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Abstract: MRI scanning has shown significant growth in the detection of brain tumors in the recent
decade among various methods such as MRA, X-ray, CT, PET, SPECT, etc. Brain tumor identification
requires high exactness because a minor error can be life-threatening. Brain tumor disclosure remains
a challenging job in medical image processing. This paper targets to explicate a method that is more
precise and accurate in brain tumor detection and focuses on tumors in neonatal brains. The infant
brain varies from the adult brain in some aspects, and proper preprocessing technique proves to be
fruitful to avoid miscues in results. This paper is divided into two parts: In the first half, preprocessing
was accomplished using HE, CLAHE, and BPDFHE enhancement techniques. An analysis is the
sequel to the above methods to check for the best method based on performance metrics, i.e., MSE,
PSNR, RMSE, and AMBE. The second half deals with the segmentation process. We propose a novel
ARKFCM to use for segmentation. Finally, the trends in the performance metrics (dice similarity
and Jaccard similarity) as well as the segmentation results are discussed in comparison with the
conventional FCM method.

Keywords: MRI segmentation; histogram equalization; CLAHE; BPDFHE; neonatal brain; ARKFCM;
FCM

MSC: 26E50; 62A86; 03B52; 93C42; 60A86

1. Introduction

MRI segmentation is a technique that deals with magnetic resonance imaging using
low energy waves with wavelengths higher than X-rays and infrared rays along with a
magnetic field to get a pictorial view of the anatomy of different body parts. The image is
further classified based on similarity measures for ease of result analysis. MRI is eminently
convenient in providing 3D visualization and anatomy of the brain. It can be represented in
both 2D (pixels) and 3D (voxels). Although there are other imaging techniques, e.g., X-rays,
CT, PET, SPECT, etc., X-rays and CTs (computed tomography) involve the use of mild
radiation and prolonged exposure to neonates, which can be fatal. As long as functional
behavior of the brain is not a requisite, MRI is better than other modalities. On the contrary,
a modified version of MRI called fMRI (functional magnetic resonance imaging) aids in
the visualization of sheer suddenness in neural activity of the brain corresponding to a
particular stimulus. The above-presented information stands for the remarkable growth of
MRI specifically.

This paper is focused on the analysis of neonatal brains, i.e., the brains of infants. The
main difference between the brains of a neonate and a matured one is that mature brain
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tissues are comprised of white matter (WM), grey matter (GM), and cerebro-spinal fluid
(CSF) whereas neonate brain tissues contain additional myelinated and nonmyelinated
white matter tissues, which are nothing but fatty tissues that help in the development of
the brain. These fatty tissues greatly affect the segmentation process as they create overlaps
between different tissue classes, e.g., WM–GM overlaps dominate the GM–CSF overlaps,
which may lead to inaccurate results, i.e., ambiguous boundary decisions become liable
outcomes between various tissue class distributions. Hence, proper enhancement of the
image becomes indispensable before segmentation is carried out. Preprocessing involves
skull stripping, image enhancement, artifact removal, and noise removal. The prevalent
noises in MR images follow Rician distribution in general. Preprocessing eliminates diffi-
culties produced due to bias fields, which are nothing but lower frequency multiplicative
fields and are neglected if the MRI is performed on a comparatively lower magnetic field
strength, e.g., around 0.5 Tesla and increasing (incrementing it to 2T/3T or above), which
can make the bias field significant and ultimately affect the outcome of the MRI process. To
provide a general estimation, MRI scanning uses a magnetic field that is roughly around
8000 times the magnetic field of the earth. The use of support vector machines (SVMs) and
fuzzy c-means (FCM) algorithms are the most common algorithms for segmentation. Both
of the above-mentioned algorithms are unsupervised machine learning algorithms. The
former is germane to statistical learning theory while the latter does an exemplary genesis
of clusters and solves skeptical problems existing in an image. As we all know, everything
has pros and cons. The above algorithms also have some cons. SVM is unable to segregate
categorical data of ambiguous samples.

In order to overcome the demerits of the FCM algorithm for MRI brain images and en-
hance the images with preprocessing techniques, both were combined together to improve
the accuracy of the output. In this paper, an adaptively regularized kernel-based fuzzy
c-means (ARFKCM) algorithm is proposed for the segmentation technique for preprocessed
images. To avoid inaccurate results, various preprocessing techniques, such as HE, CLAHE,
and BPDFHE, were analyzed, and the best method for preprocessing was chosen based on
performance metrics such as MSE, PSNR, RMSE, AMBE, and so on. After preprocessing
the original image, segmentation was performed on the preprocessed image. Finally, the
abnormality was depicted in the results of the preprocessed, segmented image and in
the one without. This paper implements an intensity-based segmentation method (which
includes region growth, classification, clustering, and thresholding). In the case of the FCM
algorithm, the clustering membership function was determined by the similarity between
the cluster center and the pixel intensity, and not considering the spatial dependence of the
pixels makes it extremely responsive to noise and Euclidean space. This paper is summed
up as follows: In Section 2, under materials and methods the literature of existing methods
and proposed methods are described. Section 3 explores the experimental results, the
discussion on the results and their comparisons with existing methods is shown Section 4,
and the conclusion is described in Section 5.

