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Abstract: The mapping of categorical variables into numerical values is common in machine learning
classification problems. This type of mapping is frequently performed in a relatively arbitrary manner.
We present a series of four assumptions (tested numerically) regarding these mappings in the context
of protein classification using amino acid information. This assumption involves the mapping of
categorical variables into protein classification problems without the need to use approaches such as
natural language process (NLP). The first three assumptions relate to equivalent mappings, and the
fourth involves a comparable mapping using a proposed eigenvalue-based matrix representation of
the amino acid chain. These assumptions were tested across a range of 23 different machine learning
algorithms. It is shown that the numerical simulations are consistent with the presented assumptions,
such as translation and permutations, and that the eigenvalue approach generates classifications that
are statistically not different from the base case or that have higher mean values while at the same
time providing some advantages such as having a fixed predetermined dimensions regardless of
the size of the analyzed protein. This approach generated an accuracy of 83.25%. An optimization
algorithm is also presented that selects an appropriate number of neurons in an artificial neural
network applied to the above-mentioned protein classification problem, achieving an accuracy of
85.02%. The model includes a quadratic penalty function to decrease the chances of overfitting.

Keywords: categorical variables; numerical variables; mappings

MSC: 97-04

1. Introduction

Machine learning applications have been successful in different classification tasks in
areas such as physics [1–3], chemistry [4–9], and engineering [10–12], and many different
algorithms currently exist, such as Trees [13–15], K-Nearest Neighbors (KNNs) [16–18],
or Support Vector Machines (SVMs) [19–21]. The internal logic of these machine learning
algorithms can substantially vary among the different types of models. A machine learning
approach might be advantageous in a situation in which more traditional models do not ex-
ist or when these models are too complex to be efficiently implemented. Typically, machine
learning models do not require a detailed understanding of the underlying problem that
they are trying to model (requiring only some input and output data) or when such detailed
modeling is too costly from a computational (or economic) point of view. Therefore, ma-
chine learning techniques might be suitable for modeling some complex processes [22–25]
such as protein classification. In this article, we focused on the classification task of small
proteins and numerical simulations regarding some assumptions regarding the mapping
of categorical values, which is an issue directly related to protein modeling, as the input
is typically a chain of amino acids, with each amino acid designated with a given letter.
A frequently mentioned drawback of this type of approach is that machine learning tech-
niques tend to be black boxes [26–28]. In other words, even if the classification estimations
are accurate, the underlying logic is not easily explainable. In this type of modeling, some
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categorical variables are commonly mapped into numerical values, as it is frequently more
convenient to use numerical data in the simulations [29,30]. In this paper, we present a
series of four mapping assumptions in the context of protein classification [31,32]. There is
a relatively high degree of arbitrariness in the way in which these categorical variables are
mapped into numerical values, and it appears interesting to test a series of assumptions
about these mapping with numerical simulations. This, in fact, is one of the motivations of
this article, as the issue of categorical mapping in the context of protein classification could
have some modeling implications.

An algorithm is also presented for the optimization of artificial neural networks [33–35]
for the classification problem, including a penalty function [36,37]. The objective of the
penalty function is to favor simpler models among classification models that have similar
precision. Simpler models, for example, neural networks with fewer neurons, have the
advantage of being less prone to overfitting [38,39]. Overfitting is a relatively common issue
in which the selected model fits rather accurately to the training data but is not properly
generalized when faced with new data. Optimization approaches are commonly used
in many diverse fields, such as machine learning applications in the context of ambient
music in gyms [40]. There are many different proteins and many different classifications
of proteins, thus making this type of analysis challenging, which is a potential limitation
of the analysis. In order to minimize this risk, a well-known database of proteins (Protein
Data Bank (PDB)) was selected, and we used its standard classification of proteins.

This paper is structured into five sections. An introduction in which some of the
basic concepts and the main theme of the article are presented, a literature review in which
related works are reported, a materials and methods section in which the four mathematical
assumptions about the categorical mapping are stated, as well as the optimization algorithm,
data, and general procedures. The last two sections are the results and the conclusions
and recommendations, in which we analyze the results, propose potential areas of future
research, and suggest some recommendations in this type of analysis.

