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Abstract: During the end-of-life (EOL) product recovery process, there are a series of combinatorial
optimization problems (COPs) that should be efficiently solved. These COPs generally result from
reverse logistics (RL) and remanufacturing, such as facility location and vehicle routing in RL,
and scheduling, planning, and line balancing in remanufacturing. Each of the COPs in RL and
remanufacturing has been reviewed; however, no review comprehensively discusses and summarizes
the COPs in both. To fill the gap, a comprehensive review of the COPs in both RL and remanufacturing
is given in this paper, in which typical COPs arising at the end of the product life cycle are discussed
and analyzed for the first time. To better summarize these COPs, 160 papers published since 1992 are
selected and categorized into three modules: facility location and vehicle routing in RL, scheduling
in remanufacturing, and disassembly in remanufacturing. Finally, the existing research gaps are
identified and some possible directions are described.
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1. Introduction

Reverse logistics (RL) and remanufacturing are the two main processes for end-of-life
(EOL) products’ recovery, aiming to maximize resource utilization by means of collecting,
disassembling, refurbishing, and reassembling to grant the EOL products the same quality
and functionality as new products. In order to improve the efficiency of product recovery,
it is vital to solve the combinatorial optimization problems (COPs) involved effectively;
therefore, scholars have conducted much research on them.

The concept of RL was put forward by Stock [1] in 1992, whose essence was to transfer
EOL products from the consumer to the producer for processing. The COPs in RL include
facility location and the vehicle-routing problem (VRP). The facility location is to build
an appropriate network structure to determine the location of various facilities, such
as collection centers, remanufacturing centers, distribution centers, etc. The VRP is to
formulate a specific transportation plan to transport EOL products to the above facilities,
including the driving path, number of vehicles, types of vehicles, etc. There are some
reviews about the facility location and VRP in RL [2–5].

However, only the transportation process of RL cannot truly realize the reuse of
resources; remanufacturing is the key to achieve sustainable development [6]. Remanu-
facturing is a process to recover EOL products to the same state as new products through
inspection, disassembly, cleaning, maintenance, replacement, reassembly, etc. [7]. The
COPs involved include disassembly sequence planning (DSP), disassembly-line-balancing
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problem (DLBP), disassembly scheduling, production scheduling, reassembly, etc. There
are also some reviews about each of the COPs in remanufacturing [8–11].

Relevant reviews have been provided for each COP involved in RL and remanufac-
turing as shown in Table 1. However, it lacks a literature to review all COPs from the
perspective of the recovery process for EOL products recovery, which is important to draw
a framework of COPs for product recovery. In this paper, the COPs involved in RL and
remanufacturing are divided into three categories, namely, facility location and VRP in
RL, scheduling in remanufacturing, and disassembly in remanufacturing. These COPs
are analyzed from two perspectives: a mathematical model and intelligent optimization
methods, to fill the blanks of current research.

The rest of this article is organized as follows: Sections 2–4 summarize the mathe-
matical model of facility location and VRP in RL, scheduling in remanufacturing, and
disassembly in remanufacturing, respectively. Section 5 analyzes and discusses the litera-
ture from the perspective of optimization methodology and problem uncertainty. Section 6
summarizes the full text and proposes the future research directions.

Table 1. Previous reviews about RL and remanufacturing.

Article Area Perspectives

[2] Facility location in RL A comprehensive review of remanufacturing RL and
closed-loop supply chain network design.

[3] Facility location in RL A review of various quantitative models that have been
proposed to solve RL network design.

[4] VRP in RL
Extensively analyzed the existing literature of the VRP in RL
to identify the current trends, research gaps, and the
limitations in the adaptability to real world.

[5] VRP in RL Reviewed the major contribution about waste collection
in VRP.

[8] DLBP in remanufacturing
Reviewed recent models to summarize the input data,
parameters, decision variables, constraints, and objectives of
the DLBP.

[9] DSP in remanufacturing
Reviewed the existing DSP methods from the perspectives of
disassembly mode, disassembly modelling, and planning
method.

[10] Scheduling in remanufacturing

Classified the scheduling literature in remanufacturing into
single and multiple products, disassembly, and integrated
scheduling, and further subdivided through part capacity,
commonality, and deterministic/stochastic parameters.

2. Facility Location and VRP in RL

Before remanufacturing EOL products, collecting them from users is the first step,
which is essentially a process of RL. To perform this efficiently, it is necessary to properly
plan the location of various facilities and products’ flow routes. Specifically, companies
need to choose how to collect EOL products from users and transport them to collection
centers, where to inspect EOL products, where to remanufacture EOL products to make
them available for resale, and how to sell remanufactured products to potential users [12].
That is to solve the problem of facility location and the VRP in RL.

2.1. Facility Location in RL

Generally, the facility location determines the location of the collection center, remanu-
facturing center, distributing center, and so on to minimize the logistics costs. Scholars have
designed different network structures based on these facilities, which can be summarized
as three types. This section will analyze the three kinds of network structures from the
perspective of mathematical models, including: general network structure, closed-loop
network structure, and hybrid network structure.
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2.1.1. General Network Structure

The general network structure consists of four parts: consumers, collection centers,
remanufacturing centers, and secondary markets, as shown in Figure 1. The collection
center collects EOL products from consumers, inspects and disassembles the products,
and then, according to the value of the components, chooses to discard or remanufacture;
finally, the remanufactured finished products flow back to the market for sale. It is worth
noting that in this network structure, remanufactured products are usually different from
new products and mainly flow to the second-hand market.
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Figure 1. General network structure.

It can be seen from Table 2 that most researchers choose the single-objective mixed-
integer linear programming (MILP) model when establishing the mathematical model
of the general network structure. Two papers established the mixed-integer nonlinear
programming model (MILNP) [13,14], and they were single-objective optimization to maxi-
mize the total profit or minimize the total cost [14–20]. However, while minimizing the total
cost, Roghanian and Pazhoheshfar [21] considered the uncertainty of capacity, demand, and
product quantity in RL parameters, so they proposed a probabilistic mixed-integer linear
programming model (P-MILP) and converted it into an equivalent deterministic model
when solving. Tari and Alumur [22] considered the fairness between different companies
and the problem of providing a stable product flow for each company while minimizing the
total cost, thus establishing multi-objective mixed-integer linear programming (M-MILP).