2. Materials and Methods
2.1. Literature Review

The proposed work is motivated by the fact that the most difficult task of MRI brain
imaging is to eliminate noise from the scanning modality in the acquired images. Another
challenge in the segmentation of MRI images is due to the presence of noise and ambiguities
between boundaries and dissimilar tissues in the brain. The segmentation of tumors is due
to structural divergences due to an assortment in shape, dimension, and position of the
tumor present in the brain. Additionally, subjects can be resourcefully evaluated within
the shortest time duration by reducing the valuable time and energy of a radiologist in the
diagnosing process. The proposed hybrid techniques enable the accurate detection of tissue
and tumor areas with their exact topology, which is typically unknown to a radiologist.

Lakshmi A. et al. [1] were enthralled by preprocessing various stages, such as artifact
removal, image enhancing, and skull stripping. In the end, the noise was successfully
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removed from the MR image, and curvelet transformation was used to do it. Senthilku-
maran N and Thimmiaraja J [2] focused on the analysis and assessment of dissimilar
histogram equalization techniques, i.e., brightness-preserving dynamic histogram equaliza-
tion (BPDHE), global histogram equalization (GHE) [3], adaptive histogram equalization
(AHE), and local histogram equalization (LHE), based on parameters such as Michelson
contrast, Weber contrast, contrast, and AMBE.

They introduced fuzzy theory into the prevalent algorithm and also a better technique
known as brightness-preserving dynamic fuzzy histogram equalization (BPDFHE). The
inexactness of grey level values was handled to a large extent with fuzzy statistics of digital
images, resulting in improved performance.

Suryavamsi et al. [4] performed a deep analysis of image enhancement methods (HE,
CLAHE, and BPDFHE) on astrocytoma MR images. In the results, BPDFHE performed ex-
ceptionally well compared to HE and CLAHE based on performance measures such as MSE,
RMSE, and PSNR. This paper explores different methods for various sample images. Deep
et al. [5] performed a comparative analysis of the different types of contrast enhancement
techniques on dissimilar images and other denoising algorithms used for preprocessing as
used in [6]. In the conclusion, contrast-limited adaptive histogram equalization obtained
better image quality.

Sai Raghavendra et al. [7] proposed the implementation of a multiplicative intrinsic-
component optimization (MICO) methodology to both single and multichannel MRI images
for segmenting multiple sclerosis lesions.

Ivana Despotovic et al. [8] analyzed the famous methods generally used for brain
MRI segmentation to address their complexity and challenges, and other segmentation
methods were discussed. Various MRI preprocessing steps were described, including bias
field correction. The advantage, capabilities, differences, and limitations related to the topic
were described with simulated illustrations of histograms as well as manual segmentation,
atlas-based, intensity-based, surface-based, and hybrid segmentation methods.

Saritha Saladi and Amutha Prabha N [9] presented various segmentation methods
such as manual, semiautomatic, fully automatic, and hybrid segmentation in a detailed
manner and stated that hybrid methods can overcome the limitations of individual meth-
ods. Shijuan He et al. [10] proposed methods for finding brain contours along with the
formulation of real calculation models.

The following papers show the recent works related to the machine learning domain,
emphasizing how segmentation can be improved using various combinations of famous
algorithms, such as fuzzy theory and SVMs. Xiao and Tong [11] explained FCM and FSVM.
Membership points were selected in FSVM algorithm, where as FSM algorithm selects
blur membership points. This process not only added the unheard FCM algorithm to
the monitored SVM classification algorithm so it can automatically select patterns for the
SVM algorithm but also made better use of the FCM algorithm’s generalization capability
compared to normal SVM to achieve better accuracy in segmentation.

Dancea [12] introduced a format separation technique in conjunction with FCM and
FSVM to solve the training problem for the shortage of models, which proposed an im-
proved FCM algorithm with SVM. Additionally, [13–15] combined FCM and SVM to
diagnose osteoarthritis of the knee. Satya [16] promoted a better and more effective
KFCM technique in conjunction with SVM for breast MR image segmentation. Elazab
and Wang [17] proposed ARKFCM and were able to achieve a trade-off between high-
segmentation accuracy and low computational cost.

