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Abstract: Deep learning has drawn great attention in the financial field due to its powerful ability in
nonlinear fitting, especially in the studies of asset pricing. In this paper, we proposed a long short-term
memory option pricing model with realized skewness by fully considering the asymmetry of asset
return in emerging markets. It was applied to price the ETF50 options of China. In order to emphasize
the improvement of this model, a comparison with a parametric method, such as Black-Scholes (BS),
and machine learning methods, such as support vector machine (SVM), random forests and recurrent
neural network (RNN), was conducted. Moreover, we also took the characteristic of heavy tail into
consideration and studied the effect of realized kurtosis on pricing to prove the robustness of the
skewness. The empirical results indicate that realized skewness significantly improves the pricing
performance of LSTM among moneyness states except for in-the-money call options. Specifically, the
LSTM model with realized skewness outperforms the classical method and other machine learning
methods in all metrics.
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1. Introduction

As a momentous derivative financial instrument, the option plays a crucial role in risk
management and price discovery. The rapid development of the modern options market
is attributed to the great breakthrough published by Black, Scholes, and Merton [1–3].
Thereafter, option pricing has become a hot topic in the derivative financial market.

As the most famous parametric method for option pricing, the Black-Scholes (BS)
formula is put forward based on five assumptions, among which the most controversial
ones are the constant volatility and log normality of the underlying asset return. To
overcome the drawbacks of the BS formula, many improvements have been worked out
to contribute to this field. For example, against the assumption of constant volatility,
Heston introduced a stochastic volatility option pricing model [4]. Duan [5] assumed
that the volatility of the underlying asset return followed a GARCH process. With the
development of data processing capability, realized vpolatility, which is a non-parametric
volatility measurement based on high-frequency data, has also been incorporated into the
BS pricing framework [6–8].

For the normal assumption, the evidence has been established that the distribution
of asset returns in financial market is asymmetric, especially for emerging financial mar-
ket [9–11]. The characteristic of heavy tail of financial asset return cannot be ignored
either [12]. Therefore, some researchers applied skewness for option pricing to get an
analytic option pricing formula, achieving more accurate pricing performance [13–15].
Since the Edgeworth expansion has a significant advantage in characterizing the non-
normality distribution of underlying assets [16], Duan et al. [17,18] developed a general
analytical approximation method for pricing European options based on an Edgeworth
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series expansion for adjusting skewness and kurtosis of the cumulative asset return in the
framework of GARCH.

Another branch of option pricing studies focuses on non-parametric methods, such
as machine learning. Neural network, Support vector machine (SVM), Random forests,
Extreme gradient boosting (XGBoost), and Light Gradient Boosting Machine (LightGMB)
have achieved empirical success in predicting financial asset price [19–26]. However,
financial data presents feature of high frequency and serial correlation. Due to the great
ability in non-linear fitting and time-series information extraction, a variety of deep-learning
methods have already been applied to predict financial asset price, such as long short-
term memory (LSTM) model [27–30]. Zhang and Huang [31] applied the long short-term
memory recurrent neural network (LSTM-RNN) for hedging. The deep-learning neural
network has also been proven efficient for option pricing [32–36]. For example, attempts
have been made to use deep-learning models on American options [37,38]. Nevertheless,
these methods only focus on refining the structure of the neural network itself, ignoring
the stylized facts of financial asset return, especially the skewness.

In light of the above information, an LSTM neural network [39] with realized skewness
was proposed. The feasibility of implementing this model in option pricing is tested with
the ETF50 options of China. Realized volatility, strike price, maturity, risk-free interest
rate, and underlying asset price, which are usually deployed for derivatives pricing, and
realized skewness, the one considered in our study, have been adopted as our input
features. Furthermore, realized kurtosis has also been considered as one of the input
features when testing the robustness of realized skewness. In comparison to the model
without realized skewness and the model that contains realized skewness and realized
kurtosis, our algorithm containing only realized skewness was applicable to acquire the
intraday price and shows better pricing performance. Moreover, to verify the performance
of the LSTM model when considering realized skewness, benchmark models were exercised
for pricing options [40–45]. Several evaluating metrics, such as mean square error (MSE),
root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE), were used to test the pricing accuracy of our proposed model.

The remainder of this paper is organized as follows. Section 2 provides a brief back-
ground of the LSTM neural network and recurrent neural network (RNN) and gives the
model structure adopted in this paper. Section 3 conducts an empirical study for pricing
ETF50 options and model comparison. Section 4 provides some concluding remarks.