In addition to minimizing the total cost and maximizing the total profit, the main
purpose of establishing the mathematical model is to find out the location, capacity, and
quantity of the core facilities, such as the collection center and the remanufacturing center
that need to be opened in the RL network. Sasikumar et al. [13] provided decisions related
to the number and location of facilities to be opened and the allocation of correspond-
ing product flows through the establishment of MILP. Roghanian and Pazhoheshfar [21]
proposed a multi-product, multi-stage RL network problem. It was not only necessary to
determine the subset of disassembly centers and machining centers to be opened, but also
necessary to determine the transportation strategy to meet the needs of manufacturing
centers and recycling centers, with the minimum fixed opening cost and total transportation
cost. Alshamsi and Diabat [16] also introduced important transportation considerations
by providing options for using internal fleets and outsourcing options. Liao [14] intro-
duced a modular remanufacturing process and emission reduction; two papers [14,16]
also considered the carbon footprint while determining the location of factories (inspec-
tion/remanufacturing), the transportation of cores/remanufactured products between
factories, and the route of vehicles between factories.
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Table 2. Mathematical model of general network structure.

NO Years Type Num. of Objectives Products Solution

[13] 2010 MINLP One (maximize profit) Tire retreading Lingo 8.0

[15] 2012 MILP One (maximize profit) Washing machines
and tumble dryers CPLEX

[21] 2014 P-MILP One (minimize the total cost) Hypothetical problem Genetic algorithm

[22] 2014 M-MILP

Three (minimize total cost,
ensure equity among different
firms, and provide stable product
flow to each company within the
planning scope)

Electrical waste and electronic
equipment CPLEX

[16] 2015 MILP One (maximize profit) Washing machines
and tumble dryers CPLEX

[17] 2016 MILP One (maximize profit) Vehicles CPLEX
[18] 2017 MILP One (maximize profit) Genetic algorithm
[14] 2018 MINLP One (maximize profit) Waste recycling Hybrid genetic algorithm
[19] 2019 MILP One (minimize the total cost) Lithium-ion batteries Three-phase heuristic
[20] 2020 MILP One (maximize profit) Numerical research CPLEX

2.1.2. Closed-Loop Network Structure

To protect the environment, many countries expand producer responsibility through
legislation. Driven by economic benefits, many manufacturers began to integrate RL [23],
thus evolving a closed-loop network structure (CLNS), as shown in Figure 2. The CLNS
integrates forward logistics and reverse logistics, producing huge economic and environ-
mental benefits, and is the most widely studied network structure by scholars. In the CLNS,
manufacturers obtain raw materials from suppliers, and the products manufactured are
sold to customers through distributors. The products used by customers are collected by the
collection center and selectively sent to the remanufacturing center. After remanufacturing,
they return to forward logistics. In the CLNS, the terminals of forward logistics and reverse
logistics are the same customer group.
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Tables 3 and 4 are, respectively, the previous mathematical model research on CLNS
and the corresponding abbreviations of terms. In paper [24], the environmental problems
are integrated into an integer CLNS model, and a genetic algorithm based on the spanning
tree structure is proposed to solve the NP-hard problem. Pishvaee et al. [25] also established
a multi-objective fuzzy mathematical model to design the environmental protection supply
chain. They used life cycle assessment to quantify the environmental impact of the network.
Zohal and Soleimani [26] also regard the model as a green CLNS according to the CO2
emissions of the gold industry. As shown in Table 3, most scholars are studying how to use
metaheuristics and heuristic algorithms to solve the model. Devika et al. [27] proposed six



Mathematics 2023, 11, 298 5 of 24

different mixed metaheuristics to solve the sustainable CLNS problem they developed. In
paper [28], a CLNS decision model under uncertainty was proposed, and the imperialist
competitive algorithm, particle swarm optimization, and genetic algorithm were used to
solve the large-scale NP-hard model developed by them. In another study, Fard et al. [29]
considered the three-level decision model to express their forward/reverse supply chain
network design problem, and adopted a variety of metaheuristic algorithms, including
tabu search, variable neighborhood search, particle swarm optimization, water wave
optimization, and Keshtel algorithm. The results show that the metaheuristic algorithm is
an effective method to solve the model in practice.

Table 3. Mathematical model of CLNS.

NO Years Type Objectives Network Stages Solution Outputs

[24] 2010 MILP MC, MEI SC, PC, DC, CZ, RYC E FL, PA, I, PT, TM, CR

[30] 2011 MILP MC, MEI,
MS

SC, PC, DC, CZ, CC,
RDC, RCC, RMC, RYC,

DIC
OM SO, FL, A, PA, PT, TA, NP

[31] 2012 SMIP MC
SC, PC, DC, CZ, CC,

RDC, RCC, RMC, RYC,
DIC

OM SO, FL, A, PA, PT, TA, NP

[25] 2012 MILP MC PC, DC, RCC OM FL, FC, A, PA

[27] 2014 FMIP MC, MEI
PC, CZ, CC, RCC

(Steel), RCC(Plastic),
DIC

IFS FL, TA, PA, NP

[32] 2015 SMIP MC CZ, CZ, CC, RDC,
RCC, DIC E FL, TA, QND

[26] 2016 MINLP MC SC, PC, CZ, W, DC,
RMC, RCC E, OM FC, TA, UP, I, NP

[28] 2017 MILP MC SC, PC, DC, CZ, D,
RMC, RDC, DIC GA FL, PA, TA

[29] 2018 MILP MC, MEI CC, DC, CZ, SC, RYC OM FL, A, NP, CS, TA

[33] 2019 MINLP MC, MEI,
MS

SC, PC, DC, CZ, CC,
RDC, RCC, RMC, RYC,

DIC
OM SO, FL, A, PA, PT, TA, NP, DC

Table 4. Abbreviations comparison table.