Thejaswini, P. et al. [18] usedwere ARKFCM for segmentation, and SVM and ANN
are proposed for the detection and classification of brain tumors based on the extracted
features. Iqbal et al. and Zhu et at. [19,20] used a deep convolutional neural network to
segment brain tumors in MRIs in their paper. The three different network architectures
were interpolated network, Skip-Net, and SE-Net. It was concluded that VGG architecture
performs well for tumor segmentation.
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Akkus et al. [21] reviewed the current deep learning architectures (patch-wise, semantic-
wise, and cascaded CNN) used for the segmentation of anatomical brain structures and brain
lesions, and their performance, speed, and properties were summarized and discussed.

Zahid Ullaha et al. [22] proposed a preprocessed method for brain MRI classification
using histogram equalization, median filter, color moments, DWT, ANN, etc. This method
performed better than the preexisting method in terms of accuracy, classification, and com-
putation time, as feature reduction and image enhancement were accomplished beforehand.
The following image represents the flow of processes in the process, which is shown in
Figure 1, and their corresponding algorithms are discussed in detail.
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2.2. Preprocessing of the Original Image

Preprocessing was carried out using three different enhancement techniques, namely
HE, CLAHE, and BPDFHE.

2.2.1. Histogram Equalization (HE)

HE is a technique used to improve the contrast of an image. This is accomplished by
stretching out the intensity range of the image. The regions of lower local contrast gain the
highest contrast. HE is a statistic probabilistic distribution of every gray level in images.
The algorithmic steps to find the HE are as follows:
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(a) Evaluate probability distribution function (PDF). Let the input images contain N discrete

gray levels from [0, N − 1]. Then, PDF is calculated by: p[xN ] =
pixel having intensity (xN)

total number o f pixels ,

p[xN ] =
n (xN)

r∗c . Here, r represents the number of rows, c represents the number of
columns, and n(xL) represents the count of pixels with intensity xL.

(b) Calculate the cumulative distributive function (CDF). This is performed by adding all
the calculated PDF values, A[xN ] = ∑M

i=0 p[xi], where M ∈ [0, M− 1].
(c) Evaluate the transfer function. This is performed by multiplying the obtained CDF

value by the number of grey levels, T[xN ] = (M − 1) A[xN ].
(d) Map the obtained intensity values with previous intensity values.

Hence, the image is enhanced, and its corresponding equalized histogram is obtained.

2.2.2. Contrast-Limited Adaptive Histogram Equalization (CLAHE)

In this method, the images are divided into small blocks called tiles, and each of
the tiles is histogram equalized. With this method, noise amplification is avoided in the
image. The adjacent tiles are merged using bilinear interpolation to separate the artificial
boundaries. Each of the tiles is enhanced separately to obtain the required histogram for
the given parameters. All secondary images are combined to obtain a well-developed
image. A new framework that is introduced in CLAHE is the clip limit, which limits the
augmentation by clipping the histogram with the help of given parameters. The following
steps are used in CLAHE:

(a) Divide the given input image into various subimages.
(b) On the obtained sub images in (a), the following steps are performed on each bin in

the histogram of the subimage once the biggest value of that bin is acquired:

• If specified clip value is smaller than the histogram bin value, then the histogram
will be clipped to the clip value.

• Evaluate the number of pixels where bin values exceed the given clip value.

(c) Redistribute the above pixels to other histogram bins evenly to obtain the normalized histogram.
(d) After obtaining the normalized histogram, find the CDF values.
(e) For every pixel of the given image, find the neighboring pixels.
(f) By using the intensity of pixel values, map those neighboring pixels based on the

above-calculated CDF values.
(g) The obtained pixel values are mapped based on the new intensity values in the given

[0, N − 1] range.

2.2.3. Brightness-Preserving Dynamic Fuzzy Histogram Equalization (BPDFHE)

The BPDFHE method operates using an image histogram in such a way that redistri-
bution of the gray level takes place. It is a general modification of BPDHE to lessen its com-
putational complexity and upgrade its contrast enhancement and brightness-preserving
abilities. BPDFHE uses fuzzy statistics of digital images for their representation and pro-
cessing. Involving the fuzzy domain enables the technique to steer the impreciseness of
gray level values in a superior way and yields a better execution. The algorithmic steps are
as follows:

(a) Fuzzy histogram computation;
(b) Partitioning of the histogram;
(c) Dynamic histogram equalization of the partitions;
(d) Normalization of the image brightness.

2.3. Results of Performance Metrics in Preprocessing

The eminence of an image is subjective; it differs from image to image. The following
measures are used to evaluate the preprocessing task (HE, CLAHE, and BPDFHE):
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2.3.1. Mean Square Error (MSE)

Mean square error (MSE) is defined as the ratio of the input image matrix and enhanced
image matrix. It is the cumulative squared error between the primary and retrieved images.
If the MSE value is smaller, the probability of error is low.