2. Literature Review

The field of protein modeling using machine learning techniques is rapidly expanding [41].
For instance, Xu et al. used machine learning techniques to describe sequence/activity rela-
tionship [42]. This article also focused on mutations, which is an area out of the scope of our
analysis. Another interesting article in the field is that of Salau and Jain [43]. In this article,
the authors used machine learning techniques for the classification of cell decisions for AKT
proteins. The authors used, among other techniques, neural networks such as radial basis
functions (RBFs) and multi-layer perceptron (MLP). The importance of feature extraction in this
context is frequently mentioned in the literature [44], and it is not exclusive to neural networks,
as other popular machine learning techniques such as KNN and SVMs are also mentioned in
the literature [45]. There are also some articles such as Hancock et al. [46], highlighting the
importance of categorical information in machine learning techniques. More precisely, this
article is a survey of categorical information in neural network applications. Some authors, such
as Ofer et al. [47], followed a different approach by using natural language processing (NLP)
for this type of protein classification task, which avoids the issue of categorical classification
(mapping from a categorical value to a numerical value). This, however, remains an approach
not followed by the majority of researchers. A potential reason for this is that a numerical
approach facilitates the application of some well-known machine learning techniques, and there
is so far no indication that this type of NLP approach can generate more accurate results than
more traditional machine learning approaches.

Many authors, such as McDowall and Hunter [48] and Nanni et al. [49], revealed
the complexity of manually performing protein classification, which is probably one of
the reasons for the increasing number of applications of machine learning techniques in
this field. Diplaris et al. [50] explicitly mentioned the need for automated tools that can
classify new proteins. Data availability has also increased [31]. Using SVMs, Cai et al.
managed to achieve an accuracy ranging from 69.1% to 99.6% [51]. Another related field
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in protein classification that has raised interest from a machine learning approach is the
field of protein–protein interaction. In this type of research, the objective is not to identify
the type of protein but to forecast the protein–protein interaction. To some degree, the
classification of the type of protein could have some impact on the interaction, but it is
likely not the determining factor. Bock et al. [52] achieved an 80% success rate in this type
of protein–protein interaction analysis. More recently, Das and Chakrabarti [53] followed a
similar approach, achieving comparable results. For the special case of G-protein-coupled
receptors, Karchin et al. [54] also followed a machine learning approach, using several
techniques and obtaining an error ranging from 13.7% to 49%.

In this article, we focus on the analysis of small proteins, which is an area of increasing
medical interest [55–57]. We also focus on the analysis of the classification of categorical
variables, i.e., amino acids (in different representations), without the need to use NLP
approaches. As previously mentioned, the importance of the process of categorical mapping
into numerical values has been frequently mentioned in the existing literature. There are
some articles using machine learning applications in the field of small proteins. For
example, Ernest et al. [58] used this approach to study antimicrobial peptides. This research
in antimicrobial peptides is actually one of the subfields that have received more interest
among researchers [59,60], but there is some existing research in other areas as well, for
example, regarding antifungal peptides [61].

3. Materials and Methods

Mapping variables is a common practice in machine learning applications such as
classification problems [62], particularly in situations in which it is necessary to model a
process using categorical variables, for example, a protein classification task using their
amino acid chains. There is a certain degree of arbitrariness in this process. A protein P can
be described by its amino acid chain. This can be seen with an example, as illustrated in
Equation (1).

P = {AC...A} (1)

where each amino acid is defined with its standard letter. Note that the letter B is not
typically associated with an amino acid. It is usually more convenient in machine learn-
ing applications to map into numerical values. A common practice is to map it using
alphabetical order and increasing numbers (Equation (2)).

{A, C, ...} → f1{A, C, ....} = {1, 2, ...} (2)

As previously mentioned, this type of mapping is a bit arbitrary, as other numbers
could have been used. For example, this should be equivalent to a mapping function that
is identical to the previous, but a constant α is added to all the values.

f2{A, C, ...} = {1 + α, 2 + α, ...} (3)

This could be noted as (Equation (4))

f1 ↔ f2 (4)

Assumption 1 (translation). A mapping function (Equation (5))

f1{C1, C2, ....} = {a1, a2, ...} (5)

where {C1, C2, ...} are categorical values, and {a1, a2, ...} are numerical values, should be equivalent
( f1 ↔ f2) to a mapping function f2 such that (Equation (6))

f2{C1, C2, ....} = {a1 + α, a2 + α, ...} (6)

with α ≥ 0 as a constant.
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Assumption 1 could be understood as a translation of mapping with a constant α.
Similarly, there is no reason in principle to assume that the numerical values shown in
Equation (2) are specifically representative of the related amino acid; hence, a permutation
of these values (assigned to each amino acid) should generate another equivalent mapping.
For example, mapping according to Equation (7)

{A, C, ...} → f3{A, C, ....} = {2, 1, ...} (7)

should be equivalent to f1 ( f1 ↔ f3). In this example, the amino acids A and C are mapped
into the values 1 and 2, respectively, in mapping f1, and to the values 2 and 1 in mapping
f3. This change should have no effect on the output of a machine learning classification
analysis.