2. Methodology
2.1. Recurrent Neural Network

The recurrent neural network, which is one of the most popular deep-learning algo-
rithms, is a variant structure of an artificial neural network. It is usually used for processing
time-sequential data due to its ability to capture the relationship between previous period
data and current data. The output features of the previous period are retained during the
training process and are computed as input variables for the next period. The result of the
computation of the t − 1 period of the hidden state will be considered as the input variable
for period t and multiplied by a weight. Then, the activation function maps the hidden
state to the output state. The neurons of each layer are illustrated in Figure 1, where xt is
an input vector at time-step t, ht is the hidden state vector at time-step t, ot is the output at
time-step t, W is the weight from the hidden layer at time-step t − 1 to the hidden layer at
time-step t, U is the weight from the input layer to the hidden layer, and V is the weight
from the hidden layer to the output. The mathematical form of an RNN is given by the
following formulas:

ht = fh(Uxt + Wht−1) (1)

ot = fo(Vht) (2)
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where fh and fo are the activation function. In this paper, ‘ReLU’ function was applied
to describe nonlinear transformation. The use of ‘ReLU’ allows the network to introduce
sparsity on its own, which can greatly increase the training speed.
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Figure 1. The structure of a neuron of a recurrent neural network.

For this study, an RNN is proposed that is composed of five simple RNN-layers and
one dense layer. Additionally, there are some dropout-layers included.

2.2. Long Short-Term Memory Neural Network

The LSTM introduced by Hochreiter and Schmidhuber uses a structure called an LSTM
cell to obtain better memory. Meanwhile, in order to avoid gradient explosion and gradient
extinction performed in an RNN, the LSTM uses a gate control mechanism and memory
cells to control information transmission, which greatly enhances the long-term memory
performance [46]. The gate control mechanism consists of an input gate it, forget gate ft,
and output gate ot, as shown in Figure 2. The input gate determines the input variable
during the current period and the hidden neuron of the previous period to the memory
status of the current period. The forget gate determines the portion to be forgotten from
the input memory cell of the previous period to the memory status of the current period.
The output gate determines the output information from the memory status. Therefore, the
LSTM is specifically designed to learn long-term dependencies.
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The Equations (3)–(8) portray the update of the memory cells of the LSTM. The
notations of each equation are presented below:

xt is the input vector.
W f , Wi, WC, and Wo are the weight matrices of gate and cell states.
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b f , bi, bC, and bo are bias vectors.
ht is the hidden state of the LSTM.
ft, it, and ot are values of forget gate, input gate, and output gate, respectively.
Ct is the vector for the cell states and C̃t is the temporary vector for the cell states.
f (·) is the activation function.

ft = f
(

W f ·[ht−1, xt] + b f

)
(3)

it = f (Wi·[ht−1, xt] + bi) (4)

C̃t = f (WC·[ht−1, xt] + bC) (5)

Ct = Ct−1· ft + it·C̃t (6)

ot = f (Wo·[ht−1, xt] + bo) (7)

ht = ot· f (Ct) (8)

The structure of the LSTM is composed of an input layer, one or more hidden layers,
and an output layer. In addition, the number of neurons in each layer is variant when
considering different problems. Figure 3 shows the network architecture. When processing
an input sequence, the cell states and hidden states are passed through the neurons to
obtain the output. During the training process, the network updates the weights and bias
terms in such a way that it minimizes the loss of the objective function over the entire
training data set, whose MSE is used in this paper. In Figure 3, In are the input features of
our model. hn represents the hidden neurons of hidden layers. It only shows one hidden
layer in Figure 3. O is the output of the network, and in our study, it represents the option
price. The weights of each connection are adjusted according to the feedback error. In
order to construct a pricing model, each layer of the LSTM is stacked with a set of neurons,
as shown in Figure 2. With different amounts of neurons and different number of layers,
the LSTM presents different structures and adapts to different problems. The specified
topology of the LSTM model used in our study is shown in Section 2.3.
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2.3. Model Structure

We construct LSTM networks containing five LSTM layers and four Dropout layers,
which are used in our study for pricing the ETF50 options. The Dropout layer can prevent
overfitting. With respect to the numerous factors that affect the prices of options, we
consider the traditional factors that have been approved using the BS model and the
realized skewness and realized kurtosis features proposed in this paper. Then, features that
include spot price, strike price, risk-free rate, time-to-maturity, realized volatility, realized
skewness, and realized kurtosis are selected as input variables. The structure of the LSTM
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used in our study is shown in Figure 4. The neural network is trained to retain the prices of
the ETF50 options. Then, the predicted option prices acquired from the network and the
real option prices should be compared to measure the accuracy of the network.
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In the benchmarks, the structure of the RNN is shown in Figure 5. The overall number
of layers of the LSTM and RNN models are equal, and the hyperparameters of each model
are shown in Table 1.
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Table 1. Hyperparameter of each model.