Item Content Notation

Objectives Min cost/max profit MC
Min environment impacts MEI
Max social benefits MS

Network Stages Supply centers SC
Production centers PC
Distribution centers DC
Warehouses W
Customer zones (retail outlets) CZ
Collection/inspection centers CC
Dismantlers D
Redistribution centers RDC
Recovering centers RCC
Remanufacturing centers RMC
Recycling centers RYC
Disposal/incineration centers DIC

Solution Method Exact E
Genetic-algorithm-based GA
Other metaheuristics OM
Interactive fuzzy solution approach IFS

Outputs Suppliers/orders SO
Facilities location FL
Facility capacity FC
Allocation A
Discount DC
Production amount PA
Utilization of production centers UP
Production technology PT
Transportation amount TA
Transportation mode TM
Number of vehicles NV
Inventory I
Number of used products which are processed NP
Carbon credits sold/purchased CS
Quantity of non-satisfied demand QND
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2.1.3. Hybrid Network Structure

Some scholars have put forward the concept of hybrid facilities, that is, the merger
of a manufacturing center and remanufacturing center, and the merger of a distribution
center and collection center, as shown in Figure 3, thus representing integrated forward
and reverse logistics [34]. Due to the existence of mixed facilities, RL can use the nodes
of forward logistics to optimize its design, thereby effectively reducing or eliminating the
cost of building new RL networks. Therefore, in recent years, it has also become a research
hotspot of scholars.
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In this growing research field, the number of literature sources is growing rapidly.
Fleischmann et al.’s pioneering work in hybrid network structure modeling studied the
impact of product recycling on the design of a logistics network [35]. The study argued
that the impact of product recycling depended heavily on the environment. In some cases,
it may be feasible to integrate this activity into the existing logistics structure, while in
other cases, it may be necessary to redesign the logistics network in an overall manner.
Since this study, Salma et al. [36] incorporated capacity constraints, demand uncertainty,
and returns into the multi-product planning based on this model. Later, they integrated
strategic and tactical decisions by considering two inter-related time scales: at the strategic
level, they gave a discretization of the time range, which must meet the needs and reporting
values; at the tactical level, more detailed planning was allowed to achieve this goal [37].
Cardoso et al. [38] analyzed the integration of RL activities under demand uncertainty,
took the maximum expected net present value as the objective function, and made decision
variables for facility size and location, process installation, forward and reverse logistics,
and inventory level. Later, the author expanded this work to solve the uncertainty and
characterize the elastic closed-loop network structure [39].

Subsequently, environmental and social sustainability issues began to be considered.
Paksoy et al. [40] analyzed the supply plan and considered the emission cost (total cost min-
imization) and the profit maximization of the recycled products in the economic objective
function. Mota et al. [41] considered the sustainability of the economy, environment, and
society. They proposed a mathematical model with the minimization of the total cost of
the network structure as the economic objective function; the minimization of the life cycle
assessment index ReCipe as the environmental objective function; and the location of the
network structure activities in underdeveloped areas as the social objective function. Gao
et al. [42], based on the existing forward logistics network, proposed a double-objective
stochastic integer programming model aiming at economic and environmental benefits,
which aimed to support production, remanufacturing, and waste activities by addressing
the uncertainty factors of new product demand and the return volume of old products in
the customer area.
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2.2. VRP in RL

After locating critical facilities, the next question is how to reversely transport EOL
products, that is, the vehicle-routing problem in RL. The VRP in RL refers to how to arrange
vehicle types, quantities, capacities, routes, etc., to collect waste products from customers,
to achieve the goal of the minimum cost or the shortest route. Collection is the starting
point of EOL product recovery, so scholars have carried out much research to improve the
efficiency of this link.

The VRP in RL can be described as: a certain number of customers must use a certain
number of fleets with limited capacity, which are usually assumed to be the same. The
vehicles are stationed in a central parking lot and return after collecting waste products from
customers according to the route requirements. Cao et al. [43] used RL to reuse the Internet
of Things through identifying the resources required for road infrastructure, and modeled
RL to transfer the Internet of Things from a tailings dam to a processing plant, and then to a
road construction site. For minimizing the total cost, Richnák and Gubová [44] established a
heterogeneous-fleet electric-vehicle path-recovery time window model considering vehicle
load constraints. The type of vehicle limited the weight of recyclable waste and the
time limit allowed by the customer. Chen et al. [45] proposed a nonlinear programming
model including the number of second-hand products and reprocessed products. For
both types of requirements, analysis and insight were provided in the form of a complete
strategy consisting of different scenarios that allow optimal decisions to be made under
a variety of conditions. Through sensitivity analysis, numerical examples supplemented
the understanding of the model. Santana et al. [46] considered the risks in the e-waste
recycling process and modeled the reverse logistics process of electrical and electronic
equipment as a MILP with biological objectives under uncertainty. The cooperative alliance
strategy was employed by Mishra et al. [47] to actualize the constrained capabilities of
VRP in RL. The cooperative mechanism made it possible to prevent inefficient resource
distribution, cut back on circular logistics, and minimize long-distance travel. In order
to minimize recovery tasks, Chen et al. [48] used an improved ant colony algorithm to
handle vehicle design and route optimization problems. Foroutan et al. [49] established a
mixed-integer nonlinear programming model for multi-mode green vehicle routing and
scheduling with the objective of minimizing operating costs and environmental costs and
considering return, lead time, and delay costs. A mathematical model for the recovery of
EOL cars was developed by Chaabane et al. [50] by combining the traditional VRP with
the receiving and delivery problem as well as the restrictions of various vehicle kinds and
time periods.

The multi-vehicle routing optimization problem with time limitations has also been the
subject of interest for scholars’ in-depth research. In order to meet the needs of minimizing
transportation and procurement costs, the research in the literature [51] included choosing
suppliers and setting up homogeneous fleets to buy various products from chosen suppliers.
It also defined new branching rules, introduced new inequality families, and established
the competitiveness of the new branching price-reduction method. To optimize the multi-
depot production material-allocation system and research the routing problem of delivery
vehicles, Xu et al. [52] took into account a variety of factors, including multiple warehouses,
multiple vehicle types, multiple commodities, mismatches between customer supply and
demand, and arbitrary segmentation of delivery and delivery demands. Fan et al. [53]
designed a genetic variable neighborhood algorithm for multi-vehicle routing optimization
problem with fuzzy set requirements by improving the adaptive search strategy. A multi-
mode electric vehicle routing optimization model was developed by Guo et al. [54] taking
into account the differentiating service costs under the consideration of vehicle diversity,
charging strategy, person vehicle matching, and service time difference.

With the improvement in logistics network and the development of e-commerce,
in order to improve customer satisfaction, logistics service providers need to handle a
large number of delivery orders and return orders at the same time. In this case, the
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joint optimization of simultaneous pickup and delivery VRP (VRPSPD) can significantly
improve the utilization rate of vehicles [55].

