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Abstract: It is well-known that the traditional functional regression model is mainly based on the
least square or likelihood method. These methods usually rely on some strong assumptions, such as
error independence and normality, that are not always satisfied. For example, the response variable
may contain outliers, and the error term is serially correlated. Violation of assumptions can result
in unfavorable influences on model estimation. Therefore, a robust estimation procedure of a semi-
functional linear model with autoregressive error is developed to solve this problem. We compare the
efficiency of our procedure to the least square method through a simulation study and two real data
analyses. The conclusion illustrates that the proposed method outperforms the least square method,
providing random errors follow the heavy-tail distribution.

Keywords: autoregressive errors; heavy-tail distribution; outlier; robust estimation; semi-functional
linear model
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1. Introduction

As a powerful tool in functional data analysis (FDA), functional regression modeling
has been extensively studied in the past several decades. For example, Cardot et al. [1,2]
introduced the functional linear model in which a scalar response variable is explained
by a functional predictor. Yao et al. [3] proposed a functional linear regression model to
analyse sparse longitudinal data. Hall and Horowitz [4] obtained the optimal convergence
rates of estimators based on functional principal components analysis. Further, Li et al. [5]
recently extended classical clusterwise linear regression to incorporate multiple functional
predictors and proposed clusterwise functional linear regression models. For the functional
nonparametric model, Ferraty and Vieu [6] extended the kernel regression to functional
data. Baíllo and Grané [7] proposed a local linear regression and Burba et al. [8] used the k-
Nearest Neighbour method to deal with the functional nonparametric models, respectively.
Moreover, to improve the power of prediction or interpretation of the functional regression
model, some functional semiparametric models have also been developed. For instance,
Aneiros-Pérez and Vieu [9] first introduced a semi-functional partial linear regression
model, and Aneiros-Pérez and Vieu [10] used this model to predict time series. Further,
Shin [11] proposed new estimators of a partial functional linear model which explore
the relationship between a scalar response variable and mixed-type predictors. Zhou
and Chen [12] introduced a semi-functional linear model by combining the feature of a
functional linear regression model and a nonparametric regression model.

It is well-known that the traditional functional regression models are mainly based
on the least square or likelihood method. However, small proportions of outliers or the
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heavy-tailed nature of the error distribution could dramatically deteriorate the efficiency
of estimators. To tackle this problem, many robust estimations have been introduced into
the functional regression model. For example, Yu et al. [13] proposed a robust estimation
method based on exponential square loss for the semi-functional linear regression model.
Subsequently, Yu et al. [14] proposed a robust estimation procedure of a partial function
linear model based on modal regression. Cai et al. [15] constructed a robust estimation with
a modified Huber’s loss for partial functional linear models. Cao and Sun [16] studied the
robust estimation of partial functional linear regression models based on functional princi-
pal component analysis and weighted compound quantile regression. Tang [17] introduced
a robust estimation method for the semi-functional linear model, and Boente et al. [18]
constructed new robust estimators for semi-functional linear regression models with a
bounded loss function and a preliminary residual scale estimator. Recently, Boente and
Daniela [19] considered the robust estimation for functional quadratic regression models.
Moreover, Pannu and Billor [20] proposed a functional adaptive group LASSO variable
selection method based on the weighted least absolute deviation. In the aforementioned
literature, the random error is usually assumed to be independent and identically dis-
tributed. However, this assumption may be inappropriate in practice, especially when
the observations are collected sequentially over time. However, as far as we know, only
a few works have focused on robust estimation for regression models with serially cor-
related error. For example, Sanjoy et al. [21] considered robust estimation of nonlinear
regression with autoregressive errors. Riazoshams et al. [22] studied the performance of a
robust two-stage estimator in nonlinear regression with an autocorrelated error. Recently,
Serenay and Baris [23] proposed a novel hybrid robust tapering approach in nonlinear
regression with the presence of autocorrelation and outliers. Motivated by these previous
works, this paper is mainly concerned with a robust semi-functional linear model with
autoregressive errors (SFLAR). The rest of the paper is organized as follows. Section 2
introduces robust estimation and algorithm. Some simulation studies are presented in
Section 3. Section 4 illustrates the good performance of the robust estimation method with
two real data. Section 5 is the conclusion.