Assumption 2 (permutation). A mapping function (Equation (8))

f1{C1, C2, ...} = {a1, a2, ...} (8)

with {C1, C2, ...} as categorical values and {a1, a2, ...} as numerical values should be equivalent to
mapping according to f3, as described in Equation (9).

f3{C1, C2, ...} = {a1, a2, ..., aj, aj−1, ....} (9)

where we have a permutation of the numerical values of f1 in f3.

Another common situation in machine learning classification analysis is having data
vectors of different lengths, for example, a group of proteins with different numbers of
amino acids. These types of data are frequently stored in a matrix for easy use. It is more
practical to use a square matrix, and hence a common practice is to add additional zeros (or
other numerical values) to the amino acid chains to make them all of the same dimensions.
We can define an operator L() such that (Equation (10))

L(Pi) = L({a1, a2, ...}) = l (10)

where Pi is a given protein, and l is the length of the vector (number of amino acids) in this
protein. Given a set of k proteins, the maximum size (l̄) can be defined as Equation (11):

l̄ = sup(L(P1), ..., L(Pk)) (11)

Hence, ∀Pi, L(Pi) ≤ l̄. The set of these proteins can be represented as Equation (12):

X = (P1, P2, ....Pl) =


a1

1 a2
1 · · · ak

1

a1
2 a2

2 · · · ak
2

...
...

...
...

β β · · · ak
l̄

 (12)

where β is a constant (usually set equal to zero or to a positive value) added in order
to make the dimensions of the data vector containing each protein the same. Through
this process, we ordered the proteins for clarity purposes (Equation (13)), but this is not a
requirement.

L(P1) ≤ L(P1) ≤ · · · ≤ L(Pk) (13)

As previously mentioned, the constant (β ≥ 0) added to the data is arbitrary, and
hence it should not impact the output of a machine learning classification estimation.
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Assumption 3 (constant). A mapping function (Equation (14))

f1{C1, C2, ...} = {a1, a2, ..., β1} (14)

where β1 ≥ 0 is an added constant to fit the required dimensions is equivalent to a mapping function
f4 (Equation (15)).

f4{C1, C2, ...} = {a1, a2, ..., β2} (15)

∀ β2 ≥ β1 ≥ 0.

3.1. Comparable Mappings

In Assumptions 1–3, the mappings are presumed to be equivalents. A less strict
requirement (comparable mapping) can be also assumed on similar (but not strictly equiva-
lent) mapping representations. For example, a protein can be described by the number of
each type of amino acid and some other indicators such as the length of the chain. In this
case, the mapping function would be (Equation (16)):

f5{C1, C2, ...} = {na1, na2, ..., na20, ...} (16)

where nai is the number of amino acids of type ai contained in the chain. It should be noted
that the information contained in this mapping is less than in f1, as it is typically assumed
that the order in which the amino acids appear is an important factor in determining the
shape and function of the protein [63–65]. Therefore, it cannot be claimed that f1 and f5 are
equivalent. We denote this as a comparable (but not equivalent) mapping, as expressed in
Equation (17).

f1 ! f5 (17)

Note that in f5, some additional terms, such as the length of the chain, are not explicitly
shown for simplicity. A potential full depiction of f5 could be (Equation (18)).

f5{C1, C2, ...} = {l∗, na1, na2, ..., na20, M, M, (M−M), l∗(M−M)} (18)

with the terms l∗, M, and M defined in Equations (19)–(21).

l∗ = card{C1, C2, ...} (19)

M = sup{na1, na2, ..., na20} (20)

M = in f {na1, na2, ..., na20} (21)

with this mapping, the information for each protein is represented with a vector of length
25. This information can be also represented by a 5x5 matrix.

A =



l∗ na1 na2 na3 na4

na5 na6 na7 na8 na9

na10 na11 na12 na13 na14

na15 na16 na17 na18 na19

na20 M M (M−M) l∗(M−M)


(22)

A comparable representation (Equation (23)) would be the eigenvalues of this matrix
|A− λI| = 0.

f6{C1, C2, ...} = {λ1, λ2, λ3, λ4, λ5} (23)

Hence, k proteins could be represented as (Equation (24)):
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λ1
1 λ2

1 · · · λk
1

λ1
2 λ2

2 · · · λk
2

λ1
3 λ2

3 · · · λk
3

λ1
4 λ2

4 · · · λk
4

λ1
5 λ2

5 · · · λk
5


(24)

Assumption 4 (eigenvalues). For some applications, mappings f1 and f6 are comparable ( f1 ! f6).

When using only five variables per protein, f6 is more compact than f1 compared
with an arbitrary, large amount for f1 (depending on the length of the amino acid chain).
Assumptions 1–4 will be tested in a later section.