LSTM RNN

Activation function RELU RELU
Loss function MSE MSE

Neurons [200, 200, 200, 200, 200, 1] [200, 200, 200, 200, 200, 1]
Learning rate 0.001 0.001

Optimizer Adam Adam

Herein, [200, 200, 200, 200, 200, 1] represents the number of neurons from the first
network layer to the last network layer.
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2.4. Computing Realized Higher Moments

We define the intraday log-returns for each interval, and the definition of the ith log
return on day t is given using

rt, i = 100 ∗ (log pt,i − log pt,i−1) i = 1, 2 . . . N (9)

where pt,i is the closing price of ETF50 on day t in ith interval. We use one-minute intraday
price so that we have N = 241 in a trading day.

The realized volatility put forward by Andersen and Bollerslev [47] is computed by
summing squares of intraday log-returns

RVt =
N

∑
i=1

rt, i
2 (10)

Meanwhile, the intraday realized volatility, such as the interval [a, b], is a consistent
estimator for the volatility of the instantaneous log-returns process [48]. In this paper, we
consider N = 5.

Because the asymmetry of the distribution of log-returns is prominent in financial
markets, we are interested in computing realized high moments which may have an impact
on the pricing of ETF50 options. We construct a measure of realized skewness and realized
kurtosis constructed by Amaya et al. [49], and the definition of each equation is given by

RDSkewt =

√
N ∑N

i=1 rt,i
3

RVt3/2 (11)

RDKurtt =
N ∑N

i=1 rt,i
4

RVt2 (12)

It indicates that the return distribution of stock has a left tail that is fatter than the
right tail when there is a negative value of realized skewness and positive values indicate
the opposite.

2.5. Measures of Model Performance

In order to evaluate the option pricing accuracy of realized skewness and different
models, we consider four widely used metrics: mean squared error, root mean squared
error, mean absolute error, and mean absolute percentage error. The smaller the value
of these metrics, the more accurate the option price. The definitions of these metrics are
provided below:

MSE =
1
n

n

∑
i=1

(pi − p̂i)
2 (13)

RMSE =

√
1
n

n

∑
i=1

(pi − p̂i)
2 (14)

MAE =
1
n

n

∑
i=1
|pi − p̂i| (15)

MAPE = 100%
1
n

n

∑
i=1

∣∣∣∣ pi − p̂i
pi

∣∣∣∣ (16)

where n is the data number of prediction set, pi is the actual option price, and p̂i is the
predicted price of option.

Of all these metrics, the MAPE reflects the process of comparison with the original
data, which could be more objective. In contrast, the MSE, RMSE, and MAE only mea-
sure the deviation between actual values and estimated values, which are susceptible to



Mathematics 2023, 11, 314 7 of 21

outliers. Thus, we adopted MAPE as the main estimator to assess the accuracy of our
proposed models.

3. Results and Discussion

In this section, we first discuss the details of the China ETF50 options used in our
study, and then use these options as a training set to calibrate our hyperparameters. Our
aim is to show that realized skewness is reliable for option pricing. This is achieved via
a comprehensive testing of the options’ performance on the LSTM model with realized
skewness and the LSTM model without realized skewness. Furthermore, the LSTM model
containing skewness and kurtosis is considered a contrasting model to confirm the ability of
realized skewness on pricing options. In this process, we discuss the respective performance
of different moneyness of call and put options. Then, we also evaluate the pricing validity
between the LSTM model and benchmark models including the RNN, Black-Scholes model,
Support vector machine, and Random forests.

3.1. Summary of the Data

The target we used in this study are the ETF50 options traded in the Shanghai Stock
Exchange, whose underlying asset is the ETF50. They were first traded on 9 February 2015
with a European-style exercise. Meanwhile, the market share of ETF50 options has rapidly
expanded, becoming one of the most important financial derivatives in China. Because
quantitative trading has become prevalent with the development of computer technology,
studying high frequency option pricing is essential for hedging. We use the one-minute
data for the ETF50 options traded from October 2020 to June 2021 for our study, which
were obtained from the Wind database. To get a more accurate pricing performance, we
take away the data whose volume is zero to calibrate our model and eliminate the option
data whose maturity is less than 7 days.