2. Model and Estimation

Suppose that {xi(t), yi, zi}n
i=1 satisfies the following semi-functional linear model with

autoregressive errors (SFLAR)

yi =
∫
T

β(t)xi(t)dt + g(zi) + εi,

εi =
q

∑
l=1

alεi−l + ei,
(1)

where yi is a real-valued random response variable, and zi is a real-valued covariate defined
on a compact interval z = [z, z]. The functional covariate xi(t) defined on an interval T ⊂ R
is a zero mean, second-order (i.e., E|x(t)|2 < ∞ for all t ∈ T ) stochastic process defined
on (Ω, B, P) with sample paths in the Hilbert space L2(T ). The inner product of L2(T )
is defined by 〈u, v〉 =

∫
T u(t)v(t)dt for any u, v ∈ L2(T ) and norm ‖u‖ = 〈u, u〉1/2. The

unknown slope function β(t) belongs to L2(T ). Without losing generality, throughout this
paper, we assume T = [0, 1]. The nonparametric function g(z) is an unknown smooth
function; ei is a random error with zero mean, finite variance, and independent of (xi(t), zi).

Since the unknown functions β(t) and g(z) are infinite-dimensional parameters, we
cannot obtain their estimators directly via an optimization method. Therefore, some
dimension reduction methods need to be applied. Specifically, suppose the covariance
operator Cx of the functional variable x is denoted by

Cx(s, u) = Cov[x(s), x(u)], (2)
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where Cx(s, u) is continuous on [0, 1]2, and the eigenvalues of Cx, denoted by {λj}∞
j=1,

satisfy λ1 > λ2 > · · · > 0. By Mercer’s Theorem, Cx(s, u) can be expanded by

Cx(s, u) =
∞

∑
j=1

λjφj(s)φj(u), (3)

where φj is the continuous orthogonal eigenfunction, and λj is the corresponding eigen-
value. Obviously, the eigenfunction sequence {φj}∞

j=1 forms an orthonormal basis for
L2[0, 1]. Then, random function xi(t) and the slope function β(t) can be respectively
expressed as

xi(t) =
∞

∑
j=1

ξijφj(t), β(t) =
∞

∑
j=1

bjφj(t), (4)

where ξij =
∫
T xi(t)φj(t)dt are called the principle component scores satisfying Eξij = 0,

and Eξijξik = λjI(j = k), and bj =
∫
T β(t)φj(t)dt.

Moreover, let Sr,Nn be the space of polynomial splines defined on interval [z, z] with
degree r− 1 and knot sequence z < z1 < · · · < zNn < z. The space Sr,Nn is a K-dimensional
linear space, K = K(n) = Nn + r. Following the arguments of de Boor [24], we can conclude
that, if it is sufficiently smooth, the nonparametric function g(z) can be approximately
expressed as

g(z) ≈
K

∑
k=1

ckBk(z), (5)

where Bk, k = 1, 2, · · · , K are B-spline basis functions in Sr,Nn . For more details on spline
function, we refer to de Boor [24]. Substituting Equation (4) and Equation (5) into Equa-
tion (1) yields

yi ≈
J

∑
j=1

ξijbj +
K

∑
k=1

ckBk(zi) + εi. (6)

However, because the covariance function Cx is unknown, eigenfunctions φj are also
unknown, and variables ξij are unobservable. To tackle this problem, we define the
empirical version of covariance function Cx by

