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Abstract: Severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) is a respiratory virus
that disrupts the functioning of several organ systems. The cardiovascular system represents one
of the systems targeted by the novel coronavirus disease (COVID-19). Indeed, a hypercoagulable
state was observed in some critically ill COVID-19 patients. The timely prediction of thrombosis
risk in COVID-19 patients would help prevent the incidence of thromboembolic events and reduce
the disease burden. This work proposes a methodology that identifies COVID-19 patients with
a high thromboembolism risk using computational modelling and machine learning. We begin
by studying the dynamics of thrombus formation in COVID-19 patients by using a mathematical
model fitted to the experimental findings of in vivo clot growth. We use numerical simulations to
quantify the upregulation in the size of the formed thrombi in COVID-19 patients. Next, we show
that COVID-19 upregulates the peak concentration of thrombin generation (TG) and its endogenous
thrombin potential. Finally, we use a simplified 1D version of the clot growth model to generate a
dataset containing the hemostatic responses of virtual COVID-19 patients and healthy subjects. We
use this dataset to train machine learning algorithms that can be readily deployed to predict the risk
of thrombosis in COVID-19 patients.

Keywords: blood coagulation; thrombosis; Navier–Stokes equations; computational fluid dynamics;
neural networks

MSC: 92B05; 76Z05

1. Introduction

The coronavirus disease (COVID-19) emerged in Wuhan, China in late 2019 and
represents a major threat to global health, as it is caused by a highly transmissible virus.
The severe forms of COVID-19 may lead to death by causing pneumonia. However,
critically ill patients also experience a hypercoagulable state, which increases the risk and
incidence of thromboembolic events. Indeed, it was reported that 20% to 50% of COVID-19
patients experience changes in their coagulation profile [1]. These changes include an
elevated D-dimer, platelet count, and fibrinogen, in addition to a lower thromboplastin
time. These changes are associated with a higher incidence of bleeding and thrombosis in
COVID-19 patients. Indeed, 25% of patients in intensive-care units (ICU) develop venous
thromboembolism, and 8% die from it [2].

The pathogenesis of thrombosis in COVID-19 patients is not completely understood.
However, several mechanisms explaining the association between thrombosis and COVID-
19 have recently been identified [3]. First, COVID-19 increases the risk of endothelial injuries
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and dysfunction. Severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) targets
endothelial cells, which leads to their apoptosis by cytotoxicity [4]. Second, SARS-COV-2 in-
fection induces a cytokine storm that provokes an immuno-thrombo-inflammation, similar
to the one observed in acute respiratory disease syndrome (ARDS) [5]. A third identified
mechanism concerns the activation of platelets by SARS-CoV-2 antibodies [6]. Platelets
derived from COVID-19 patients show a higher expression of Ca2+ and phospholipid (PS)
externalization in comparison with healthy subjects. Finally, an in vivo study demonstrated
that COVID-19 autoantibodies upregulate the generation of thrombin during clotting by
acting on the coagulation cascade. These autoantibodies upregulate neutrophils activity,
including the release of neutrophil extracellular trap (NET) [7]. This protein enhances
thrombin generation (TG) through the intrinsic pathway of the coagulation cascade, which
increases the risk of both blood clot formation and vascular occlusion [8].

Blood coagulation is a physiological process that has already been studied using a
wide variety of mathematical modelling techniques. Patient-specific kinetics of thrombin
generation were explored using systems of ordinary differential equations [9,10]. The
spatio-temporal dynamics of thrombus formation in the flow can be described by cou-
pling advection–reaction–diffusion equations for clotting factors with the Navier–Stokes
equations for blood flow [11–16]. Multiphase models were also used to describe the pro-
cess of thrombus formation in complex geometries such as aneurysms and recirculation
areas [17–19]. Discrete methods, such as dissipative particle dynamics and the immersed
boundary method, were also applied to accurately capture the interplay between blood flow
and blood cells [20,21]. Finally, multiscale models aim to combine discrete and continuous
modelling techniques to describe thrombus formation [22,23]. These methods are especially
useful in modelling arterial thrombi because it is a process that is mainly regulated by
platelet interactions. Recently, some of these modeling techniques were applied to study
thrombosis development in COVID-19. A fine-grained DPD model was used to investigate
the role of platelets, white blood cells, and coagulation factors in the parthenogenesis of
thrombosis in COVID-19 [24]. The modeling has revealed that factor V and antithrombin
are the most important coagulation factors that influence thrombus formation. They also
showed that the recruitment of white blood cells to the endothelium exacerbates blood
clotting. Another model focused on the kinetics of thrombin generation in COVID-19 pa-
tients [25]. The model has shown that the lack of antithrombin and the excess of fibrinogen
significantly influence the risk of thrombosis. In a previous study, we used a multiscale
model to quantify the effect of vessel obstruction on blood circulation as a result of lung
inflammation in COVID-19 [26]. We showed that an obstruction level of 5% leads to a
decrease in blood flux by 12%.