There are one hundred options introduced in our study, among which fifty are call op-
tions and the others are put options. Before passing the data to deep-learning networks, the
options are sorted by moneyness for the sake of contrasting the pricing accuracy of the dif-
ferent moneyness for call and put options. Table 2 describe the moneyness for each option.
A call option should be an in-the-money (ITM) option if moneyness > 1.03, an at-the-money
(ATM) option when 0.97 ≤ moneyness ≤ 1.03, and an out-of-the-money (OTM) option
otherwise. We consider a put option to be an OTM option when moneyness > 1.03, an ATM
option when 0.97 ≤moneyness ≤ 1.03 , and an ITM option when moneyness < 0.97.

Table 2. Description of moneyness.

State Moneyness

Call option
ITM >1.03
ATM 0.97~1.03
OTM <0.97

Put option
ITM <0.97
ATM 0.97~1.03
OTM >1.03

As presented in Tables 3 and 4, we have ITM, ATM, OTM for options that are also
divided by call and put. The statistics of all the features of the ETF50 options are shown in
Tables 3 and 4. Herein, “maturity” means the time left to expiration and the moneyness
denotes S/K. Among other features, “r” is the SHIBOR rate and “S” represents the prices
of underlying asset. “K” stands for the strike prices of options.
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Table 3. Statistics of ETF50 Call options sorted by moneyness.

Moneyness r S K Maturity Realized
Volatility

Realized
Skewness

Realized
Kurtosis

ITM

count 70205 70205 70205 70205 70205 70205 70205
mean 0.0139 3.6119 3.2317 56.4780 0.0411 0.0049 2.2384

std 0.0059 0.1477 0.1499 0.1401 0.0948 1.1394 0.7893
min 0.0061 3.304 2.908 8 0.0006 −2.2361 1
max 0.0328 4.096 3.4 237 3.9760 2.2361 5

ATM

count 83637 83637 83637 83637 83637 83637 83637
mean 0.01442 3.6181 3.4932 58.0846 0.0345 0.0199 2.2216

std 0.0063 0.1529 0.0949 0.1374 0.0771 1.1112 0.777
min 0.0061 3.304 3.253 8 0.0006 −2.2361 1
max 0.0328 4.096 3.6 237 3.9760 2.2361 5

OTM

count 222532 222532 222532 222532 222532 222532 222532
mean 0.0163 3.6242 3.7427 69.1648 0.0338 0.0151 2.2193

std 0.0063 0.1569 0.122 0.1594 0.0778 1.1095 0.7772
min 0.0061 3.304 3.45 8 0.0006 −2.2361 1
max 0.0328 4.096 3.9 237 3.976 2.2361 5

Table 4. Statistics of ETF50 Put options sorted by moneyness.

Moneyness r S K Maturity Realized
Volatility

Realized
Skewness

Realized
Kurtosis

ITM

count 153988 153988 153988 153988 153988 153988 153988
mean 0.0174 3.6841 3.7128 58.6633 0.0397 0.0071 2.2123

std 0.0062 0.1529 0.1344 0.1389 0.0939 1.1093 0.7664
min 0.0061 3.304 3.45 8 0.0006 −2.2361 1
max 0.0328 4.096 3.9 237 3.976 2.2361 5

ATM

count 103716 103716 103716 103716 103716 103716 103716
mean 0.0154 3.6317 3.4596 64.8511 0.0346 0.0192 2.2207

std 0.0064 0.1576 0.1134 0.1463 0.0813 1.1099 0.7756
min 0.0061 3.304 3.253 8 0.0006 −2.2361 1
max 0.0328 4.096 3.6 236 3.976 2.2361 5

OTM

count 145085 145085 145085 145085 145085 145085 145085
mean 0.015 3.5979 3.1774 77.7259 0.0354 0.0164 2.2283

std 0.0062 0.1502 0.1575 0.1671 0.0883 1.1194 0.7853
min 0.0061 3.304 2.908 8 0.0007 −2.2361 1
max 0.0328 4.096 3.4 237 3.976 2.2361 5

Another problem arises because the time-to-maturity has a different magnitude. As a
result, the weight adjustment of the network will be overwhelmed by the larger values of
an input variable. To prevent larger input variables from becoming dominant, we divide
the maturity by 365.