Ĉx(s, u) =
1
n

n

∑
i=1

xi(s)xi(u), (7)

define the estimated eigenelements of Ĉx by∫
Ĉx(s, u)φ̂j(u)du = λ̂jφ̂j(s), (1 < j < n). (8)

By Mercer’s Theorem, we have

Ĉx(s, u) =
n

∑
j=1

λ̂jφ̂j(s)φ̂j(u), (9)

where (λ̂j, φ̂j) are (eigenvalue, eigenfunction) pairs for the linear operator with kernel
Ĉx, ordered such that λ̂1 ≥ λ̂2 > · · · ≥ 0. We regard (λ̂j, φ̂j) as an estimator of (λj, φj).
Moreover, Equation (6) can be written as

yi ≈ Û
>
i b + B>i c +

q

∑
l=1

al

(
yi−l − Û

>
i−lb− B>i−lc

)
+ ei, q + 1 ≤ i ≤ n. (10)
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Furthermore, denote

Ln(a, b, c) =
1

n− q

n

∑
i=q+1

ρ

(
yi − Û

>
i b− B>i c−

q

∑
l=1

al

(
yi−l − Û

>
i−lb− B>i−lc

))
, (11)

where ρ(·) is a proper robust loss function, a = (a1, · · · , aq)>, b = (b1, · · · , bJ)
>, c =

(c1, · · · , cK)
>, Û i = (ξ̂i1, ξ̂i2, · · · , ξ̂i J)

>, and Bi = (B1(zi), · · · , BK(zi))
>. Therefore, â, b̂

and ĉ can be obtained by solving the following minimization problem:

min
a,b,c

Ln(a, b, c). (12)

Finally, the estimator of functional coefficient β(t) and the spline estimator of the
nonparametric function g(z) are given by β̂(t) = ∑J

j=1 b̂jφ̂j(t), ĝ(zi) = ∑K
k=1 ĉkBk(zi),

respectively.
Various loss functions ρ(·) have been proposed for the robust estimation when outliers

are present in the data. For example, the least absolute deviations (LAD) loss, that is,
ρ(r) = |r|, can be regarded as a median regression. Although the LAD is not sensitive to
outliers, its disadvantage is that the LAD is not smooth at the zero point, which will lead to
some problems in model training. Therefore, considering the requirements of robustness
and differentiability of the loss function, the Huber loss function (HB) [25] is considered in
this paper, which is convex, smooth, and symmetric about 0. Hence, the optimization of
Equation (12) for estimators is well-defined, and the local minimum problem is avoided.

To implement the proposed method, we take B-spline functions with equally spaced
knots and the fixed degree three to approximate the unknown function g(z). We only
need to choose the numbers of eigenfunctions J and B-spline functions K. Many methods,
such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC),
can be used to select the numbers of eigenfunctions J and B-spline functions K. In this
paper, we choose the truncation parameters J and K by minimizing the following Bayesian
information criterion (BIC) criteria:

BIC(J, K) = log

{
n

∑
i=q+1

ρ

(
yi −

J

∑
j=1

b̂j ξ̂ij −
K

∑
k=1

ĉkBk(zi)

)}
+

log n
2n

(J + K), (13)

which is a function of J and K, the smaller the value of BIC, the better the fitting.

Furthermore, denote θ = (b>, c>)>, Ĥ
>
i = (Û

>
i , B>i )

>. Then, Equation (11) can be
written as the following equation:

Ln(a, θ) =
1

n− q

n

∑
i=q+1

ρ

(
yi − Ĥ

>
i θ−

q

∑
l=1

al

(
yi−l − Ĥ

>
i−lθ

))
. (14)

Moreover, Equation (11) can be rewritten as:

Ln(a, θ) =
1

n− q

n

∑
i=q+1

ρ
(

Vi − D>i θ
)

, (15)

where Vi = yi −∑
q
l=1 alyi−l , Di = Ĥ i −∑

q
l=1 al Ĥ

>
i−l . Then, the estimators of parameter vec-

tor a = (a1, a2, · · · , aq)> and θ = (b>, c>)> can be obtained by minimizing Equation (15).
However, the objective function Ln(a, θ) has no analytic solution for the unknown parame-
ters. Therefore, this paper uses a two-step iteratively reweighted least-squares (TSIRLS)
to obtain the local optimal solution â and θ̂ of Equation (15). The TSIRLS algorithm is
summarized as follows:

Initialization: given initial value: θ̂
(0), â(0) using the LS estimators and let k = 0.