Machine learning is a technique that can be used for the diagnosis of disease such
as thrombosis [27,28]. The advantage of machine learning algorithms is that they can
offer timely and accurate predictions. However, their training requires access to a massive
amount of data, and it is not possible to interpret their predictions. Recently, we have
developed a novel methodology that combines mathematical modeling and deep learning
to predict the response of patients to anticoagulant therapy in a fast and explainable
manner [29]. This new approach used computational-fluid dynamics simulations to predict
the coagulation response of patients receiving anticoagulant drugs. The obtained results
were used as a dataset to train a neural network architecture that quickly predicts the
patient-specific response. The predictions of the neural networks are then explained using
systematic numerical simulations of the underlying computational model. In this work,
we propose to use the same methodology to evaluate the risk of thrombosis in COVID-
19 patients. We begin by modelling thrombus formation in COVID-19 patients using a
previously developed model and available experimental data. Next, we characterize the
generation of thrombin in COVID-19 patients. Finally, we use a 1D version of the model to
generate a large dataset of hemostatic responses in COVID-19 patients and healthy subjects.
This dataset is used to train a machine learning algorithm that can be readily applied to
predict the risk of thrombosis in COVID-19 patients.
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2. Mathematical Modelling of Thrombus Formation and Thrombin Generation
in COVID-19

In this section, we introduce a mathematical model that can be used to simulate venous
thrombus formation in the flow. The model describes thrombin generation as observed in
real patients. It can be extended to simulate the spatio-temporal dynamics of clot growth.
We describe how this model can be applied to model COVID-19-associated thrombosis.

2.1. Thrombin Generation Modelling

We use a previously developed model to describe thrombin generation [30]:

∂[Va]
∂t

= k1T − h1[Va], (1)

∂[VII Ia]
∂t

= k2T − h2[VII Ia], (2)

∂[XIa]
∂t

= k3T − h3[XIa], (3)

∂[IXa]
∂t

= k4[XIa]− h4[IXa], (4)

∂U
∂t

= (k̄5[TF] + k5[XIa] + k55[VII Ia][IXa])(U0 −U)− h5U, (5)

∂T
∂t

= (k6U + k66U[Va])P− K9T, (6)

where ki denotes the activation coefficient rates and hi the inhibition rates. The factors
Va and Xa form the prothrombinase complex Va − Xa, and VII Ia and IXa constitute
the complex VII Ia − IXa. They are introduced in (5) and (6) in the form of the terms
k55[VII Ia][IXa] and k66U[Va], obtained using the assumption of detailed equilibrium for
fast reactions. The concentrations of coagulation factors can be expressed as follows:

[Va] =
k1

h1
T, [VII Ia] =

k2

h2
T, [XIa] =

k3

h3
T, [IXa] =

k3k4

h3h4
T, (7)

and assuming that Equation (5) has reached equilibrium during the amplification phase
(k̄5[TF] = 0 and consider a zero-order reaction instead of a first-order one), we obtain,
using the detailed equilibrium assumption:

[Xa] =
k3k4

h3h4
T
(

k5

h5
+

k55k2

h2h5

)
. (8)

Substituting these concentrations with their expression in (5) and (6), we obtain two
equations for factor XI (U) and thrombin (T), and we add to the system one equation for
prothrombin (P):