3.2. Pricing Performance of Long Short-Term Memory Model
3.2.1. The Effective Analysis of Realized Skewness

We investigate whether deep-learning models can be applied to estimate given option
data well, which is key to the pricing performance of a deep-learning model given market
information. We use the intraday option prices to calibrate each model and get the optimal
hyperparameters by minimizing the loss function. We then use ETF50 options to compare
the performance of the LSTM that possesses realized skewness as an input feature with the
LSTM that consists only of five normal features (r, S, K, maturity, and Realized volatility).
Additionally, we use benchmark models to emphasize the pricing ability of LSTM. The
LSTM model is compared with BS, SVM, Random forests, and an RNN. The ETF50 options
data are established in chronological order from 2020 to 2021.
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Table 5 presents the pricing errors of the LSTM without realized skewness, and Table 6
presents the pricing errors of the LSTM containing realized skewness on ETF50 options.
They indicate that the errors of call options and put options are smaller for the LSTM with
realized skewness except for in-the-money call options. When moneyness is not considered,
we find that the ETF50 option pricing model that includes realized skewness is decreased
in MSA by 15.22% and 29.03% for a call option and put option, respectively. In terms of
root mean squared error, the ETF50 option pricing model that includes realized skewness
is reduced by 15.26% for a call option and 16.12% for a put option. Additionally, there
is a decrease in the mean absolute error of 14.37% and 16.46% for call options and put
options, respectively. Further, MAPE decreases by 9.91% and 30.21% for the call option
and put option, respectively, which indicates the excellent ability of the realized skewness
for modeling pricing options. The empirical results indicate that, from the perspective of
realized skewness, the LSTM with realized skewness as one of the input features performs
more excellently than the LSTM without realized skewness across all metrics. This implies
that our proposed model has a higher accuracy in option pricing.

Table 5. Pricing error of LSTM without realized skewness.

Metrics Call Options Put Options

ITM ATM OTM ITM ATM OTM

MSE 0.0067 0.0289 0.0261 0.0442 0.0047 0.0019
RMSE 0.8197 1.7003 1.6149 2.1027 0.6876 0.4307
MAE 0.6437 1.5225 1.3905 1.8732 0.4064 0.2506

MAPE 1.1611 5.2866 28.0592 25.1675 20.1217 46.2594
Note: All values are multiplied by a factor of 100.

Table 6. Pricing error of LSTM with realized skewness.

Metrics Call Options Put Options

ITM ATM OTM ITM ATM OTM

MSE
0.0118 0.006 0.015 0.0207 0.0036 0.0017
−76.12% 79.24% 42.53% 53.17% 23.40% 10.53%

RMSE
1.0875 0.7761 1.2257 1.438 0.6035 0.4113
−32.67% 54.36% 24.10% 31.61% 12.23% 4.50%

MAE
0.9053 0.6253 1.0454 1.3198 0.3542 0.2331
−40.64% 58.96% 24.82% 29.54% 12.84% 6.98%

MAPE
1.791 2.3868 19.8898 16.0634 16.7579 28.8013
−54.25% 54.85% 29.11% 36.17% 16.72% 37.74%

Note: All values are multiplied by a factor of 100. The second line of each item is the percentage reduction per
metric compared with LSTM without realized skewness. A negative value means the metric is higher than the
previous value.

In the process of option pricing, our empirical results demonstrate that the realized
skewness has a significant impact on the accuracy of the option pricing. Considering the
performance of the LSTM with realized skewness, put options have a higher improvement
in accuracy than call options in each metric. The skewness has an effect on the return rate
of the underlying asset, which leads to differences in accuracy.

On the moneyness side, compared with the LSTM without realized skewness, the
LSTM with realized skewness demonstrates the best accuracy for ITM options, while call
options and put options are accurately priced in a majority of the moneyness states.

The effectiveness of the LSTM model with realized skewness is robust in option pricing
except for the ITM call option. As we tested based on different maturity and moneyness of
ETF50 options, the performance of the LSTM shows that call options have smaller errors
than put options in ITM, ATM, and OTM, respectively. This is consistent with the general
pattern that the accuracy of the put option pricing model is lower than that of the call
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option pricing model. The results of the ETF50 option pricing test indicate that the realized
skewness can effectively improve the accuracy of deep learning for option pricing.

3.2.2. The Effective Analysis of Realized Kurtosis

To verify the effectiveness of realized kurtosis on pricing options, we consider the
LSTM model that contains realized skewness and realized kurtosis compared to the model
that contains only normal features and the model that includes realized skewness. Table 7
presents the errors of realized kurtosis when applied to option pricing after training the
model using ETF50 option data.

Table 7. Pricing error of LSTM with realized skewness and realized kurtosis.