The eigenvalue approach could be considered a feature selection approach. Feature
selection is an important component in machine learning approaches [66]. A simplified
flowchart can be seen in Figure 1.

Protein 
(amino acid chain)

Categorical 
representation 

i.e., numerical identification 
of amino acid

Feature 
representation

i.e., eigenvalue approach

Classification 
estimation

Precision of 
classification

Machine learning 
algorithm

Figure 1. Simplified flowchart diagram.

3.2. Optimization

In this section, we present an algorithm for the optimization of the structure of an
artificial neural network. The steps are as follows:

1. Chose the number of simulations (k), the required accuracy Cm, the maximum number
of iterations (jm), and the maximum number of neurons a.

2. Define a penalty function P. For example,

P = ωa2 (25)

where a is the number of neurons, and ω is a constant.
3. Obtain a randomly generated number of neurons (a), with 1 ≤ a ≤ a ∈ I.
4. Store a classification vector Y = {y1, y2, ....} (target vector) with yi = {0, 1} and the

mapping into a matrix X.
5. Divide the data into a training dataset {XT , YT} and a testing dataset {XE, YE} [67–69].
6. Train the network (φ) with the training dataset (φ(XT , YT)).
7. Estimate the classification estimations (YF

T = YF
T (φ(XT , YT))).

8. Estimate bi as follows:

I f


YF

T,i = YT,i ⇒ bi = 0

YF
T,i 6= YT,i ⇒ bi = 1

(26)
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9. Estimate the accuracy Ac (Equation (27)) and calculate the additional metrics of
precision (Pr), recall (Rec), and F1-score (F1) using Equations (28)–(30), respectively.

Ac = ∑ bi
i

(27)

Pr =
TP

TP + FP
(28)

Rec =
TP

TP + FN
(29)

F1 =
2 · Precision · Recall
Precision + Recall

(30)

In this notation, TP, FP, and FN are the true-positive, false-positive, and false-negative
values, respectively.

10. The estimated adjusted accuracy Ac∗ is expressed in Equation (31):

Ac∗ = Ac− P(a) (31)

This term penalizes an overly complex model with too many neurons.
11. Compare the results of iterations and choose the model.

• j = 0 ⇒ MN(j) = Ac∗

• j 6= 0

I f

 Ac∗ > MN(j− 1) ⇒ MN(j) = Ac∗

Ac∗ ≤ MN(j− 1) ⇒ MN(j) = MN(j− 1)
(32)

12. Iterate until (j = jm) or MN(j) ≥ Cm.
13. Repeat k times generating MN = {MN1, MN2, ..., MNk}.
14. Select MN = sup{MN1, MN2, .., MNk}.
15. Calculate the classification estimations (Equation (33)) with the testing dataset for the

mode MN.

YF
E = YF

E (φ(xE, YE)) (33)

16. Repeat step 7 with YF
E to obtain the testing dataset accuracy.

3.3. Data

A total of 307 small proteins were analyzed using their amino acid sequence. The data
were obtained from the Protein Data Bank (PDB) [70–72]. This database is a frequently
used database for protein information [73–77]. For the numerical simulations, we used
the protein classification used in PDB. All the analyzed molecules were either classified as
asymmetric or cyclic. A categorical variable was assigned to these two types of proteins.
The dataset was composed of 254 asymmetric and 53 symmetric small proteins. The median
and average number of amino acids were 84 and 81, respectively, and the amino acid chain
ranged from 26 to 225 amino acids.

Y = Y{0, 1} =
(

Asymmetric
Cyclic

)
=

(
0
1

)
(34)

The full list of the analyzed molecules can be seen in the Supplementary Material file.
All the results shown were estimated using only the testing dataset. In machine learning,
it is often not difficult to create a model that accurately describes the training dataset
but fails to generalize when faced with new (unseen) data. The training dataset contains
approximately 66.6% of the proteins, and the testing dataset contains the remainder 33.3%.
Examples of cyclic (Figure 2) and asymmetric (Figure 3) are shown below.
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Figure 2. Cyclic molecule example (PKD2L1, Polycystin-L). Extracted from the Protein Data
Bank (4GIF).

Figure 3. Asymmetric molecule example (S. cerevisiae Rtf1). Extracted from the Protein Data
Bank (5EMX).

3.4. Numerical Simulations

Numerical simulations were carried out to test Assumptions 1 to 4. There could be a
sizeable difference in accuracy in classification results when using different machine learn-
ing algorithms. In order to account for this, a relatively large number (23) of classification
algorithms were used. The list of the algorithms used in this study can be found in Table 1.
Each model was simulated q times in order to obtain a mean value for accuracy.

Table 1. List of classification algorithms (and related Matlab libraries).