∂U
∂t

= (K1 + K2T + K3T2)(U0 −U)− K4U, (9)

∂P
∂t

= −(K5U + K6T + K7T2 + K8T3)P, (10)

∂T
∂t

= (K5U + K6T + K7T2 + K8T3)P− K9T, (11)

where
K1 = k̄5[TF], K2 =

k5k4k3

h4h3
, K3 =

k55k2k4k3

h2h4h3
, K4 = h5, (12)
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K5 = k6, K6 =
k3k4k5k6

h3h4h5
, K7 =

k2k3k4k55k6

h2h3h4h5
+

k1k3k4k5k66

h1h3h4h5
, K8 =

k1k2k3k4k55k66

h1h2h3h4h5
.

These expressions are obtained by applying the detailed equilibrium approximation for fast
reactions on the system (1)–(6). The reduced model gives a good approximation of the rate
of clot growth described by the system (1)–(6) [10]. The nine parameters K1, K2, . . . , K9 can
be fitted to approximate the thrombin generation curves of real patients [10]. In this work,
we fit the model to thrombin generation curves of a patient with a normal coagulation
response. Then, we introduce the effect of COVID-19 autoantibodies on the thrombin
generation kinetics to simulate the hypercoagulable state associated with COVID-19.

2.2. Clot Formation in the Flow
2.2.1. Spatio-Temporal Distribution of Clotting Factors

We incorporate diffusion and transport by flow in the previously introduced model of
thrombin generation [11]. We describe the spatial distributions of factor XIa (U), thrombin
(T), and prothrombin (P) as follows:

∂U
∂t

+∇.(uU − Dt∇U) = (K2T + K3T2)(U0 −U)− K4U, (13)

∂T
∂t

+∇.(uT − Dt∇T) = (K5U +
K6T + K7T2 + K8T3

1 + σC
)P− K9T, (14)

∂P
∂t

+∇.(uP− Dt∇P) = −(K5U +
K6T + K7T2 + K8T3

1 + σC
)P. (15)

Here, the second terms in the left-hand side of the three equations describe the diffusion
of these three proteins and their transport by blood flow. For prothrombin, we prescribe
an initial and left boundary condition of P = P0 and a zero-flux condition at the rest
of boundaries. We consider a zero-flux boundary condition for thrombin and factor Xa
everywhere, except on the injury site, where we consider the following condition describing
the activation of factor X by the complex TF-FVIIa during the initiation stage [12]:

∂U
∂n

=
K1(U0 −U)

D(1 + β1(U0 −U)
. (16)

Next, we consider the activated protein C (APC), which localizes the formation of the clot
by stopping the propagation of thrombin near healthy tissues. APC is activated by the
complex thrombin–thrombomodulin and downregulates the production of thrombin by
inhibiting the activation of several factors, such as factor V and factor VIII. We describe its
distribution as follows:

∂C
∂t

+∇.(uC− Dt∇C) = −K10C. (17)

We apply the zero-flux boundary condition everywhere for APC except on healthy tissues
where protein C is activated by the thrombin-thrombomodulin complex [12]:

∂C
∂n

=
α2T(C0 − C)

D(1 + β2(C0 − C)
. (18)

After that, we add the equations for fibrin polymerization:

∂Fg

∂t
+∇.(uFg − D f∇Fg) = −K11TFg, (19)

∂F
∂t

+∇.(uF− D f∇F) = K11TFg − K12F, (20)
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∂Fp

∂t
= K12F. (21)

Here, Fg, F, and Fp describe the concentrations of fibrinogen, fibrin, and fibrin polymer,
respectively. Fibrin polymer does not diffuse and it is not transported by flow. Therefore,
we do not consider a diffusion and advection term in the equation for fibrin polymer. We
prescribe the inlet and initial condition of Fg = Fg0 for fibrinogen. The zero-flux condition
is prescribed at the rest of boundaries. The same condition is applied everywhere for fibrin.