MSE =
Σmn[J1(m, n)− J2(m, n)]2

M× N
(1)

where J1—original image and J2—compressed image with M× N dimensions. Therefore,
lower values of MSE lead to effective compression.

2.3.2. Peak Signal-to-Noise Ratio (PSNR)

Peak signal-to-noise ratio (PSNR) is defined as the ratio of the logarithmic peak value
of a given image to the logarithmic MSE value. It is typically used as an extent of the
standard of restoration after lossy compression. The higher the PSNR value, the lower the
error will be, and this results in a good-quality image.

PSNR = 10 log10

(
A2

MSE

)
(2)

where A—highest possible value of the image’s pixel.

2.3.3. Root Mean Square Error (RMSE)

RMSE is calculated by taking the square root of the mean square error value. The
similarity between the two images will be calculated. If RMSE is zero, then the two images
are equal. The lesser the value of RMSE, the lower the value of error.

RMSE =
√

MSE (3)

2.3.4. Absolute Mean Brightness Error (AMBE)

AMBE is considered the difference between the mean of the given image and the
enhanced image.

AMBE = | E(J1)− E(J2) | (4)

E(J1)—expectation(mean) of the original image and E(J2)—expectation of the com-
pressed image. The lower the value of AMBE, the better the performance of the brightness-
preserving factor to improve the quality of the output image.

2.4. Segmentation of Images

The most common algorithms for this purpose are FCM, SVM, and random forest
ada-boost m1 classifier SVM and MRF [23], all of which are well-known machine learning
algorithms. The former two are unsupervised clustering methods whereas the latter is a
supervised one such as the firefly and k-means algorithms [24].

Clustering and segmentation both aim at assembling entities based on their similarities,
but clustering allocates valued scores to clusters in order to make the objects in the same
cluster as analogous as possible and vice versa. Clusters are identified based on similarities,
such as connectivity, distance, and intensity. Segmentation [25] of an image implies that an
image should be divided into a set of identical substantial, uniform, and non-overlapping
areas consisting of analogous characteristics, e.g., intensity, depth, color/gradient. The
resulting image must provide us with a labeled outcome of homogeneous spatial contexts
or curves representing field boundaries.

2.4.1. Fuzzy C-Means Clustering

FCM is known as soft clustering [26] and segments data groups into many clusters.
This method deals with an objective function that, via iteration, allocates a membership
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value to each pixel in the image. The extent of the membership value highly depends on
the distance of a particular pixel from the centroid of a cluster. In general, more data near
the cluster center implies a greater membership value towards the particular cluster center
and vice versa. Hence, the summation of the membership values of each point should be
equal to one. The processes executed in basic FCM are summarized in Figure 2.
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Apart from these, FCM has some hindrances:

• JFCM ignores the dimensional dependence among the pixels of the input sample and
deals with images that are the same as isolated points.

• By ignoring the provincial information, the algorithm becomes extremely sensitive
to noise. Hence, MR images comprising noise and nonuniform intensity result in
erroneous segmentation.

To make the algorithm insusceptible to noise, the following modification was estab-
lished, and the improved algorithm was termed FCM_S by Ahmed et al. [25]. The objective
function pertinent to the refashioned algorithm is given as:

JFCM_S =
n

∑
i=1

c

∑
j=1

µ
γ
ij ‖ρi −�j‖2 + α

n

∑
i=1

c

∑
j=1

µ
γ
ij ∗

1
nc

(
∑

x∈ni

‖ρx −�j‖2

)
(5)

• Here, ‘α’ acts as a controlling parameter within range [0, N]. It is the local dimensional
information. Further apprehension on this parameter is provided in Section 2.5.2 of
this paper.

• ‘ni’—set of pixels in the neighborhood of the ith pixel.
• ‘nc’—count of the elements in the nith set.

The complex-computations of the FCM_S algorithm is high, in order to avoid the
complex-computations last part of the second term, i.e., 1

nc

(
∑x∈ni

‖ρx −�j‖2
)

. Here, ‘ρ’
is a grayscale of the enhanced image and needs to be predetermined; replacement of the
Euclidean distance with the kernel function was accomplished in paper [27]. Average and
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median filters were used to redesign the algorithm, and the improved versions are termed
FCM_S1 and FCM_S2.

Further remodeling was attained multiple times with this algorithm. Paper [28]
innovated two forms, i.e., GKFCM1 and GKFCM2, which were the intensification of
FCM_S1 and FCM_S2, respectively, and had a new Gaussian kernel-based parameter that
replaced α and yielded better results but had complications in case the cluster centers were
compact. This resulted in increased iteration extensively.