N. Algorithm N. Algorithm

1 Complex Tree (fitctree) 13 Fine KNN (fitcknn)
2 Medium Tree (fitctree) 14 Medium KNN (fitcknn)
3 Simple Tree (fitctree) 15 Coarse KNN (fitcknn)
4 Linear Discriminant (fitcdiscr) 16 Cosine KNN (fitcknn)
5 Quadratic Discriminant (fitcdiscr) 17 Cubic KNN (fitcknn)
6 Logistic Regression (fitglm) 18 Weighted KNN (fitcknn)
7 Linear SVM (fitcsvm) 19 Boosted Trees (fitctree)
8 Quadratic SVM (fitcsvm) 20 Bagged Tress (fitctree)
9 Cubic SVM (fitcsvm) 21 Subspace Discriminant (fitcdiscr)

10 Fine Gaussian SVM (fitcsvm) 22 Subspace KNN (fitcknn)
11 Medium Gaussian SVM (fitcsvm) 23 RUSBoosted Trees (fitctree)
12 Coarse Gaussian SVM (fitcsvm)
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The optimization algorithm was applied to neural networks. The training algorithm
selected was the scaled conjugate gradient with the number of neurons selected in an
automated way using the optimization algorithm. The optimization algorithm was run for
one million iterations, with a constant ω in the penalty function equal to 0.0001.

4. Results
4.1. Assumption 1

In addition to the base case, 4 different models, each with 23 algorithms, were used
to test Assumption 1 The difference between these four models resides in the value of the
translation constant α ranging from 1000 to 1,000,000 ({α1, α2, α3, α4, α5} = 0, 1000, 10,000,
100,000, 1,000,000). Model 1 was the base case with α = 0. The results showing the accuracy
can be seen in Figure 4, while the results showing the precision, recall, and F1-score can
be seen in Appendix A in Figures A1–A3. A Kolmogorov–Smirnov test [78] was carried
out comparing the base model (Model 1 with α = 0) with the other models for each of the
23 algorithms (see Table A1 in Appendix A). The test shows that, for the majority of models
and algorithms, it cannot be concluded that there is a statistically significant difference
between these distributions (accuracy value).

Figure 4. Numerical simulation Assumption 1. Accuracy of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.

4.2. Assumption 2

Five models with different permutations of the numerical values were created for
all twenty-three algorithms. The number of permutations for each model was selected
randomly. No additional restrictions were introduced in the permutations. The results
showing the accuracy can be seen in Figure 5, while the results showing the precision, recall,
and F1-score can be seen in Appendix A in Figures A4–A6. As in the previous assumption,
the results for the majority of cases suggest no statistically significant difference among the
majority of models and algorithms. This was also the result when using a Kolmogorov–
Smirnov test comparing Model 1 with Models 6 to 9 (see Table A2 in Appendix A).
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Figure 5. Numerical simulation Assumption 2. Accuracy of various models after permutations in the
numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the accuracy is
shown in the y-axis.

4.3. Assumption 3

In this section, a variable β was added to each vector to make their length equal.
The base case continued to be Model 1 with a β = 0. Four models were tested with four
different betas ({β1, β2, β3, β4} = {1000, 10000, 100,000, 1,000,000}). It is worth noting that,
in this case, the constant β was added in order to make the dimensions equal, and hence the
existing data were not altered as in the case of Assumption 1, in which all data increased
by a certain amount α. Figure 6 shows the results (accuracy) of the numerical simulations,
indicating, as in the previous cases, that for most of the models and algorithms, there are no
statistically significant differences. The results showing the precision, recall, and F1-Score
can be seen in Appendix A in Figures A7–A9. Kolmogorov–Smirnov test comparing Model 1
with Models 11 to 14 (see Table A3 in Appendix A) generated similar results.

Figure 6. Numerical simulation Assumption 3 (Constant). Accuracy of various models after permu-
tations in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and
the accuracy is shown in the y-axis.
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4.4. Assumption 4

In Model 15, rather than the full sequence of amino acids, the input for the classification
models was the number of times that a given amino acid appeared in the amino acid chain.
Hence, the information about the order of the amino acids was lost. The length of the amino
acid chain was also included ({l∗, na1, na2, . . . na20}). Model 16 was similar to Model 15
but without the length (l∗) of the protein ({na1, na2, . . . na20}), see the results (accuracy) in
Figures 7 and 8. The results for the precision, recall, and F1-score are shown in Appendix A
in Figures A10–A15. The results of the Kolmogorov–Smirnov tests, comparing the base
model (Model 1) with Models 15 and 16, showed that for the majority of the algorithms,
there is no statistically significant difference, as shown in Table A4 in Appendix A.

Figure 7. Accuracy of Model 15 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.