2.2.2. Blood Flow and Clot Mechanobiology

We model blood flow as a non-Newtonian incompressible fluid as follows:

ρ
∂u
∂t

+ ρ(u.∇)u = −∇p +∇.τ − µ

K f
u,

∇.u = 0,
(22)

where u is the flow velocity, p is the pressure, ρ is the density of the blood, µ is the dynamic
viscosity, and τ represents the extra-stress tensor, given by the expression:

τ = 2µ(γ̇)D,

where γ̇ is the shear rate. We assume a Carreau rheology model for blood flow [31]:

µ(γ̇) = µin f + (µ0 − µin f )
(

1 + (λγ̇)2
) n−1

2 .

The influence of the clot is captured through the third term on the right-hand side of the
equation, where K f is the hydraulic permeability of the clot [32]:

1
K f

=
16
α2 F̃

3
2
p

(
1 + 56F̃3

p

)
. (23)

Here, F̃p = min
(

1000
1400 , Fp

7000

)
is the normalized concentration of fibrin polymer in the clot,

considered to be bounded by a value corresponding to the normal permeability of the clot;
α is the radius of fibers.

We assume that blood flow is driven by the pressure difference, and we prescribe the
pressure pin at the inlet Γin and the pressure pout at the outlet Γout. We consider no-slip
boundary conditions u = 0 at the other boundaries ∂Ω \ (Γin ∪ Γout). To set the inlet
pressure as dependent on shear rate parameter γ, we use the formula pin = 4Lγµ/D,
where L is the length of the vessel and D is the diameter of the vessel. The outflow pressure
is set to zero, pout = 0.

A solver for the model was implemented using the OpenFoam computational fluid
dynamics (CFD) library [33]. The geometry, mesh, and post-processing were performed
using tools provided by the same library. The CPU time of a numerical simulation is 23 min
on a computer with four cores and 8 GB of RAM. The list of parameter values are available
in the appendix section of our previous work [11].

2.3. Modelling the Effect of COVID-19 Antibodies on Blood Coagulability

Thrombosis is one of the serious complications of COVID-19. Lung histopathology has
shown evidence of fibrin-based occlusion in small vessels during the advanced stages of the
disease [34]. Analysis of blood samples of COVID-19 patients revealed a strong activation
of neutrophils [8]. This activation is caused by autoantibodies targeting phospholipids and
phospholipid-binding proteins developed by COVID-19 patients [7]. Activated neutrophils
release neutrophil extracellular traps (NETs), which promote the formation of blood clots
in micro-vessels. To achieve this, NETs upregulate thrombin generation by interacting with
microparticles (MPs) expelled by neutrophils. The NET-MP complex promotes thrombin
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generation via the intrinsic pathway of coagulation [35]. Indeed, it has been shown that
the thrombin generation triggered by the NET-MP complex could be inhibited by blocking
factor XII.

Hence, we can model the effect of SARS-CoV-2 autoantibodies on TG by considering
that the NET-MP complex upregulates the activation of factor XII. Factor FXIIa upregulates
the activation of FXI, which can be described by an elevation in the rate constant k3 in
the system (1)–(6). This constant determines the values of the parameters K2, K3, K6, K7,
and K8, as previously demonstrated. Indeed, it is possible to factorize k3 in all these five
parameters. We consider a parameter set corresponding to the thrombin generation curve
of a real healthy patient [10]. To quantify the elevation in k3 caused by COVID-19, we rely
on experimental results of mice thrombus formation in healthy blood plasma and after the
injection of SARS-CoV-2 autoantibodies. In these experiments, a thrombosis mouse model
for the inferior vena cava was considered to study the effect of SARS-CoV-2 autoantibodies
on clot growth. A copper wire was inserted in mice’s vena cava and used to activate
endothelial cells through electrolysis-mediated free radical generation. The injection of IgG
fractions isolated from COVID-19 patients significantly increased the length and the weight
of the formed thrombi.