Studies have shown that solving the problem of collecting refurbished goods in for-
ward and reverse logistics can improve the utilization rate of refurbished products, shorten
the return time, and improve customer satisfaction [55]. Dethloff [56] studied VRPSPD in
order to avoid redundant handling work, considering that customers have both picking and
delivery needs. They developed an insertion-based heuristics method, which can be used
to construct initial feasible solutions, which can be improved by subsequent application of
the local search process. A specific case of VRPSPD that allows for the decomposition of
the picking and delivery needs was developed by Masson et al. [57]. This method can be
used in real-world transportation systems with many of pickup trucks but few deliveries.
Nagy et al. [58] proposed a VRP with separable delivery and picking, and studied the
cost reduction caused by demand segmentation of simultaneous delivery and pickup. In
order to optimize vehicle scheduling to satisfy freight requests, Ghilas et al. [59] created
a VRPSPD with scheduling lines and took synchronization and time window limitations
into account in the solution algorithm. Gschwind et al. [60] evaluated the performance of
branch cut and price algorithms in VRPSPD to solve the shortest path issue under time
windows and resource limitation. Goeke [61] investigated the VRPSPD of electric cars, in
which the route design of electric vehicles attempted to optimize the pick-up and delivery
services in metropolitan areas with a lower environmental impact. Wolfinger [62] proposed
a mixed-integer programming model to develop a single warehouse VRPPD with split load,
and tested the algorithm performance through extensive computing experiments through
large-scale neighborhood search. Haddad et al. [63] developed a multi-warehouse VRPPD
to design a sustainable picking and distribution route between multiple warehouses. The
efficiency of transportation can be increased at the same time, within the limitations of
vehicle capacity and time window.

3. Scheduling in Remanufacturing

The remanufacturing system is generally composed of three subsystems: disassembly,
reprocessing and reassembly, as shown in Figure 4. Previous research usually took the
scheduling of reprocessing and reassembly as the production scheduling in remanufactur-
ing. Disassembly scheduling can be defined as the problem of determining which products
or subassemblies, how many, and when to disassemble EOL products to satisfy the demand
of their parts or components. This paper reviews scheduling in remanufacturing into
disassembly scheduling, production scheduling, and integrated scheduling
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3.1. Disassembly Scheduling in Remanufacturing

In the last few years, there has been a growing interest in the disassembly-scheduling
problem. Since Gupta and Taleb [64] described the basic form of the disassembly-scheduling
problem, a number of research articles have been released. We review literature sources on
approaches employed to model capacitated or incapacitated problems.

The majority of the early research took into account the scheduling issue of inca-
pable disassembly. Firstly, Gupta and Taleb [64] proposed a reverse material requirement
planning algorithm (RMRP) without an explicit objective function. Later, Taleb et al. [65]
proposed a different RMRP algorithm to reduce the number of products that needed to
be disassembled by taking into account the commonality of parts in this fundamental
instance. In order to reduce the total cost of setup, disassembly operations, and inven-
tory holding, Kim et al. [66] applied a heuristics algorithm and a linear programming
(LP) relaxation technique to the basic problem put forth by Taleb et al. [65]. In order to
reduce the total cost of product purchase, installation, disassembly operation and inventory
holding, Lee et al. [67] adopted a two-stage heuristic algorithm to solve the problem based
on the research of Gupta and Taleb [64]. Lee and Xirouchakis [68] proposed and solved
three integer programming models for three problem cases, i.e., a single product type
without parts commonality and single and multiple product types with parts commonality,
they used CPLEX to solve the problem. Inderfurth and Langella [69] adopted a heuristic
algorithm to reduce the estimated cost of disassembly operation, purchase and disposal,
taking into account such factors as multiple product types, commonality of components,
two-stage structure and uncertainty of production rate. Later, Kongar and Gupta [70]
further improved their earlier work by incorporating uncertainty into the consideration of
the problem and expressing the uncertainty of the problem through fuzzy goal program-
ming [71]. Barba-Gutierrez and Adenso-Diaz [72] extended their earlier work by integrating
uncertainty requirements. Barba-Gutierrez, Adenso-Diaz et al. [73], proposed an algorithm:
F-RMRP (RMRP based on fuzzy logic) to solve the problem. Kim and Lee [74] considered a
multi-period version problem and proposed a heuristic algorithm using priority rules to
solve it. Recently, Kim et al. [75] proposed a two-stage heuristic algorithm based on their
earlier model of Kim and Lee [74]. Most recent studies considered the capability of the
disassembly-scheduling problem. Lee et al. [76] proposed an integer programming model
whose objective function was to minimize the sum of disassembly operation, product
purchase, and inventory carrying costs. Later, Kim et al. [77] proposed an optimization
algorithm with the minimum number of disassembled products as the objective function.
Later, Kim et al. [78], based on the research of Kim et al. [77], considered the more complex
actual situation, added the minimum installation, disassembly operation and inventory
carrying cost into the objective function, and proposed a Lagrange heuristic algorithm
to solve the problem. In addition, Prakash et al. [79] proposed a disassembly-scheduling
problem model for parts commonality and proposed a constrained simulated annealing
algorithm to solve it. Liu and Zhang [80] built a non-convex mixed-integer model based
on the research of Prakash et al. [79]. Aiming at the optimal collection price, appropriate
disassembly time and quantity of recycled products, Liu and Zhang proposed a particle
swarm optimization algorithm based on dynamic programming to solve the problem.
Ullerich and Buscher [81] established an integer linear programming model considering
complete disassembly scheduling by considering the capacity constraints of each time
period. Later, Ji et al. [82] added the consideration of start-up and setup costs on the basis
of Ullerich and Buscher [81], and proposed a Lagrange relaxation heuristic algorithm to
solve the problem. Godichaud et al. [83] built an MILP model considering the penalty
cost of sales loss and disassembly capacity overload, and proposed a genetic algorithm to
solve it. Hrouga et al. [84] adopted a hybrid genetic algorithm and fix-and-optimization
heuristic algorithm to solve the disassembly batch scale problem of multi-type products
with sales loss and capacity constraints. Based on the original study by Hrouga et al. [85],
the problems of disassembly batch size under sales loss, multiple product types, and
two-tier and capacity constraints were considered by Hrouga et al. [84], and the objective
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function was to minimize the sum of installation, inventory, sales losses and overload costs.
An efficient optimization method based on a genetic algorithm and fix-and-optimization
heuristic was proposed. Kim and Xirouchakis [86] considered the problem of multi-cycle,
multi-product type, two-level product structure and random demand, aiming to minimize
the sum of expectation setting, inventory holding and penalty costs of unmet requests,
and proposed a Lagrange relaxation heuristic algorithm for solving the problem. Inder-
furth and Langella [69] proposed a disassembly-scheduling problem of random output
considering the impact of yield uncertainty on the stochastic scale model and binomial
model, and proposed a two-root three-leaf mathematical model to describe the problem.
Liu and Zhang [80] constructed a mixed-integer nonlinear programming considering the
capable disassembly-scheduling problem of stochastic yield and demand, and proposed an
algorithm based on external approximation to solve it. Tian and Zhang [87] considered the
problems of capable disassembly scheduling and pricing, and established a non-convex
mixed-integer model with the objective of determining the appropriate collection price of
recycled products and the appropriate disassembly time and quantity, which was solved
by the algorithm combining particle swarm optimization and dynamic programming.
Zhou, He et al. [88] considered the capability disassembly-scheduling problem with the
uncertainty of demand and disassembly operation time, constructed a new stochastic
programming model, and proposed a hybrid genetic algorithm to solve it. Yuan, Yang
et al. [89] proposed a capable fuzzy disassembly-scheduling model with cycle time and
environmental cost as parameters, proposed a mixed-integer mathematical programming
model with the goal of minimizing cycle time and environmental cost, and proposed a
metaheuristic algorithm based on the fruit fly optimization algorithm to solve the problem.
Slama, Ben-Ammar et al. [90] constructed a new mixed-integer programming model with
the goal of maximizing disassembly process gain by considering external procurement,
defects and late-order items, setup time, and capable dynamic batch problems. Slama
et al. [91] considered the random multi-period disassembly batch problem and proposed
a special optimization method according to specific different scenarios. (i) A two-stage
mixed-integer linear programming model was proposed to solve all possible scenarios
of small cases. (ii) The sample average approximation method based on Monte Carlo
simulation was proposed for all possible scenarios of medium-scale examples. (iii) For all
possible scenarios of large-scale instances, an optimization algorithm based on Monte Carlo
simulation and genetic algorithm was proposed.