Figure 8. Accuracy of Model 16 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.
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The next step entailed using the eigenvalues and some additional terms such as the
l∗, as defined in expression (22). In many numerical simulations, SVM failed to generate
an estimation, and they were thus excluded from the analysis. Interestingly, the rest of
the models were accurate or led to better results than the base case (Model 1). The only
exception to this trend was the case of the linear discriminant, in which the eigenvalue
approach was statistically significantly less accurate. For all the other cases, there was
no statistically significant difference, or the mean accuracy of the eigenvalue approach
was higher than the value obtained in the base case. Most of the models achieved a mean
accuracy above 80%. In Table 2, the mean accuracy values are shown for the eigenvalue
approach and Model 1, as well as the p-values for the Kolmogorov–Smirnov test comparing
these two approaches. In this table, it can be seen that the best model is the Weighted KNN
model, with a mean accuracy of 83.25%, closely followed by the Subspace KNN, Simple
Tree, Medium Tree, Complex Tree, and Logistic Regression, with an accuracy of 82.59%,
82.75%, 82.83%, 82.89%, and 82.95% respectively.

Table 2. Mean values of the accuracy for the eigenvalue approach and Model 1 as well as p-values of
the Kolmogorov–Smirnov test comparing these two approaches. T refers to the average computational
time required to train the algorithm.

Algorithm Eig. Acc. M1 Acc. p-Value (ks) T (s)

Complex Tree 82.89 72.04 0.0001 1.34
Medium Tree 82.83 72.13 0.0001 1.79
Simple Tree 82.75 78.11 0.0002 0.60

Linear Discriminant 17.08 54.44 0.0001 1.70
Quadratic Discriminant 30.37 17.47 0.6751 1.82

Logistic regression 82.95 61.87 0.0001 4.32
Fine KNN 79.88 76.53 0.0002 7.96

Medium KNN 81.59 83.18 0.6751 7.85
Coarse KNN 80.65 82.88 1.0000 7.69
Cosine KNN 81.83 82.95 0.6751 8.52
Cubic KNN 81.75 83.14 0.6751 7.10

Weighted KNN 83.25 81.83 0.0069 6.90
Boosted Trees 80.65 75.64 0.0001 7.64
Bagged Trees 82.83 81.6 0.0069 9.71

Subspace Discriminant 81.91 77.03 0.0001 10.98
Subspace KNN 82.59 78.91 0.0002 11.84

RUSBoosted Trees 81.55 54.74 0.0001 13.32

4.5. Optimization

We also used an algorithm for the optimization of the classification using neural
networks, as described in Section 3.2. The algorithm was the scale conjugate gradient, and
the process involved one million iterations. This model achieved an 85.02% out-of-sample
classification accuracy with 215 neurons, suggesting that model parameter optimization
plays an important role in improving classification accuracy. In the context of protein
classification, it is important to carry out parameter optimization in a consistent way to
improve the chances of the model to generalize (classify new data) with a reasonable level of
accuracy. Randomly selecting the parameter could potentially lead to biases in the model or
poor generalization. Figure 9 shows that the classification accuracy improves as the number
of iterations increase, initially very rapidly and then more slowly as the model approaches
its upper limit. There are several potential ways of performing data validation [79]. In this
article, we performed cross-validation of the data in the training dataset 10 times, and then
the results were tested with the testing dataset (not used during the training phase).

A limitation in this article, and a potential area of future work, is increasing the number
of analyzed proteins. In this article, we analyzed 307 proteins for classification purposes,
but this number could be further increased. This type of analysis could also be parallelized,
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which could enable a larger number of simulations to be performed while potentially not
substantially increasing computational time.

Figure 9. Improvement in accuracy as the number of iterations increases in the optimization algorithm.

