 0.0662

FCAdam_G-L 0.0042 0.0651 0.0502 0.0592

Table 2. The best results for ETTh1 are bolded at MSE, RMSE, MAE, and MAPE.

Optimizer MSE RMSE MAE MAPE

SGD 0.0167 0.1292 0.0984 0.7001
SGDM 0.0091 0.0953 0.0671 0.2882

FCSGD_G-L 0.0083 0.0910 0.0636 1.2089
Adam 0.0121 0.1102 0.0785 0.7112

FCAdam_G-L 0.0109 0.1044 0.0741 0.3513

In Table 1, due to the high volatility of DJIA, using the full test set is not effective and
it is difficult to show the advantages and disadvantages of each optimizer. Therefore, only
the first half of the test set of DJIA is used in this paper. It can be seen from Table 1, that the
four metrics of FCAdam_G-L are the best among the five optimizers. For FCSGD_G-L, the
results of the four metrics are all better than the SGD and the SGDM. This indicates that
FCGD_G-L has obvious advantages in DJIA.

In Table 2, FCSGD_G-L’s MSE, RMSE and MAE have the best results. For FCAdam_G-
L, the results of the four metrics are all better than Adam. This indicates that FCGD_G-L
has obvious advantages in ETTh1.

5. Conclusions

On DJIA and ETTh1, for the train loss of FCGD_G-L, its convergence speed and
convergence accuracy exceed the corresponding integer order optimizer. In addition, the
evaluation effect on test sets is also better than the corresponding integer order optimizer.
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Taking advantage of the fractional order long memory property, FCGD_G-L does not
need additional momentum, because it is equivalent to containing momentum inside. In
addition, because of the properties of the G-L fractional order definition, the addition of
perturbations becomes flexible in the iteration process. By using the transforming formula
of the G-L fractional order definition, the Gamma function is removed in the paper. In
addition, FCGD_G-L includes the integer order and the fractional order, thus achieving the
unification of both.

Algorithm 1 and algorithm 2 make full use of the Autograd package of Pytorch to
avoid the complicated derivation process in the complex neural network. The optimizers
designed according to Algorithm 1 and algorithm 2 are very compatible with Pytorch.
In Pytorch, our optimizer can be used just like any other existing optimizer. Using the
order of the fractional order, we can fine-tune the results of the optimizer to obtain better
convergence speed and convergence results. In Tables 1 and 2, the evaluation results on the
test set also show better results than the integer order through adjusting the order.

In the foreseeable future, we will further explore the influence of the fractional calculus
gradient descent on deep neural network, how to select the appropriate order quickly, and
how to reduce hyperparameters. Eventually, it is also a significant research direction to
make FCGD_G-L play a role in other fields.
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