3.2. Production Scheduling in Remanufacturing

Process planning and production scheduling for remanufacturing are more chal-
lenging than traditional manufacturing because there are many uncertain factors in the
remanufacturing system, for example, there are uncertainties in the processing route and
time of processing different kinds of materials in the remanufacturing process. These
uncertainties will lead to the failure of the usual process planning and scheduling methods.
Therefore, many researchers have conducted a great amount of meaningful exploration on
the uncertainty of remanufacturing production.

Wen H et al. [92] took the minimum remanufacturing time as the objective function, es-
tablished a production-scheduling comprehensive optimization model with double random
variable constraints, and proposed a hybrid algorithm of stochastic simulation technology, a
neural network, and a genetic algorithm to solve the problem. He P [93] proposed a quality
evaluation standard for the remanufacturing production-scheduling problem under the
two uncertain conditions of randomness and fuzziness of job scheduling. Then, based on
this, he built a remanufacturing production-scheduling model under uncertain conditions,
and adopted the hybrid algorithm of the BP neural network and genetic algorithm to solve
the problem. Peng S et al. [94] took the high value-added cylinder block of the engine
as the research object, took the minimum manufacturing span as the objective function,
considered the uncertainty of processing time and path, and proposed a new rule-based
dynamic window algorithm to solve the problem. Zhang [95] considered the remanufactur-
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ing production scheduling problem under random and fuzzy conditions, built a quality
evaluation method for remanufacturing recovered resources, and based on this, established
a remanufacturing production scheduling model under uncertain conditions, and proposed
a hybrid algorithm combining a double-fuzzy algorithm, BP neural network, and genetic
algorithm to solve the problem. Shi J et al. [96] proposed a new double-fuzzy remanufac-
turing scheduling model, which considered many double uncertainties in remanufacturing
and used double fuzzy variables to describe these uncertainties. Extended discrete particle
swarm optimization algorithm was used to solve the problem.

3.3. Integrated Scheduling in Remanufacturing

Kim et al. [97] encouraged the integration of all remanufacturing operations (disassem-
bly, remanufacturing/repair, and reassembly) into remanufacturing scheduling decisions.
The past research on the scheduling problem of integrated remanufacturing system can be
divided into flow shop type and job shop type. The flow-shop-type reprocessing shop is
oriented to small-batch, multiple varieties of personalized remanufacturing products; the
job-shop-type reprocessing shop is oriented to small-batch, multiple varieties of a single
type of remanufacturing product type.

For the remanufacturing system with a flow-shop-type reprocessing shop, Stanfield,
King et al. [98], aiming to minimize in-process operations and maximizing system utiliza-
tion, proposed a stochastic scheduling heuristic algorithm to solve the problem. In addition,
Kim et al. [99], aiming to minimize the total flow time of a remanufacturing system with
parallel flow-shop reprocessing lines, proposed three heuristic algorithms for solving the
problem, namely, the heuristic algorithm based on priority rules, the heuristic algorithm
based on Nawaz–Enscore–Ham and the iterative greedy algorithm. Later, Kim et al. [75],
based on the research by Kim et al. [99], proposed an algorithm based on priority rules
to minimize the total delay. Qu et al. [100] proposed a new FPA algorithm based on the
hormone regulation mechanism to solve the waiting-free flow-shop scheduling problem,
and introduced hormone-regulatory factors to enhance the global search capability of the
algorithm. Wang et al. [101] studied the scheduling problem of a remanufacturing system
with a parallel disassembly workstation, parallel flow-shop-reprocessing line, and parallel
reassembly workstation, and adopted the improved multi-objective invasive weed opti-
mization algorithm to solve it. Wang, Tian et al. [102] considered the scheduling problem
with parallel disassembly workstations, multiple parallel flow-shop-reprocessing lines, and
parallel reassembly workstations. Aiming to minimize the total energy consumption, they
proposed an improved genetic algorithm to solve the problem.