5. Conclusions and Recommendations

Mapping categorical variables into numerical variables is a common practice in many
machine learning classification tasks, and it is frequently carried out in an arbitrary matter.
In this paper, we proposed four different assumptions related to this topic in the context
of protein classification: (1) translation, (2) permutation, (3) constant, and (4) eigenvalues.
Assumptions 1–3 are related to the concept of equivalent mappings in which changes
to the mapping should, in principle, not alter the results of a classification analysis (for
instance, adding a constant to all the input parameters). Assumption 4 relates to a less strict
requirement in which the mappings are not in principle strictly equivalent, but they are
comparable. An example is the eigenvalue mapping approach in which the information
about the order of the amino acids (present in the initial mapping f1) is not contained
in this new mapping ( f6). The results for Assumptions 1–3 showed that, in the majority
of the cases, no statistically significant difference exists between the mappings when we
compared their mean accuracy. The case of Assumption 4 is different, and we see that
using the eigenvalue approach generates similar or more accurate classifications than
the base case model. All these numerical simulations were carried out for 23 different
classification algorithms, including KNN, Tress, and SVMs. As previously mentioned,
the eigenvalue approach (related to Assumption 4) generated accurate estimations for
most algorithms. One noticeable exception was SVM, which, in many cases, failed to
generate a classification estimation and was, therefore, excluded from the analysis. For
the majority of the other algorithms, the eigenvalue approach generated results that were
not statistically significantly different from the base case or that had higher mean accuracy
than the base case. The best model obtained a mean classification accuracy of 83.25%.
While direct comparisons are challenging, this result is 14.15% better than the lower-bound
result obtained by Cai et al. [51] but lower than the upper bound. This is consistent with
the idea of focusing the analysis on the stability of results rather than only focusing on
increasing accuracy. This result is also substantially higher than the lower bound achieved
by Karchin et al. [54], in which the authors focused on a specific subset of proteins (G-
protein-coupled receptors).

An optimization analysis algorithm was also presented for the automated selection of
the number of neurons in a classification model using only the frequency of the occurrence
of amino acid in the amino acid chain as input (no order information), as well as the length
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of the chain. The model included a quadratic penalty function to try to decrease the chance
of overfitting. This approach generated an accuracy of 85.02% percent. This result is even
closer to the upper bound (and substantially higher than the lower bound) of Cai et al. [51]
even after accounting for the penalty function introduced to avoid an overly complex
model, which potentially could impact the generalization capabilities of the model, i.e.,
the accuracy of the classification when faced with new data. Furthermore, this approach
does not require the use of techniques such as NLP [47], which could be beneficial from an
implementation point of view, as there is a large number of machine learning applications
that can be easily and accurately applied to numerical values, and there is no indication
that an NLP approach will generate more accurate results.

It should be noted that this accuracy is not directly comparable with the accuracy
obtained in the previous sections, as there was no additional algorithm optimization. The
focus of the previous section was on the comparability of the models, and hence it did not
appear appropriate to add additional optimization techniques that differ in the different
algorithms. For instance, an optimization process based on finding an appropriate number of
neurons, as shown in the optimization section, cannot be performed for other classification
techniques such as KNN, SVM, or Trees, as they do not use artificial neurons.

This type of big data analysis is challenging and can be computationally expensive,
depending on the type of machine learning applied and/or the optimization algorithm
followed. As an area of future research, it would be interesting to use genetic algorithms
or particle algorithms as potential optimization strategies. There is a wide range of
options to optimize this type of analysis. There is, however, the risk of overfitting the
model, and some measures should be taken to minimize that risk, such as using a penalty
function, as we used in this article, to penalize the accuracy of overly complex models.
Arguably, an overly complex model is more likely to result in an overfitting issue than a
simpler model.
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Appendix A

Table A1. p-values of the Kolmogorov–Smirnov test Assumption 1 (translation).

M1–M2 M1–M3 M1–M4 M1–M5

0.97479 0.97479 0.31285 0.67508
0.97479 0.97479 0.031047 0.67508
1.00000 0.67508 0.67508 0.97479

https://www.mdpi.com/article/10.3390/math11020279/s1
https://www.mdpi.com/article/10.3390/math11020279/s1
https://www.rcsb.org/
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Table A1. Cont.

M1–M2 M1–M3 M1–M4 M1–M5

1.00000 0.67508 0.11084 0.11084
1.00000 0.31285 1.89 × 10−5 1.89 × 10−5

0.97479 0.31285 0.97479 0.67508
1.00000 0.67508 0.31285 0.97479
0.97479 0.97479 0.11084 0.31285
0.97479 0.97479 0.67508 0.67508
1.00000 0.97479 0.97479 1.00000
0.97479 0.97479 0.97479 0.97479
1.00000 1.00000 1.00000 1.00000
1.00000 0.31285 0.67508 0.11084
1.00000 0.97479 1.00000 0.67508
1.00000 1.00000 1.00000 1.00000
1.00000 0.97479 0.67508 0.97479
1.00000 0.67508 0.97479 0.97479
0.97479 0.67508 0.67508 0.67508
1.00000 0.67508 0.031047 0.67508
1.00000 0.97479 0.11084 0.31285
1.00000 0.97479 0.11084 0.03105
0.67508 0.67508 0.31285 0.67508
0.97479 0.67508 0.11084 0.67508

Table A2. p-values of the Kolmogorov–Smirnov test Assumption 2 (permutation).