2.4. Machine Learning for Fast Identification of Patients with a Hypercoagulable State Due
to COVID-19

After studying the effect of COVID-19 autoantibodies on the dynamics of venous clot
growth and thrombin generation, we use the obtained results to train a machine learning
algorithm capable of predicting the hemostatic response of COVID-19 patients. To achieve
this, we use a simplified verison of the model described in Section 2.2 to reduce the CPU
time of numerical simulations and to generate a large number of data. The model describes
clot propagation in the cross-section perpendicular to the injury site:

∂U
∂t

=
∂2U
∂y2 + (K2T + K3T2)(U0 −U)− K4U −ωγ̇U, (24)

∂T
∂t

=
∂2T
∂y2 + (K5U + K6T + K7T2 + K8T3)P− K9T −ωγ̇T, (25)

∂F
∂t

=
∂2F
∂y2 + K11TFg − K12F, (26)

where y represents the y-coordinate, and ω describes the rate of coagulation factor removal
by the shear stress. We fit this parameter such that the output of the model approximates
the thrombin propagation speed measured using the more complete model [12,36]. After
the fitting, we obtain a value of ω = 1.31× 10−3. The effect of APC is not considered
because we track clot growth near the injury site.

We generate a cohort of 3000 virtual patients by changing the most sensitive model
parameters in their physiological ranges. These parameters are K2, K6, and K9. These
parameters can be obtained by fitting models (9) and (11). We have previously identified
them as the most sensitive model parameters in a previous work, where a complete
sensitivity analysis of the model was conducted [10]. Numerical simulations using this
model take only 53 s. The output of the model, which is the height of the formed thrombus,
is then classified into three categories: bleeding, if clot growth is insufficient and the size
of thrombus is less than 2% of the vessel diameter; normal hemostatic response, for a
thrombus size between 2 and 20% of the vessel diameter; and thrombosis, if the clot size
exceeds 20% of the diameter.

We consider that half of the virtual patients are critically ill with COVID-19. To model
the effect of COVID-19 on blood coagulability, we upregulate the value of the parameter
k3 by 46.5%. Therefore, we obtain a labeled dataset consisting of four features, three for
the parameters K2, K6, and K9, and one corresponds to the illness status (zero for a healthy
subject or one for a COVID-19 patient).
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3. Results
3.1. Clot Growth Dynamics in COVID-19 Patients

We begin by simulating the dynamics of clot growth in a mouse vena cava under
normal conditions [7].We represent the vena cava with a rectangular domain with a diam-
eter equal to 1.25 mm. We consider a damaged area with a length equal to 0.2 mm, and
we fit the concentration of tissue factor at the damaged area such that the final thrombus
length is equal to the one observed in experiments (≈4 mm). We consider that blood flow is
driven by pressure difference between the outlet and inlet such that the shear rate is within
the physiological range for venous flows (γ̇ = 35 s−1). According to the experiments,
the injection of autoantibodies isolated from COVID-19 patients into mice increases the
length of the observed thrombi to ≈8 mm. To model this, we increase rate constant k3 that
describes FXI activation by FXIIa. This rate constant can be factorized in five of the model
parameters: K2, K3, K6, K7, K8. We obtain the desired length by multiplying each of these
parameters by 1.465, which corresponds to a 46.5% increase in k3.

We show the stages of clot growth in normal blood and after the injection of SARS-
CoV-2 autoantibodies in Figure 1. In the healthy subject, clot growth partially occludes
the vessel, whereas it completely obstructs the vessel and stops blood circulation in the
COVID-19 patient. The corresponding distributions of blood flow velocity are shown in
Figure 2. The upregulation in the coagulability of blood in the COVID-19 patient increases
thrombin generation, leading to the formation of a bigger clot. Due to the non-Newtonian
nature of blood, the development of the clot near the injury site leads to the appearance of
a recirculation area behind the clot. This accelerates clot growth as horizontal expansion of
the thrombus causes the deceleration of flow above the clot [12].

A) healthy blood plasma B) COVID-19 patient

t = 0 s

t = 50 s

t = 100 s

t = 250 s

t = 1000 s

750

0

Figure 1. Stages of clot growth for shear rates equal to γ̇ = 35 s−1; the concentration of fibrin
polymer is shown. The results correspond to simulations for healthy blue mice (A) and following the
injection of COVID-19 patient autoantibodies (B). These simulations were conducted using the model
described in Section 2.2, which describes the interplay between thrombus growth and blood flow. We
consider that the clot is formed in places where the fibrin polymer concentration exceeds 250 nM.
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Figure 2. The magnitude of flow velocity during the different stages of clot growth for the healthy
mice (A) and after the injection COVID-19 patient autoantibodies (B). We have obtained these results
by numerically solving the model described in Section 2.2, using two different parameter sets.