For the remanufacturing system with a shop–shop reprocessing shop, Guide Jr [103]
proposed a drum-slow Okinawa scheduling method for a military warehouse. Subse-
quently, Daniel and Guide Jr [104] reported the performance of various scheduling rules
and order release strategies based on the drum-cached Okinawa scheduling method. In
addition, Souza et al. [105] proposed a two-stage solution, aiming to meet the profit max-
imization of customer service level, built a queuing network model, and solved using
priority rules. See Guide Jr et al. [106] and Li et al. [107] for other models and solving
algorithms. Kang and Hong [108] studied the disassembly and reassembly optimization
problem; established an integer programming model; and solved the problem with the
minimum disassembly cost, inventory cost, and manufacturing cost of new parts as tar-
gets. Lin D et al. [109] took the optimal factory selection and optimal remanufacturing job
scheduling as objectives under resource constraints, and used linear physical program-
ming and the multi-level-coded genetic algorithm to solve the problem. Giglio et al. [110]
considered an integrated-batch-size and energy-saving job-shop scheduling problem, con-
structed a mixed-integer programming model, and proposed a relaxation-fixed heuristic
algorithm to solve it. Yu and Lee [111] considered the scheduling problem of a remanufac-
turing system with parallel disassembly workstations, shop-like reprocessing workstations,
and parallel reassembly workstations, constructed an integer programming model, and
proposed two solving algorithms: a decomposition algorithm and integration algorithm.
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Li et al. [112] proposed a hybrid metaheuristic algorithm embedded with a colored, timed
Petri net scheduling strategy to solve the problem of the optimal recovery route and re-
covery operation sequence for searching the worn core on the workstation, aiming to
minimize the total production cost. Fu, Zhou et al. [113] adopted a multi-objective discrete
Drosophila optimization algorithm to solve the stochastic multi-objective disassembly
reprocessing–reassembly integrated scheduling problem in order to minimize the expected
production cycle and total delay. Zhang, Zheng et al. [114] considered the integrated
process planning and scheduling problem of a remanufacturing system containing a par-
allel disassembly workstation, a flexible job-shop-type reprocessing shop, and a parallel
reassembly workstation, and proposed an improved artificial swarm algorithm to solve it.

4. Disassembly in Remanufacturing

Disassembly refers to obtaining valuable components from EOL products with various
resource constraints. Disassembly in remanufacturing mainly includes two COPs: disas-
sembly sequence planning (DSP) and disassembly line balancing problem(DLBP). DSP
means obtaining the required components in an optimal sequence. DLBP means assigning
disassembly operations to different workstations on a disassembly line to achieve one or
multi-objectives.

4.1. Disassembly Sequence Planning

The most common objective of DSP is to improve the disassembly efficiency and
reduce the cost. Disassembly sequence planning can be divided into three steps as shown
in Figure 5: First, choosing a suitable disassembly mode which could be complete/partial
disassembly or sequential/parallel disassembly. Second, building a model about the
disassembly relationship of parts or components of EOL products. Third, choosing an
optimization method to solve the DSP problem. There has been a great amount of research
on DSP, and various methods have been developed. The most commonly used methods
are heuristic algorithms. Additionally, the most prominent advantage of the heuristic
algorithms is that they can obtain high-quality solutions in an acceptable time for large-
scale problems [115]. For example, Tseng et al. [116] developed a new block-based genetic
algorithm (GA) with the penalty function matrix in the crossover and mutation mechanism
for disassembly sequence planning. Similarly, ElSayed et al. [117] and Li et al. [118] used
a GA to address DSP on different occasions. It is obvious that a GA is easy to use and
effective. However, more and more studies have investigated other heuristic algorithms.
Zhong et al. [119] solve the DSP including fasteners using Dijkstra’s algorithm and particle
swarm optimization (PSO), which is another metaheuristic algorithm. Guo et al. [120]
proposed a lexicographic multi-objective scatter search method to overcome the complexity
explosion caused by a large-scale DSP considering a multi-objective resource-constrained
operation. Liu et al. [121] built the disassembly model by using the modified feasible-
solution-generation method, and a robotic DSP was solved by using an enhanced discrete
bee colony algorithm. Additionally, Tao et al. [122] proposed an improved Tabu search
heuristic algorithm with an exponentially decreasing diversity management strategy; a
partial and parallel DSP problem was solved to show the proposed algorithm was feasible
and efficient. Guo et al. [123] and Ren et al. [124–127] investigated various types of DSP
problems by using different heuristic algorithms. In summary, a heuristic algorithm is one
of the most effective methods to solve DSP.
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There are few studies which have investigated the exact mathematical methods. The
exact mathematical methods can quickly obtain high-quality solutions for small-scale
problems without traversing the entire solution space [115]. However, exact mathematical
methods are more restrictive than other techniques. If the problem is large-scale, that is,
with many variables and constraints, it is difficult to obtain a solution in an acceptable
time. However, still some valuable papers are proposed because exact mathematical
methods still have the advantage of quickly producing solutions when solving small-scale
problems. For example, Zhu et al. [128] introduced a disassembly information model
with dynamic capabilities to handle state-dependent information and presented a linear-
programming-based optimization model to obtain the optimal disassembly sequence.
Costa et al. [129] developed a recursive branch-and-bound algorithm to obtain the optimal
disassembly sequence. They also proposed a best-first search algorithm to accelerate
the optimization process. Some literature sources [130–132] also investigated the exact
mathematical methods, but the solutions were not good enough when encountering large-
scale DSP.

4.2. Disassembly-Line-Balancing Problem

The DLBP was first proposed by Güngör and Gupta [133] and more and more studies
have investigated this problem. As Figure 6 shows, the main difference between DSP and
the DLBP is the disassembly operation assigned to the workstation, which makes the DLBP
more complex than DSP. Hence, there are some unique variables in the DLBP, such as
objectives which could minimize the number of workstations or idle time [134].
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Like DSP, many studies have also applied a metaheuristic algorithm to solve the DLBP.
For example, Yin et al. [135] considered a partial DLBP with multi-robot workstations; they
established an exact mixed-integer programming model and proposed a multi-objective
hybrid driving algorithm to effectively address the above problem. Li et al. [136] introduced
the profit-oriented U-shaped partial DLBP for the first time. They established an integer
linear programming model for solving the small-scale problem. Additionally, a novel
discrete cuckoo search algorithm was implemented and improved to solve the considered
DLBP. Wang et al. [137] proposed a discrete multi-objective artificial bee colony algorithm
to address the partial DLBP considering both economic benefits and environmental impacts.
Ren et al. [138–141] also investigated the problem of disassembly line balancing and applied
different heuristic methods to meet different objectives.

The exact mathematical methods can produce higher-quality solutions when solving
the small-scale DLBP, so there are some papers which have investigated them. Yılmaz
et al. [142] focused on a multi-objective DLBP considering the tactical-level strategies and
operational-level scenarios. They also developed the improved augmented ε-constrained
method to obtain the Pareto solutions for small-scale problems. Edis et al. [143] studied a
DLBP with balancing issues, the hazardousness of parts, and other factors. They developed
a generic MILP model for the above problem and their proposed method proved effective
after a series of tests. There are literature sources [144–146] which have also studied the
exact mathematical methods to solve the DLBP, but still could avoid the problem of not
being able to produce better solutions when encountering large-scale problems.