Metrics Call Options Put Options

ITM ATM OTM ITM ATM OTM

MSE
0.0138 0.0054 0.0282 0.0305 0.0045 0.0015
−16.64% 9.31% −87.94% −47.46% −24.81% 10.70%

RMSE
1.1732 0.7377 1.6790 1.7471 0.6703 0.3896
−7.88% 4.95% −36.99% −21.50% −11.07% 5.27%

MAE
0.9242 0.5917 1.4537 1.5390 0.3751 0.2196
−2.09% 5.37% −39.06% −16.61% −5.90% 5.81%

MAPE
1.6019 2.3151 29.0479 16.6420 16.7752 29.6484
10.56% 3.01% −46.04% −3.60% −0.10% −2.94%

Note: All values are multiplied by a factor of 100. The second line of each item is the percentage reduction per
metric compared with the LSTM containing realized skewness. A negative value means the metric is higher than
the previous value.

As shown in Table 7, the values of the MAPE metric increase in the majority of
moneyness states. When considering the MAPE of put options, the value of the ITM option
increases 3.6%. For the ATM option, the value is 0.1% and 2.94% on OTM. Especially, the
pricing error increases 46.04% in the OTM option. The results of the LSTM option pricing
model that uses realized skewness and realized kurtosis show that it performs poorly
in each moneyness category of put options when compared with the model containing
only realized skewness. Call options also perform poorly in OTM. When considering ITM
and ATM call options, the model improves the pricing accuracy of ETF50 options slightly.
The results are consistent with the fact that kurtosis is relatively weak on pricing options
compared with skewness.

Figure 6 shows the comparison of MAPE among the normal model with of five normal
features (the “Original”), the LSTM with realized skewness (the “RDSkew”), and the LSTM
with realized skewness and realized kurtosis (the “RDSkew&RDKurt”). As shown in
Figure 6, the pricing model with realized skewness has a superior performance in the
majority of moneyness states. As for the ITM call option, the model that does not consider
realized skewness and realized kurtosis, the Original, performs with the best accuracy.

As shown in Figures 7–12, the option pricing performance of the LSTM with realized
skewness (RDSkew) (a) presents more accuracy than that of the LSTM without realized
skewness (Original) (b). It also outperforms the model that contains realized skewness and
realized kurtosis (RDSkew&RDKurt) (c) in most moneyness states.
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3.3. Pricing Performance of Benchmark Models

The results of benchmark models are measured with the metrics obtained on the
dataset with realized skewness, which is an important variable for option pricing. The
BS option pricing model, SVM, and Random forests, including 200 decision trees, have
been used for comparison with the LSTM model, and, thus, their results are summarized to
confirm the pricing performance of the LSTM. Nevertheless, the results obtained with the
benchmark machine learning models are used as an indicator of the possible error range.

The first conclusion is that the quality of pricing with the benchmark models varies
considerably across the different states of moneyness for options. ITM and ATM options
are much more accurate compared with OTM options when it concerns the call option in
all of the benchmarks. In the terms of the put option, ITM options have a smaller deviation
than ATM and OTM options. Both call and put OTM options are priced with a maximum
percentage deviation. For call options and put options, the LSTM model with realized
skewness performs the best, followed by the Random forests model.

When it comes to the pricing accuracy of the LSTM model with realized skewness,
Tables 8–10 reveal that the LSTM model presented the most excellent pricing performance
except for ITM put options, with remarkable nonlinear fitting ability. The BS model
provides the least reliable pricing due to the maximum values of metrics. The ITM call
options are priced using the LSTM model with an MAPE close to 0.01791, 0.023868 for ATM
call options, and around 0.198898 for OTM. For call options priced using LSTM, the MAPE
decreases by 98.21%, 97.55%, and 92.68% compared with the BS model with the ITM, ATM,
and OTM moneyness states, respectively. Those decreases are 67.80%, 84.23%, and 73.75%
when compared with the SVM model and 0.65%, 49.16%, and 13.44% when compared with
the Random forests model. Compared with the RNN model, which is most similar to the
LSTM model, the MAPE decreases by 83.26% for ITM call options, 82.74% for ATM call
options and 72.57% for OTM call options. Similarly, the metric is smallest with put options
priced using the LSTM model. When compared with the BS model, the LSTM optimization
has 75.01%, 83.93%, and 73.31% in terms of the ITM, ATM, and OTM options. They are
78.87%, 98.18%, and 99.13% compared with SVM model, −37.07%, 44.88%, and 16.44%
compared with the Random forests model, and 71.47%, 90.35%, and 84.33% compared with
the RNN model. In terms of the moneyness of call and put options, ITM options have the
most accurate pricing quality regardless of the pricing model.
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Table 8. Pricing error of ITM options estimated using different models when using realized skewness.