The above complication was eradicated by the introduction of the FLICM algorithm in
paper [29] that used fuzzy theory to make it robust to noise. Again, the problem of losing
minute specifications with the KW-FLICM algorithm, which exchanged Euclidean distance
with the kernel-based function but at the price of losing fuzzy factors, again encountered
the escalation of iterations.

Szilagyi [30] exposed the blunders of the above two algorithms—FLICM and KW-
FLICM. Their theoretical flaws were questioned and declared unsuitable. These facts lead
the researchers back to square one and explicated the process thereafter.

2.4.2. Markov Random Fields

It is also one of the popular segmentation methods. Similar to FCM, MRF is also
an unsupervised clustering algorithm. It shows exemplary performance when capturing
local spatial interactions, and pixel (or voxels in the case of 3D) intensity is required. It
provides both 2D and 3D spatial configurations. According to the neighborhood relation-
ship properties:

• A node does not belong in its neighborhood,
• A mutual relationship exists in a neighboring relationship.

According to these properties, we can understand from the illustration that four
neighbors exist for a node of a 2D image in first order, and six exist in the case of a 3D
image. Similarly, in second order, eight exist for 2D and 18 neighbors exist for. Following
the same, neighbors for third order for both 2D and 3D can be visualized.

2.4.3. Support Vector Machines

It is a widely used supervised machine learning method. It uses statistical theory by
the virtue of which kernel functions extrapolate data into higher spatial dimensions to
achieve ease of their separation. This process also gets aided by a kernel trick that uses the
dot product to efficiently transform a linear algorithm into a nonlinear algorithm. Apart
from the pros, it also has a con: As far as ambiguous samples are concerned, its partitioning
capability becomes limited, and it fails to categorize the data for the corresponding sample.

2.5. Proposed Methodology
2.5.1. Highlights of the Proposed Method

MRI images are distorted by noise at the time of acquisition, which reduces the
attributes and limits the accurateness in analysis. Elimination of noise in medical images is
an essential task in preprocessing, and there are various approaches.

In this paper, various denoising algorithms are compared with the proposed ARKFCM
method to exterminate the noise in MRI images with a pixel restoration process. The
qualified assessment of this technique was carried out with the help of metrics (PSNR,
MSE, RMSE [31], and AMBE [32]). These comparisons show that the BPDFHE filter
provides outstanding performance in terms of improved PSNR and RMSE in perceptual
interpretation. It supports in the medical diagnosis of brain disorders.

There are various challenges to solving the inequities during the image acquisition
process in the detection of tumors and segmenting of tissues (GM, WM, and CSF). The
transparency and interpretation in the hybrid segmentation methods are a noteworthy
challenge for clinical approval from doctors.
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To provide better tumor identification and tissue segmentation with the hybridization
of the algorithms and to overcome the limitations of the individual segmentation methods,
a combination of different segmentation methods is proposed with the ARKFCM technique.

2.5.2. Adaptive Regularized Kernel-Based Fuzzy C-Means Clustering Algorithm (ARKFCM)

The overview of this algorithm is shown in the Figure 3 associated with this section.
Here, the term ‘adaptive regularization’ indicates the existence of the adaptive calculation of
‘α’, a parameter used during the modification of FCM, making it resilient to high noise levels.
This ‘α’ influences the algorithm’s performance to a great extent. The prerequisite in case
of FCM for this parameter was that it had to be specified by the concerned programmer
himself for which prior knowledge of the details of the noise becomes an obligation.
Considering scrutiny over the bulk of the dataset, it becomes immensely challenging,
time consuming, and counterproductive to calculate α for each pixel, as noise levels vary
window per window. The above is the case when prior information about the noise is
available, which contradicts the general case. In general, the noise information prevailing
in a sample remains unknown, which adds to the limitations of FCM. Hence, this algorithm
performs a computation for the value of α before commencing any actual operation in
order to be adaptive to the level of pixel noise.
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Initialization

Because of the contributing factor of 100% noise reduction, the median filter is accom-
plished over a weighted filter even if the filter mask is heightened. Another feature of the
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median filter is that the obscuring nature of the outcome is less compared to the other two.
The degree of fuzziness is the weighting exponent on all fuzzy memberships.

Local Variation Coefficient Calculation

The LVC calculation becomes a requisite as it approximates the divergence (if any)
present in a particular pixel’s neighborhood window. A pixel that has been picked randomly
to find the local variable coefficient. It is given as:

LVC =
∑z∈ni

(ρz − ρi)
2

nc(ρi)
2 (6)

Here, ‘ρz’ is a random pixel in the ith pixel neighbor. ‘ni’ is the set of pixels in the ith
pixel neighbor. ‘nc’ is the count of the elements in the nith set. The results of windowing
operations on pixels are modeled as random variables, so we treat the pixel as a random
variable in the calculation of local variables.