In conclusion, the DLBP has been well-researched and developed over decades. The
exact mathematical methods and heuristics algorithm have shown their effectiveness at
different scales of problems.

4.3. Integrated Disassembly and Reassembly

Reassembly is the operation following disassembly. Reassembly refers to the assembly
of reused parts, remanufactured parts, and original manufacturing parts through specific
processes to produce reusable products. However, because it is not the same as normal
assembly, reassembly will encounter different problems. For example, uncertainty in
reassembly can lead to a huge increase in the complexity of the problem. The quantity or
quality of the remanufactured parts is uncertain, which leads to a decline in production
efficiency, to unstable product quality, and to many other problems [147].

A few literature sources investigated the optimization of only reassembly but without
considering disassembly. For example, Su et al. [148] proposed an optimal selective-
assembly method for remanufacturing based on an ant colony algorithm in order to gain
optimal reassembly combinations and reduce the influence of the uncertainty factors on
the quality. Additionally, Liu et al. [149] proposed a simulated annealing genetic algorithm
to solve the assembly deviation degree on-line optimization model.

As mentioned above, optimization that only considers reassembly is incomplete.
Therefore, it is necessary to consider the complexities of reassembly when solving any
disassembly problem, that is, the integrated problem of disassembly and reassembly. For
example, Behdad and Thuston [150] proposed graph-based integer linear programming
combined with multi-attribute utility analysis to obtain the optimal sequence of disas-
sembly operations which considers the costs and uncertainties of both disassembly and
reassembly. Su et al. [151] developed a multi-objective optimization method based on
the TS-NSGAII hybrid algorithm which provided a new direction for the optimization of
the remanufacturing system. Li et al. [152] established an optimization decision-making
model for the reassembly process, and proposed a decision-making method based on the
improved T-S FNN which focused on minimizing the remanufacturing time and costs. Oh
and Behad [153] proposed a network flow graph and integer linear programming to pro-
duce solutions of the type and number of parts that should be reassembled and procured.
Some literature sources focused on the whole remanufacturing system; Lahmar et al. [154]
studied the remanufacturing production planning problem to minimize economic costs and
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carbon emissions. They developed a non-dominated sorting genetic algorithm (NSGA-II)-
based approach to overcome the complexity of the whole remanufacturing system. Polotski
et al. [155] investigated a hybrid manufacturing–remanufacturing system considering the
optimization of manufacturing, remanufacturing, and maintenance policies. The stochastic
dynamic programming approach was used to address this problem. In summary, it is a
trend to study the optimization of the whole remanufacturing system in order to fully
optimize all aspects of the system.

5. Analysis and Discussion

This section will discuss and analyze the above-mentioned literature sources from two
aspects: optimization methodology and problem uncertainty.

5.1. Optimization Methodology

The problems described in Section 2 to Section 4 are essentially COPs. For COPs, the
most important step is how to solve them after establishing the relevant mathematical
model, and the solution methods are mainly divided into exact and heuristic or metaheuris-
tic algorithms. The exact algorithm includes the branch and bound method, the dynamic
programming method, the cutting-plane method, etc. However, due to the complexity
of practical problems and the NP-hard attribute of most COPs, it is difficult for the exact
algorithm to obtain a satisfactory solution for large-scale problems in a reasonable time.
Therefore, most of the current research focuses on the development of heuristic or meta-
heuristic algorithms. This section will analyze the solution methods of the COPs mentioned
in the above sections.

Tables 5–7 summarize exact algorithms, heuristic or metaheuristic algorithm, and
some other algorithms, respectively. From the results of horizontal comparison, the number
and types of heuristic or metaheuristic algorithm are far greater than those of the exact
algorithm. This shows that in the field of RL and remanufacturing, using heuristic or
metaheuristic algorithms to solve problems is the mainstream method of current research.
Moreover, some classical algorithms have many applications in different problems, such as
genetic algorithms [156], particle swarm optimization [157], ant colony algorithms [158],
simulated annealing [159], and Tabu search [160].

Table 5. Exact algorithms.

Area Methods Reference

Facility location and VRP in RL Lingo [13,25,31,40]
CPLEX [15–17,20,22,30,37–39,42]
Branch and bound [36,51,57,60,63]

Scheduling in remanufacturing CPLEX [77]
Dynamic programming [87]

Disassembly in remanufacturing CPLEX [143]
Improved augmented Epsilon
constraint [145]

Table 6. Heuristic or metaheuristic algorithms.

Area Methods Reference

Facility location and VRP in RL Genetic algorithm [14,18,21,23,24,43,49]
Three-phase heuristic approach [19]
Three different hybridization methods [27]
Hybrid genetic algorithm and particle swarm
optimization [32]

Ant colony algorithm [26,48]
Imperialist competitive algorithm [28]
Tri-level metaheuristics [29]
Hybrid Keshtel and genetic algorithm [33]
Parallel differential evolutionary algorithm [55]
Simulated annealing [49]
Two-phased heuristic [50]
Insertion-based heuristics [56]
Tabu search [58,61]
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Table 6. Cont.

Area Methods Reference

Neighborhood search [59,62,63]
Scheduling in remanufacturing Genetic algorithm [83,102,109]

Two-phased heuristic [67,75,82,105]
One-to-many heuristic
One-to-one heuristic [69]

Greedy algorithm [74]
Simulated annealing [79,111]
Particle swarm optimization [80,87,96]
Fruit fly optimization [89,113]
Hybrid genetic algorithm [84,85,88,90–93,95]
CDS [98]
Nawaz–Enscore–Ham-based [75,99]
Priority-rule-based heuristic [75]
Integrated gradients [75]
Flower pollination algorithm [100]
Multi-objective invasive weed optimization [101]
Hybrid metaheuristic using simulated annealing
and tabu search [107]

Hybrid metaheuristic using SA and MST rule [112]
Artificial bee colony algorithm [114]

Disassembly in remanufacturing Genetic algorithm [116–118,124,125]
Particle swarm optimization [119]
Scatter search algorithm [120]
Discrete bees algorithm [121,126,127,137]
Tabu search [122,151]
Variable neighborhood search [127,138]
Greedy search algorithm [129]
Two-phase algorithm [131]
Hybrid driving algorithm based on a three-layer
encoding method [135]

Discrete cuckoo search [136]
2-optimal algorithm [139]
Gravitational search algorithm [140]
Fast-ranking heuristic approach [141]
Non-dominated sorting genetic algorithm-II [142,151,154]
Two-stage parameter-adjusting heuristic [144]
Branch and fathoming algorithm [146]
Ant colony algorithm [148]
Simulated annealing genetic algorithm [149]

Table 7. Other algorithms.