Models
ITM Call Options ITM Put Options

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

BS 33.6885 58.0418 55.9973 99.9041 0.4037 6.3540 5.7960 64.2859
SVM 0.1221 3.4946 2.8661 5.5627 0.3562 5.9681 5.7673 76.0187
RF 0.0209 1.4474 0.9829 1.8028 0.0113 1.0631 0.8555 11.7190

RNN 0.5544 7.4460 6.2965 10.6978 0.2093 4.5747 4.3433 56.2957
LSTM 0.0118 1.0875 0.9053 1.7910 0.0207 1.4380 1.3198 16.0634

Note: ‘RF’ stands for Random forests model and all values are multiplied by a factor of 100.

Table 9. Pricing error of ATM options estimated using different models when using realized skewness.

Models
ATM Call Options ATM Put Options

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

BS 0.3303 5.7471 4.1122 97.2872 0.1095 3.3095 2.2106 104.2794
SVM 0.1257 3.5457 3.0895 15.1358 0.5718 7.5617 7.4347 921.8113
RF 0.0257 1.6023 1.2072 4.6944 0.0064 0.7989 0.5151 30.4049

RNN 0.1764 4.1998 3.6286 13.8309 0.0458 2.1405 2.0417 173.6328
LSTM 0.0060 0.7761 0.6253 2.3868 0.0036 0.6035 0.3542 16.7579

Note: ‘RF’ stands for Random forests model and all values are multiplied by a factor of 100.

Table 10. Pricing error of OTM options estimated using different models when using
realized skewness.

Models
OTM Call Options OTM Put Options

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

BS 2.2385 14.9615 12.1928 271.6490 0.0154 1.2413 0.7371 107.8957
SVM 0.2772 5.2650 4.8966 75.7476 0.8353 9.1395 9.1124 3293.3315
RF 0.0627 2.5038 1.8247 22.9774 0.0023 0.4832 0.2845 34.4681

RNN 0.1661 4.0753 3.8056 72.5007 0.0048 0.6939 0.6531 183.8504
LSTM 0.0150 1.2257 1.0454 19.8898 0.0017 0.4113 0.2331 28.8013

Note: ‘RF’ stands for Random forests model and all values are multiplied by a factor of 100.

For the sake of robustness, a review of a set of different models has been conducted.
We train the model with realized skewness and realized kurtosis for comparison. When con-
taining realized kurtosis, LSTM also has the most accurate pricing capability. Tables 11–13
show that LSTM presents the lowest metrics except for ITM put options.

Table 11. Pricing error of ITM options estimated using different models when using realized skewness
and realized kurtosis.

Models
ITM Call Options ITM Put Options

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

BS 33.6885 58.0418 55.9973 99.9041 0.4037 6.3540 5.7960 64.2859
SVM 0.1226 3.5016 2.8688 5.6109 0.3513 5.9267 5.7186 75.6203
RF 0.0208 1.4406 0.9812 1.7970 0.0112 1.0576 0.8497 11.6567

RNN 0.5987 7.7373 6.5175 11.1190 0.3030 5.5043 5.3030 69.5781
LSTM 0.0138 1.1732 0.9242 1.6019 0.0305 1.7471 1.5390 16.6420

Note: ‘RF’ stands for Random forests model and all values are multiplied by a factor of 100.
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Table 12. Pricing error of ATM options estimated using different models when using realized
skewness and realized kurtosis.

Models
ATM Call Options ATM Put Options

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

BS 0.3303 5.7471 4.1122 97.2872 0.1095 3.3095 2.2106 104.2794
SVM 0.1139 3.3744 2.9022 14.3229 0.5596 7.4806 7.3462 912.8136
RF 0.0253 1.5915 1.2008 4.6725 0.0058 0.7584 0.4925 29.7101

RNN 0.1815 4.2605 3.6802 14.1544 0.0472 2.1731 2.1188 200.7604
LSTM 0.0054 0.7377 0.5917 2.3151 0.0045 0.6703 0.3751 16.7752

Note: ‘RF’ stands for Random forests model and all values are multiplied by a factor of 100.

Table 13. Pricing error of OTM options estimated using different models when using realized
skewness and realized kurtosis.