Thereafter, the LVC for the window of the ith pixel is further applied to the exponential
function to derive the weights within that particular dimensional neighborhood, i.e., the
window associated with that pixel.

δi =
ξi

∑z∈ni
ξz

(7)

where ξi = e(∑z∈ni , i 6=z LVCZ)

The above expression indicates that for all pixels ‘i’, the values of δi rise whenever the
summation of the local variation coefficients in the surrounding of the ith pixel is large and
vice versa.

A new parameter ‘Ψ’ is introduced at this step to allot larger values to the pixels possess-
ing higher LVC values. It replaces the term ‘α’ by the virtue of which ‘adaptive regularisation’
is achieved. The weight is allocated to each pixel based on the following function:

Ψi =


2 + δi, ρi < ρi
2− δi, ρi > ρi
0, ρi = ρi

(8)

From this expression, we can conclude that whenever the ith central pixel (ρi ) is
brighter than the average grayscale ( ρi) of the pixels in its local window, a higher weight is
assigned to the corresponding pixel. The converse of the preceding statement is also evident
from the second case of the above expression. Finally, if the grayscale of the central pixel is
identical to the local average (i.e., ρI = I), then this algorithm would become equivalent to
the conventional FCM algorithm. Hence, adaptive regularisation is attained using Ψi.

Conceiving a Weighted Image

This is an optional step where it is at the researcher’s discretion of weighted images
using ‘Ψ’ or to go for any of the filters—median/average. The limitation in the former
choice is that it becomes highly challenging when one wants to exclude all other parameters
except for one.

Use of Kernel-Based Function

Despite being a fundamental method and with low complexity in computation, Eu-
clidean distance does have a complication, i.e., it is sensitive to aberrations caused by
outside influences. To eradicate this sensitivity to deviations, a kernel-based function is
used instead, which is an application of support vector machines. The kernel function is
given as:

K
(
ρi,�j

)
= e

−‖ρi−�j‖
2

2θ2 (9)
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where θ =

√[
∑n

i=1(δi−δ)
2

n−1

]
.

Iterations: Iterations are carried out based on the soft clustering algorithm. Overall,
the objective function of ARKFCM including all specifications is given as:

JARKFCM = 2

[
n

∑
i=1

c

∑
j=1

µ
γ
ij
(
1−K

(
ρi ,�j

))
+

n

∑
i=1

c

∑
j=1

Ψiµ
γ
ij
(
1−K

(
ρi , �j

))]
(10)

The above equation is a transformation of Equation (10) achieved by modifications
mentioned in the algorithm of ARKFCM. Similarly, the cluster centers and membership
function is derived as in the conventional FCM algorithm [15]. Finally, thresholding is
performed on the resulting segmented image, i.e., all pixels above the specified value are
turned black and vice versa for white, which helps in visualizing tumors (if any) present in
the neonatal brain.

3. Results

The following are the results after analyzing the preprocessing techniques based on
performance metrics such as MSE, PSNR, RMSE, and AMBE.

3.1. Preprocessing Results

The following figures are the enhanced images with their corresponding histograms
(HE, CLAHE, and BPDFHE) for the original images.

Figure 4a is the original. Figure 4b is its histogram representation. Figure 5a–c
represents the same image enhanced via different preprocessing methods, i.e., HE, CLAHE,
and BPDFHE, and Figure 6a–c is their respective histograms.
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3.1.1. Mean Square Error (MSE)

The MSE results were assessed for 10 neonatal brain images utilizing the three en-
hancement procedures. With the help of Table 1, we can interpret the pattern of the MSE
values. On average, the MSE value lowered by 63.21% from HE to CLAHE, dropped to
97.55% from HE to BPDFHE, and decreased by 94.75% from CLAHE to BPDFHE. The value
for BPDFHE is lower than the other two, implying it has a low error and yields a more
desirable image.

Table 1. Comparison of MSE values.

S.no. HE CLAHE BPDFHE

Image 1 6998 2081.3 47.4052
Image 2 7344.8 2171.1 108.6676
Image 3 5565.2 1929.3 63.7714
Image 4 1241.3 1373.2 167.8926
Image 5 5375.1 1645.5 42.4575
Image 6 3833.1 1156.3 66.5487
Image 7 7188.8 2084.3 95.3092
Image 8 10312 3265.4 96.8685
Image 9 6034.4 1143 97.3825
Image 10 5169.3 1185.7 63.3049

3.1.2. Peak Signal-to-Noise Ratio

The PSNR results were assessed for 10 neonatal brain images utilizing the three
enhancement techniques. With the help of Table 2, we can interpret the pattern for the
PSNR values. On average, the PSNR value increased by 44.95% from HE to CLAHE,
raised to 66.9% from HE to BPDFHE, and further increased by 84.177% from CLAHE to
BPDFHE. The value for BPDFHE is high, which infers it has a low error and yields a more
desirable image.