Area Methods Reference

Facility location and VRP in RL Integrating the sample average approximation
scheme with an importance sampling strategy [34]

ReCiPe life cycle assessment methodology [41]
Fermatean fuzzy CRITIC-EDAS approach [47]

Scheduling in remanufacturing Reverse material requirement planning algorithm [64,65,72]
Fuzzy goal programming technique [70]
Outer approximation-based solution algorithm [80]
Dynamic window approach [94]
Drum–buffer–rope-based scheduling approach [103,104]

Disassembly in remanufacturing Choquet integral [123]
Immersive computing technology [132]
Multi-attribute utility analysis
Takagi–Sugeno fuzzy neural network

[150]
[152]

Deep reinforcement learning (DRL) solving COPs in the process of EOL product
recovery has attracted extensive attention in recent years. Bengio et al. [161] proposed
three types of paradigms for the application of machine learning to COPs. Lei et al. [162]
proposed an end-to-end DRL framework to solve the TSP and the CVRP. Yang et al. [163]
proposed the framework of robotic disassembly sequence planning using DRL to solve
the robotic disassembly sequence planning problem. In general, compared with heuristic
or metaheuristic algorithms, DRL is seldom used to solve COPs in the process of EOL
product recovery at present. However, DRL has been proved to be superior to metaheuristic
algorithms in solving certain problems. Therefore, future research can focus more on DRL.



Mathematics 2023, 11, 298 17 of 24

5.2. Problem Uncertainty

Due to the complexity of the reality and the instability of the state of EOL products,
the recovery process will face a series of uncertainties. At present, most of the studies only
have considered the deterministic conditions, but the uncertain studies are more practical.

In the stage of facility location and the VRP in RL, it is easy to face uncertainty of quan-
tity, facility capacity, demand, etc. Therefore, Roghanian and Pazhoheshfar [21] considered
the uncertainty degree of the demands, capacities, and quantity of EOL products, and
proposed a P-MILP model to decide which subsets of processing and disassembly centers
will be opened. Lee et al. [34] established a two-stage stochastic programming model which
assumed the demand of forward items and the supply of returned products on customers to
be stochastic parameters with known distribution. To solve the S3PRLP selection problem
with unknown attributes and decision-maker weights, Arunodaya et al. [47] developed a
hybrid methodology that combined CRITIC and EDAS methods with Fermatean fuzzy sets
(FFSs). In addition, there is also other research on uncertainty in the collection stage of EOL
products [36,38,39].

In the area of scheduling in remanufacturing, it often faces the uncertainty of the
quality of old products, the demand for new products, and the supply of raw materials.
Many scholars have studied the uncertainty in this field [95–97,113]. Kongar et al. [70]
established a multi-criteria optimization model of a disassembly-to-order (DTO) system un-
der uncertainty and adopted the fuzzy goal programming technique to solve the problem.
Because real-world data on the demand for used components is frequently ambiguous,
vague, or imprecise, Barba-Gutiérrez et al. [72] used a fuzzy logic approach to develop
the reverse MRP algorithm, incorporating subjectivity and imprecision into the model
formulation and solution process. Other similar studies such as Liu and Zhang [80] stud-
ied the capacitated disassembly-scheduling problem under stochastic yield and demand.
Wen et al. [92] optimized the integration of remanufacturing production planning and a
scheduling system under uncertainty. He [93] developed a useful optimization method for
the production scheduling in remanufacturing under uncertain conditions. Peng et al. [94]
studied a Petri-net-based scheduling scheme and energy model for the remanufacturing of
a cylinder block under uncertainty.

In the field of disassembly in remanufacturing, there are many failure features, such
as wear, fracture, deformation, and corrosion, which may influence the disassembly time
and cost. Behdad et al. [132] used immersive computing technology as a tool to explore an
alternative disassembly sequence scheme in an intuitive manner, taking into account uncer-
tain conditions such as time, cost, and the probability of causing damage. Liu et al. [144]
researched the DLBP with partial uncertain knowledge, that is, the task-processing time
mean and covariance matrix. A new distributionally robust formulation with a joint chance
constraint was proposed. Behdad and Thurston [150] considered the costs and uncertainties
associated with disassembly and reassembly. To find the best set of tradeoffs, graph-based
integer linear programming was combined with multi-attribute utility analysis.

6. Conclusions

The COPs in RL and remanufacturing have important academic value and practical
value. In this paper, we divided the COPs into three categories, including facility location
and the VRP in RL, scheduling in remanufacturing, and disassembly in remanufacturing;
each of them contained several subcategories. At present, the research on these COPs
mainly focuses on mathematical models and optimization methodology, which are also the
two perspectives of this paper to review the current literature.

At the mathematical model level, through the analysis of this paper, the following
suggestions are proposed for future research. Firstly, concerning the facility location and
VRP in RL, researchers can pay more attention to the hybrid network structure, as described
in Section 2, which can reduce the cost of logistics facilities and improve logistics efficiency.
In addition to the uncertainty of the quantity and quality of EOL products, the demand for
remanufactured products is also uncertain. Therefore, how to study the hybrid network
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structure under uncertain conditions may be the direction that researchers should work
hard towards. Secondly, in the area of scheduling in remanufacturing, scholars can consider
more practical factors, such as multi-objective, limited buffer, uncertainty of task arrival
time, etc. Moreover, the combination of the disassembly process and the scheduling process
is also a direction that can be considered. Thirdly, for disassembly in remanufacturing,
researchers can conduct more study on two-sided or U-shaped disassembly lines. Due to
the danger of disassembly operations, human–robotic cooperation is also a field of concern.
Similarly, due to the poor quality of EOL products, how to carry out disassembly sequence
planning in the case of disassembly failure will be a reality that has to be considered.

At the optimization methodology level, DRL can solve the COPs end-to-end, thus
avoiding the complex design of traditional optimization algorithms and its characteristics
of low efficiency and high complexity. Therefore, researchers can consider developing
relevant DRL algorithms.
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