Mathematics 2023, 11, 277 5 of 14

Step 1. Update ε̂
(k)
i , W (k) = diag{w(k)

1 , · · · , w(k)
n }:

ε̂
(k)
i = yi − H>i θ̂

(k), w(k)
i =

ψ(ε̂
(k)
i )

ε̂
(k)
i

;

Step 2. Update Ṽ (k), D̃(k):

Ṽ (k)
=


ε̂
(k)
q+1
...

ε̂
(k)
n

, D̃(k)
=


ε̂
(k)
q · · · ε̂

(k)
1

...
...

ε̂
(k)
n−1 · · · ε̂

(k)
n−q

;

Step 3. Update ê(k)i , W̃ (k)
= diag{w̃(k)

1 , · · · , w̃(k)
n }:

ê(k)i = ε̂
(k)
i −

q

∑
l=1

â(k)l ε̂
(k)
i−l , w̃(k)

i =
ψ(ê(k)i )

ê(k)i

;

Step 4. Update â(k+1):

â(k+1) = (D̃(k)>W̃ (k)D̃(k)
)−1D̃(k)>W̃ (k)Ṽ (k);

Step 5. Update V(k)
i , D(k)

i :

V(k)
i = yi −

q

∑
l=1

a(k+1)
l yi−l , D(k)

i = Ĥ i −
q

∑
l=1

a(k+1)
l Ĥ i−l ;

Step 6. Update θ̂
(k+1):

θ̂
(k+1)

= (D(k)>W (k)D(k))−1D(k)>W (k)V (k),

where

V (k) =


V(k)

q+1
...

V(k)
n

, D(k) =


D(k)

q+1
...

D(k)
n

;

Step 7. Update k = k + 1. Repeat the above steps until ‖θ̂(k+1) − θ̂
(k)‖1 + ‖â(k+1) −

â(k)‖1 ≤ 10−8. Then, the estimation of the parameter vectors â = (â1, â2, · · · , âq)>, b̂ =

(b̂1, b̂2, · · · , b̂J)
>, and ĉ = (ĉ1, ĉ2, · · · , ĉK)

> are obtained.

3. Simulation

In this section, we conduct some simulation studies to investigate the finite sample
performance of our proposed method. The simulation data {(xi(t), yi, zi), 1 ≤ i ≤ n} are
generated from the following SFLAR model:

yi =
∫
T

β(t)xi(t)dt + g(zi) + εi, εi =
q

∑
l=1

alεi−l + ei, (16)

where zi is distributed uniformly on [−1, 1], and the functional predictor xi(t) = ∑50
j=1 ξijφj(t),

ξij is distributed as independent normal with mean 0 and variance λj = ((j− 0.5)π)−1 and
φj(t) =

√
2sin((j− 0.5)πt). For the unknown functions β(·) and g(·) and autoregressive co-
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efficients (a1, · · · , aq), given β(t) =
√

2 sin(0.5πt) + 3
√

2sin(1.5πt), g(z) = z + 3 cos(2πz),
the first-order autoregressive error AR(1) : εt = 0.8εt−1 + et. We evaluate the performance
of various loss functions with different sample sizes n = 100, 300 and 500. Each experiment
has been repeated 1000 times. Similar to Cai et al. [15], the following four scenarios error
distributions are considered:
(1) ei ∼ N(0, 1);
(2) ei ∼ πN(0, 1) + (1− π)N(0, 100), where π = 0.8;
(3) ei ∼ t(2);
(4) ei ∼ Cauchy(0, 1).