Table 2. Comparison of PSNR values.

S.no. HE CLAHE BPDFHE

Image 1 9.6811 14.9475 31.3725
Image 2 9.471 14.7641 27.7698
Image 3 10.676 15.2767 30.0845
Image 4 17.192 16.7535 25.8805
Image 5 10.8269 15.9679 31.8513
Image 6 12.2953 17.4999 29.8994
Image 7 9.5643 14.9411 28.3395
Image 8 7.9973 12.9914 28.269
Image 9 10.3245 17.5502 28.246
Image 10 10.9964 17.391 30.1164

3.1.3. Root Mean Square Error

The RMSE results are evaluated for 10 neonatal brain images using the three enhance-
ment techniques. Table 3 helps to interpret the trend of MSE values. On average, RMSE
value drops by 41.5% from HE to CLAHE, again falls by 86.51% from HE to BPDFHE, and
furthermore by 77.84% from CLAHE to BPDFHE. The value for BPDFHE is less suggesting
that it has a low error and provides us with a better-quality image.

Table 3. Comparison of RMSE values.

S.no. HE CLAHE BPDFHE

Image 1 83.6539 45.6212 6.8851
Image 2 85.7019 46.5945 10.4244
Image 3 74.6003 43.9241 7.9857
Image 4 35.232 37.0564 12.9573
Image 5 73.3151 40.5643 6.5159
Image 6 61.9123 34.0051 8.1577
Image 7 84.7866 45.6545 9.7626
Image 8 88.5489 57.1438 9.8422
Image 9 77.6812 33.809 9.8683
Image 10 71.8982 34.4341 7.9564
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3.1.4. Absolute Mean Brightness Error

The AMBE results were evaluated for 10 neonatal brain images from three databases
and in real time using the three enhancement techniques. Table 4 helps to interpret the
trend of the MSE values. The value for BPDFHE is nearly zero, which indicates that it has a
low error and yields a more desirable image.

Table 4. Comparison of AMBE values.

S.no. HE CLAHE BPDFHE

Image 1 79.9399 38.1965 0.0768
Image 2 81.0502 40.7308 −0.0759
Image 3 70.306 37.2708 −0.0064
Image 4 30.4979 −2.4163 0.0587
Image 5 70.4643 34.003 0.0312
Image 6 60.0564 24.9076 0.0228
Image 7 81.1538 39.0835 −0.1003
Image 8 94.5837 49.9546 −0.0512
Image 9 75.8575 27.0601 0.0507
Image 10 69.727 26.8082 0.0406

3.2. Segmentation: A Step-Wise ARKFCM Method

• Degree of fuzziness, m = 2 is taken here;
• Median filter is used out of average/weighted filters;
• Iterations are over the ARKFCM objective Function (10), which is given as Equation (10).

3.3. Segmentation Results: With vs. without Preprocessing

The upcoming figures are sectioned into three parts: Each part has an original neonatal
brain image, and segmentation is achieved on that image. All the sections were subdivided
into two parts—a and b. Part ‘a’ helps in visualizing tumor detection over the original
image (which is not enhanced). On the other hand, part ‘b’ is of the enhanced image.
Figure 10 represents the (a) original image, (b) preprocessed with BPDFHE enhanced
image, (c) segmentation result using the median filter, (d) detection of the tumor, and
(e) extraction of the tumor using thresholding.
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Figure 10. (a) Original image, (b) BPDFHE enhanced image, (c) segmentation result using median
filter, (d) detection of tumor, and (e) extraction of tumor using thresholding.

The estimation of the proposed hybrid method for preprocessing and segmentation
using a machine learning algorithm was shown on various MRI images to detect tumors.
We placed the images for better visibility after simulations in ink space were used.

Justification of the results was carried out with the dice index (DI) and Jaccard index
(JI). The ground truth (GT) image was considered to estimate the performance, which was
prepared with the help of a radiologist.

The proposed ARKFCM technique considers spatial information of pixels for process-
ing images which are affected by artifacts such as noise and intensity in-homogeneities.
Hence, this procedure includes the effect of neighborhood pixels/voxels aimed at spatial
information. Thus, it is capable of extracting boundaries in a proper way when compared to
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the existing, conventional FCM technique. It was witnessed that the implemented method
was able to classify the effects of shielding and bright variations. Therefore, in brief, the
main advantages of the proposed method were identified as robust to noise and shielding
effects. The computable calculation was performed with Dice Index (DI) and Jaccard Index
(JI) metrics [33], processing the difference between the segmented and GT images.