The dynamics of clot growth are presented in Figure 3. These dynamics show that
the evolution of the size and height of the clot is almost the same in the healthy subject
and the COVID-19 patient during the first 200 s. After this period, the thrombus expands
and occludes the vessel rapidly in the COVID-19 patient. The length and size of the clot
slightly increase 800 s after the simulation start. The results of these numerical simulations
are in a good agreement with the experimental findings [7]. These experiments show that
the injection of COVID-19 autoantibodies in mice results in the development of occlusive
thrombi in mice. In these experiments, the average length of thrombi in control mice and in
mice injected with COVID-19 autoantibodies were 4 mm and 8 mm, respectively. The same
values for thrombi length were observed in the numerical simulations.

Figure 3. Dynamics of clot growth in the normal bloodstream and after injecting autoantibodies
isolated from COVID-19 patients. The length (top) and height (bottom) of the two thrombi are shown
over time.
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3.2. COVID-19 Autoantibodies Upregulate the Peak Concentration of Thrombin Generation and
the Endogenous Thrombin Potential

The calibration of the model allows us to quantify the effect of COVID-19 autoantibod-
ies on the kinetics of the coagulation cascade. In this section, we evaluate the influence of
these autoantibodies on thrombin generation curves. These curves can be characterized by
four parameters: the lag time, the time to peak, the peak concentration, and the endogenous
thrombin potential (ETP) [37]. These parameters are sufficient to characterize any thrombin
generation curve. We evaluate the effect of COVID-19 autoantibodies on thrombin gen-
eration by studying the effect of the parameter k3 on the TG curve of a healthy subject.
Figure 4A shows that COVID-19 autoantibodies increase the peak concentration and reduce
the time needed to reach it. Figure 4B shows a negative linear relationship between the
parameter k3 and time to peak, whereas an exponential relationship can be established
between k3 and the peak concentration (Figure 4C). Finally, a logarithmic relationship
is observed between k3 and the endogenous thrombin potential, as shown in Figure 4D.
These predictions qualitatively agree with a clinical study on the effect of COVID-19 on the
kinetics of thrombin generation [38].

Figure 4. Effect of COVID-19 autoantibodies on the thrombin generation dynamics of a healthy blood
plasma. (A) Thrombin generation curves of a healthy subject and a COVID-19 patient. (B) Effect
of elevation in k3 on the time to peak. (C) The peak concentration as a function of k3. (D) The
endogenous thrombin potential as a function of k3.

3.3. Machine Learning Algorithm Predicts the Risk of Thrombosis in COVID-19 Patient

We predict the response of the 3000 virtual patients by solving the corresponding
supervised classification problem using machine learning. We use this dataset to train a
support vector machine algorithm (SVM). To achieve this, we shuffle the database and
divide it into two groups: a training dataset that represents 80% of the data and a test
dataset that accounts for the remaining 20%. The algorithm yields an accuracy equal
to 94% and can make predictions in a quasi-instantaneous manner. The algorithm was
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implemented using the Scikit-learn library in Python v.0.23.2 [39]. In parallel, we train our
previously calibrated deep learning algorithm using the same dataset, but we consider
four input nodes instead of seven (Figure 5) [29]. The algorithm includes three hidden
layers consisting of 500 × 250 × 50 nodes. Initial values of weights were set with the
uniform (Xavier) initialization [40]. The Adam learning rate optimization algorithm was
used to fit the weights of the ANN [41]; L-2 regularization was used to prevent overfitting.
This method consists of adding one more additional term to the loss function. The ReLu
activation function was used for all artificial neurons. The trained algorithm predicts the
risk of thrombo-embolism with an accuracy of 95%, which is slightly higher than the SVM
algorithm. We have previously explored the performance of other architectures and the
effects of variations in hyper-parameters on the accuracy of deep learning algorithm [29].