Moreover, according to one of the reviewers’ suggestions, we also consider different
values of π in Scenario 2. Specifically, the values of π are taken as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9.

To evaluate the performances of our estimators, we define the integrated mean square
errors (IMSE) of the estimators of function β(t), g(z),

IMSE1 =
∫ 1

0
[β̂(t)− β(t)]2dt, IMSE2 =

∫ 1

0
[ĝ(z)− g(z)]2dz, (17)

and the mean square prediction error (MSPE):

MSPE =
1
n

n

∑
i=q+1

(
ŷi − g(zi)−

∫ 1

0
β(t)xi(t)dt

)2

, (18)

where ŷi = ĝ(zi) +
∫
T β̂(t)xi(t)dt. Further, in order to obtain β̂(t) and ĝ(zi), the two tuning

parameters J and K are selected by minimizing the BIC value. Specifically, the range of J is
selected within 1 to 6, and the range of K is selected within 3 to 6.

We compare the finite sample performance of the SFLAR model with ordinary least
squares (OLS), least absolute deviations (LAD) loss, and Huber (HB) loss function. Fur-
ther, according to one of the reviewers’ suggestions, we also consider the exponential
square (EXP) loss function (Yu et al. [13]). To implement the robust method considered in
Yu et al. [13], the tuning parameters h, J and K need to be selected. In this paper, the tuning
parameters are chosen by cross-validation and BIC. Specifically, for some fixed h, the tuning
parameters J and K are selected by BIC. Then, under the selected J and K, like Jiang [26],
the tuning parameter h is chosen by 5−fold cross-validation (CV) within the possible grids
points h = 0.5× 1.02l (l = 0, 1, · · · , 100). We repeat the process until the tuning parameters
are invariant.

Table 1 reports the bias and mean square error (MSE) of estimator â under different
error distributions. Tables 2 and 3 present the sample mean and standard deviation (SD)
of IMSE1 and IMSE2 under different error distributions. Table 4 lists the MSPE results of
model prediction under different error distributions for different estimation methods. The
symbol “-” indicates that these values are much higher than others, so they are not listed
in the table. Figure 1 displays the sample means of IMSE = IMSE1 + IMSE2 for functional
parameters β(t), g(z) and MSE (×103) for autoregressive coefficient a when n = 500, and
π takes values in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for Scenario (2).

From the simulation results of different estimation methods under different error
distributions in Tables 1–4 and Figure 1, we can conclude that:

(1) For the autoregressive coefficient vector a, the estimation results of all methods
based on OLS, LAD, EXP and HB seem equally good, whenever the error distribution is
normal or heavy-tailed, which indicates the estimator â is not sensitive to the distribution
of random error. At the same time, we can see that the values of Bias and MSE of HB and
EXP are less than OLS. Hence, it can be concluded the robust estimators based on HB and
EXP outperform the OLS method.

(2) For the slope function β(t) and nonparametric function g(z), the OLS estimator
behaves badly when the error distribution is non-normal, particularly when the random
error is heavy-tailed. In contrast, the estimators of LAD, EXP and HB are much better than
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the OLS. Even if the expectation and variance of the error do not exist, the robust estimation
method is still feasible.

(3) Whenever the distribution of random error is normal or heavy-tailed, the bias and
MSE of â, mean and SD of IMSE1, IMSE2 and MSPE based on LAD, EXP and HB methods
decrease as the sample size increases. Hence, the proposed robust procedure is effective.

(a) (b)

Figure 1. (a) The sample mean of IMSE for functional parameters β(t) and g(z) when n = 500 and π

takes values in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; (b) the sample mean of MSE (×103) for
autoregressive coefficient a under the same setting.