Dice index =
2|Ai ∩ Bi|
|Ai|+ |Bi|

(11)

Jaccard index =
| Ai ∩ Bi|
|Ai ∪ Bi|

(12)

Segmentation results of the proposed method are shown in Figures 11 and 12. The
obtained numerical values are tabulated in Tables 5 and 6 respectively, including the
performance measures of dice similarity and Jaccard index. The proposed method provides
efficient and robust results when compared to the FCM technique by a mean of a 98.86%
dice index and 96.9% Jaccard index. This helps the physician to check whether the presence
of any abnormalities is available in the MRIs corresponding to different parts of the brain.
We conclude that the proposed remodified FCM technique ARKFCM method is more
robust to noise and shading effects; the major advantage of using this technique is locating
the tumor and affected regions.
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Figure 11. Tumor detection from original MRI brain images. (a) the first image in the is the original
image, the second image is the segmentation image of the first image after preprocessing, and the third
image represents detection of tumor alone. (b–d) rows consists of original brain images, segmented
image with detected tumor, segmented tumor alone with proposed method respectively.
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Figure 12. In the figures, the first image in the is the original image, the second image is the
segmentation result of the first one, and the third image represents the extraction of the tumor
succeeding segmentation. Similarly, in Figure 12, row 2 (b), the first figure is the preprocessed result
of the original image, and the second and third images are same as above. From the third part, it is
visualized with ease that the result of the tumor extraction does have more precision in the case of
part ‘(b)’ compared to part ‘(a)’.

Table 5. Dice Index with FCM and Proposed ARKFCM method.

Images FCM Proposed (ARKFCM)

Figure 10 64.14 99.18

Figure 11a 76.74 98.91

Figure 11b 68.57 98.43

Figure 11c 78.88 99.12

Figure 11d 74.88 99.36

Figure 12a 82.62 98.53

Figure 12b 79.61 98.57

Table 6. Jaccard index with FCM and Proposed ARKFCM method.

Images FCM Proposed (ARKFCM)

Figure 10 48.29 97.25

Figure 11a 65.70 97.86

Figure 11b 61.19 95.31

Figure 11c 68.14 93.97

Figure 11d 71.26 99.06

Figure 12a 75.27 96.86

Figure 12b 72.54 96.75

4. Discussions

The identification of brain tumors needs high accuracy and precision; a negligible
error can be life-threatening. Brain tumor discovery remains a thought-provoking career
in medical image processing. In the proposed work, preprocessing and segmentation
methodologies were concentrated to enhance MRI brain tumor detection to help radiologists
and patients save time and resources.
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In the preprocessing part, the comparison of results after analyzing the preprocessing
techniques based on performance metrics (MSE, PSNR, RMSE, and AMBE) was carried out.
The MSE value of BPDFHE was lower than the other two, implying it has a low error and
yields a more desirable image. The PSNR value improved by 44.95% from HE to CLAHE,
and from HE to BPDFHE it improved by 66.9%, and finally, it increased by 84.177% from
CLAHE to BPDFHE. The value for BPDFHE was high, which infers it has a low error
and yields a more desirable image. The RMSE value of the BPDFHE was less portentous
because it had a low error and provided a better-quality image. The value for BPDFHE was
nearly zero, which indicates it has a low error and yields a more desirable image.

In the segmentation part, the proposed method provided efficient and robust results
when compared to the FCM technique with a mean of 98.86% for the dice index and 96.9%
for the Jaccard index because of the degree of fuzziness and reduced number of iterations.
This helps physicians to check whether the presence of any abnormalities is available in
the MRIs corresponding to different parts of the brain. We conclude that the proposed
ARKFCM method, is more robust to noise and shading effects; the major advantage of
using this technique is locating the tumor and affected regions with the help of minimized
objective function.

5. Conclusions

The detection of brain tumors requires high exactness; a minor error can be life-
threatening. Brain tumor disclosure remains a challenging job in medical image processing.
In the proposed work, preprocessing and segmentation methodologies were concentrated
to enhance tumor detection in MRI brain images to help radiologists and patients save
time and resources. Firstly, from the comparative analysis of metrics (PSNR, MSE, RMSE,
and AMBE) performed on various preprocessing algorithms, it is concluded from the
results obtained that BPDFHE is better than HE or CLAHE. The BPDFHE method evidently
showed us with a clear distinction that its PSNR values were higher, MSE and RMSE
values were lower, and AMBE values were negligible. This suggests that it has a low
error and yields the best quality image. Secondly, the results of segmentation yielded
inaccurate results when the images were not preprocessed, and the precision in tumor
detection was high, on the other hand, in the case where the images were preprocessed
using the ARKFCM method. Hence, image preprocessing is crucial before segmentation is
performed, leading to the best results of a 98.86% dice similarity and 96.9% Jaccard index.
The proposed ARKFCM method provided the best results.
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