Models
OTM Call Options OTM Put Options

MSE RMSE MAE MAPE MSE RMSE MAE MAPE

BS 2.2385 14.9615 12.1928 271.6490 0.0154 1.2413 0.7371 107.8957
SVM 0.2856 5.3446 4.9778 77.0127 0.8353 9.1395 9.1124 3293.3115
RF 0.0628 2.5053 1.8241 23.0268 0.0024 0.4849 0.2853 34.4997

RNN 0.2163 4.6503 4.3962 83.6558 0.0091 0.9544 0.8765 238.5260
LSTM 0.0282 1.6790 1.4537 29.0479 0.0015 0.3896 0.2196 29.6484

Note: ‘RF’ stands for Random forests model and all values are multiplied by a factor of 100.

Figures 13–18 illustrate the different pricing performance of LSTM (a) and benchmark
models (b) stands for the BS model, (c) stands for the SVM model, (d) stands for the Random
forests model, and (e) stands for the RNN model when realized skewness is considered.
The pictures demonstrate that the prices using the LSTM model with realized skewness are
closest to the real prices.
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The obtained results suggest that the LSTM model, which consists of realized skewness,
has outstanding pricing performance for ETF50 options. So far, the price provided using
the LSTM model with realized skewness is more reliable than that from BS, SVM, Random
forest, and RNN models, as the resulting errors are lowest for the LSTM model with
realized skewness. Thus, it confirms the ability of realized skewness in option pricing with
a deep-learning model.

4. Conclusions

In this study, an LSTM model with realized skewness has been proposed for option
pricing. We validated the efficiency and accuracy of the proposed model by pricing the
ETF50 options of China from 2020 to 2021. The deep-learning models were calibrated in a
data-driven approach, which means that accuracy metrics can be used to tune the LSTM
model. To check the pricing ability, the data is split into a training sample, a validation
sample for adjusting hyperparameters, and a test sample for verifying the accuracy of
option prices. Then, in order to confirm the pricing performance of the LSTM model with
realized skewness, BS, Support vector machine, Random forest, and RNN models with
realized skewness were considered as benchmarks. To confirm the robustness of LSTM,
we also constructed the model containing realized skewness and realized kurtosis for
comparison. The results are presented for call and put options and are separated by three
different moneyness states.

The results obtained from the empirical analysis demonstrate that the pricing accuracy
can be improved when realized skewness serves as an input feature, except for ITM call
options. One of the possibilities for dealing with the difficulties met by ITM call options
would be to develop different models for this characteristic. However, it performs poorly
in the model that contains realized skewness and realized kurtosis, compared with the
model only containing realized skewness, which confirms the fact that skewness has more
significant ability on pricing options when compared with kurtosis. In terms of all metrics,
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the LSTM model with realized skewness reduces the pricing error by 4.50–79.24%, which
confirms the fact that the distribution of real market option data performs better with
skewness. As to how we approach the problem, the constructed model improves option
pricing significantly compared with benchmarks. Especially, an LSTM model with realized
skewness shows the best overall performance.

From the perspective of each model, the LSTM model has certain improvement in
option pricing task compared with the other types of models in two aspects of comparison:
realized skewness, and realized skewness and realized kurtosis. For the realized skewness
dimension, by comparing LSTM, RNN, BS, SVM, and Random forests that contain realized
skewness, the LSTM model shows a strong extracting ability. As for the realized skewness
and realized kurtosis aspects, the LSTM model improves the accuracy of option pricing in
most moneyness states.

For future research, some new features could be applied to a deep-learning neural
network. For example, new market contingencies, such as Covid-19, which may influence
investors’ behavior, could be quantified to price options. Furthermore, one could apply
the proposed model to price other financial derivatives, such as Asian options. In addition,
more effort could be committed to explore the interpretability of a long short-term neural
network when applying it to solve financial problems.
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Abbreviation

LSTM Long short-term memory
BS Black-Scholes
ETF Exchange Traded Funds
SVM Support vector machine
RNN Recurrent neural network
GARCH Generalized Auto Regressive Conditional Heteroskedasticity
XGBoost Extreme gradient boosting
LightGBM Light gradient boosting machine
LSTM-RNN Long short-term memory recurrent neural network
ReLU Rectified linear unit
MSE Mean squared error
RMSE Root mean squared error
MAE Mean absolute error
MAPE Mean absolute percentage error
RV Realized volatility
RDSkew Realized skewness
RDKurt Realized kurtosis
ITM In-the-money
ATM At-the-money
OTM Out-of-the-money
RF Random forests
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