Figure 5. Architecture of the neural network trained to identify the risk of thrombo-embolic events in
COVID-19 patients.

4. Discussion

This work presents a novel methodology that aims to evaluate the risk of thrombosis
in COVID-19 patients. By detecting the patients with a high risk of developing thromboem-
bolic complications, the algorithm can assist medical doctors in preventing the incidence
of cardiovascular events in COVID-19 patients using anticoagulant therapy. The method-
ology presented in this work harnesses the strengths of both mathematical modelling
and machine learning to perform timely and accurate predictions. We used a previously
developed model of blood coagulation to study the effect of COVID-19 autoantibodies
on clot growth dynamics. The model confirms the hypothesis that was presented in an
experimental study [7], which indicates that COVID-19 autoantibodies can cause occlusive
venous thrombosis by inducing a hypercoagulable state. By fitting the simulation results to
experimental findings of in vivo thrombus growth, we were able to quantify the impact
of COVID-19 on the kinetics of the coagulation cascade. This quantification enabled us
to fit some of the model parameters. As a result, we studied the influence of COVID-19
autoantibodies on thrombin generation. Numerical simulations demonstrate that these
autoantibodies reduce the peak time and elevate the peak concentration and endogenous
thrombin potential.

The model was simplified and used to generate a large dataset for the hemostatic
responses of a cohort of virtual patients. This dataset was used to train a machine learning
algorithm capable of predicting the risk of thrombosis in COVID-19 patients in a timely
manner. The use of machine learning has several advantages. First, these algorithms
make predictions in a quasi-instantaneous manner suitable for clinical use, where the
timing of administering treatment is important. Second, they can be easily deployed as
smart applications that assist medical doctors and clinicians. However, machine learning
is a purely data-driven method that has a few weaknesses. One of them is the lack of
interpretability of the obtained predictions. This limitation can be overcome by adding a
layer of computational modelling that can be analyzed numerically and theoretically to
understand the dynamics of the studied system. Another weakness of machine learning is
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the lack of efficacy in dealing with high dimensional data. In this work, we have shown
how computational modelling can be used to characterize the thrombin generation curves
of real patients and to reduce the dimensionality of the problem.

It is important to note that the objective of this study is to present this new methodol-
ogy. We do not promote in any way its immediate use in clinical settings. The adoption
of this technology in healthcare settings would require more validation efforts against
experimental data. To improve the accuracy of the machine learning model, it is possible
to replace the considered neural network architecture with more advanced architectures
such as the recurrent and convolutional neural networks. Moreover, it would be better to
use the 2D version of the model to generate data, but doing so would require access to
high-performance computing facilities. Further, we have used experimental data obtained
using a thrombosis mouse model to validate the model, but there are a few differences
between blood coagulation in humans and in mice. Thus, it would be useful to calibrate
the model using data quantifying COVID-19 impact on human thrombus formation in the
future. Finally, we have only considered one mechanism of thrombosis pathogenesis in
COVID-19 because of the availability of data. Introducing other mechanisms would require
access to more quantitative data on their influence on the blood clotting process. COVID-19
influences blood coagulation by other mechanisms, such as the inflammation of endothelial
tissue due to the SARS-CoV-2 cytokine storm, which may induce endothelial dysfunction
and atherosclerosis. In addition, it was reported that coronavirus infections promotes the
activation of fibrinolysis, suggesting a confounding effect of this virus [42].

The presented approach illustrates the advantages of combining mathematical mod-
elling with deep learning to enable the fast and explainable prediction of the coagulation
response of specific patients. On one hand, deep learning significantly cut down the CPU
time of numerical simulations and can be readily deployed as a smart app that can be used
by clinicians. On the other hand, mathematical modelling reduces the dimensionality of
the problem and provides explanations for the recommendations made by the machine
learning algorithm. These explanations can be obtained by exploring the response of the
patients when parameters are perturbed. In this work, we have applied this technique to
identify the COVID-19 patients that have an elevated risk of prothrombotic events due
to the effect of COVID-19 autoantibodies. The same approach can be used in a variety of
applications originating from precision medicine.
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