M1–M6 M1–M7 M1–M8 M1–M9 M1–M10

0.67508 0.67508 0.67508 0.67508 0.31285
0.97479 0.67508 0.67508 0.67508 0.31285
1.00000 0.97479 0.67508 0.31285 0.31285
0.31285 0.11084 0.67508 0.31285 0.31285
1.00000 0.67508 1.00000 1.00000 0.67508
0.67508 0.031047 0.97479 0.67508 0.31285
0.67508 0.97479 1.00000 0.97479 0.11084
0.31285 0.67508 0.67508 0.67508 0.67508
0.31285 0.11084 0.31285 0.31285 0.67508
1.00000 0.97479 0.67508 1.00000 0.97479
0.97479 0.97479 0.97479 0.97479 0.97479
1.00000 1.00000 1.00000 1.00000 1.00000
0.97479 0.97479 0.67508 0.31285 0.97479
0.67508 0.67508 0.97479 1.00000 0.67508
1.00000 1.00000 1.00000 1.00000 1.00000
0.31285 1.00000 0.67508 0.97479 0.97479
0.31285 0.97479 0.67508 0.97479 0.97479
0.67508 0.97479 1.00000 0.97479 0.67508
0.11084 0.0068986 0.11084 0.031047 0.31285
1.00000 0.67508 0.31285 0.31285 0.97479
1.00000 1.00000 0.31285 0.67508 0.67508
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Table A3. p-values of the Kolmogorov–Smirnov test Assumption 3 (constant).

M1–M11 M1–M12 M1–M13 M1–M14

1.00000 0.67508 0.11084 0.67508
1.00000 0.67508 0.31285 0.97479
0.67508 0.67508 0.31285 0.67508
1.00000 0.0012162 0.67508 0.0068986
0.97479 0.0068986 0.97479 1.89 × 10−5

0.67508 0.31285 0.97479 0.31285
0.97479 0.67508 0.97479 0.31285
0.67508 0.0068986 0.11084 0.031047
0.97479 0.00017012 0.67508 0.0068986
0.97479 0.31285 0.67508 0.97479
0.97479 0.97479 0.97479 1.00000
1.00000 1.00000 1.00000 1.00000
0.97479 0.67508 0.67508 0.31285
0.97479 1.00000 1.00000 0.97479
1.00000 1.00000 1.00000 1.00000
0.97479 0.67508 0.97479 0.97479
0.97479 0.97479 1.00000 0.97479
0.67508 0.31285 0.67508 1.00000
1.00000 0.67508 0.67508 0.97479
0.31285 0.11084 0.97479 0.67508
0.97479 0.31285 0.97479 0.031047
0.67508 0.67508 0.67508 0.31285
0.31285 0.67508 0.67508 0.67508

Table A4. p-values of the Kolmogorov–Smirnov test Models 15 and 16.

M1–M15 M1–M16

0.31285 0.67508
0.031047 0.67508
0.11084 0.31285

0.0012162 0.00017012
1.89 × 10−5 1.89 × 10−5

1.89 × 10−5 1.89 × 10−5

0.31285 0.31285
0.67508 0.31285
0.97479 0.11084
0.97479 0.97479
0.97479 0.31285
1.00000 1.00000
0.31285 0.0012162
0.67508 0.67508
1.00000 1.00000
0.67508 0.67508
0.67508 0.97479
0.97479 1.00000

0.031047 0.67508
0.97479 0.11084

0.00017012 0.00017012
0.11084 0.67508
0.31285 0.97479
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Figure A1. Numerical simulation Assumption 1. Precision of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.

Figure A2. Numerical simulation Assumption 1. Recall of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.
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Figure A3. Numerical simulation assumption 1. F1-score of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.

Figure A4. Numerical simulation Assumption 2. Precision of various models after permutations
in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the
accuracy is shown in the y-axis.
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Figure A5. Numerical simulation Assumption 2. Recall of various models after permutations in the
numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the accuracy is
shown in the y-axis.

Figure A6. Numerical simulation Assumption 2. F1-score of various models after permutations in the
numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the accuracy is
shown in the y-axis.
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Figure A7. Numerical simulation Assumption 3 (constant). Precision of various models after
permutations in the numerical values of the mapping. The 23 algorithms are represented in the x-axis,
and the accuracy is shown in the y-axis.

Figure A8. Numerical simulation assumption 3 (Constant). Recall of various models after permuta-
tions in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the
accuracy is shown in the y-axis.
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Figure A9. Numerical simulation Assumption 3 (constant). F1-score of various models after permu-
tations in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and
the accuracy is shown in the y-axis.

Figure A10. Precision of Model 15 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.
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Figure A11. Precision of Model 16 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.

Figure A12. Recall of Model 15 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.

Figure A13. Recall of Model 16 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.
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Figure A14. F1-score of Model 15 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.

Figure A15. F1-score of Model 16 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.
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