Table 1. The Bias and MSE of â under different error distributions.

n Methods
N(0, 1) MN t(2) Cauchy (0, 1)

Bias MSE Bias MSE Bias MSE Bias MSE

OLS −0.0106 0.0043 −0.0084 0.0040 −0.0081 0.0037 −0.0225 0.0038

100 LAD −0.1424 0.0264 −0.0613 0.0068 −0.1036 0.0164 −0.0232 0.0017

EXP −0.0240 0.0059 −0.0025 0.0008 −0.0084 0.0021 −0.0007 0.0300

HB −0.0106 0.0044 −0.0019 0.0006 −0.0049 0.0019 −0.0011 0.0002

OLS −0.0051 0.0014 −0.0067 0.0012 −0.0051 0.0012 −0.0097 0.0011

300 LAD −0.0400 0.0033 −0.0140 0.0004 −0.0226 0.0012 −0.0026 0.0000

EXP −0.0143 0.0019 −0.0016 0.0001 −0.0041 0.0005 0.0000 0.0094

HB −0.0053 0.0014 −0.0021 0.0002 −0.0031 0.0005 −0.0002 0.0000

OLS −0.0045 0.0008 −0.0042 0.0007 −0.0017 0.0007 −0.0053 0.0005

500 LAD −0.0234 0.0015 −0.0002 0.0001 0.0099 0.0004 −0.0011 0.0000

EXP −0.0119 0.0010 −0.0006 0.0001 −0.0018 0.0002 −0.0001 0.0058

HB −0.0044 0.0008 −0.0009 0.0001 −0.0008 0.0002 −0.0002 0.0000

Table 2. The mean (SD) of IMSE1 for β̂(t) under different error distributions and sample sizes.

n Methods
N(0, 1) MN t(2) Cauchy (0, 1)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

OLS 0.2664 (0.1266) 1.4068 (1.2305) 0.8923 (4.2805) - (-)
100 LAD 0.3298 (0.1663) 0.4360 (0.2541) 0.4730 (0.3153) 0.4996 (0.3083)

EXP 0.3243 (0.1714) 0.4247 (0.7672) 0.3786 (0.2029) 0.4602 (0.2534)
HB 0.2711 (0.1305) 0.3963 (0.2124) 0.3800 (0.2211) 0.4734 (0.2721)

OLS 0.1099 (0.0445) 0.4753 (0.3015) 0.4589 (2.0454) - (-)
300 LAD 0.1272 (0.0526) 0.1870 (0.0788) 0.1438 (0.0638) 0.1964 (0.0830)

EXP 0.1663 (0.0712) 0.1787 (0.0745) 0.1792 (0.0759) 0.1982(0.0815)
HB 0.1110 (0.0451) 0.1813 (0.0764) 0.1357 (0.0569) 0.1986 (0.0805)

OLS 0.0836 (0.0305) 0.3248 (0.1985) 0.7908 (17.3387) - (-)
500 LAD 0.0936 (0.0352) 0.0928 (0.0346) 0.1026 (0.0417) 0.1557 (0.0573)

EXP 0.1394 (0.0537) 0.1469 (0.0553) 0.1463 (0.0546) 0.1570(0.0583 )
HB 0.0844 (0.0308) 0.1474 (0.0550) 0.0980 (0.0380) 0.1567 (0.0584)
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Table 3. The mean (SD) of IMSE2 for ĝ(·) under different error distributions and sample sizes.

n Methods
N(0, 1) MN t(2) Cauchy (0, 1)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

OLS 0.3509 (0.3710) 7.1999 (8.9383) 7.0279 (-) - (-)
100 LAD 0.4821 (0.7918) 1.4814 (2.1051) 1.1504 (4.6860) 1.9271 (2.9633)

EXP 0.4132 (0.4437) 1.0579 (2.0157) 0.7482 (0.8314) 1.2962 (1.5780)
HB 0.3713 (0.3992) 0.8917 (1.0224) 0.7717 (0.8362) 1.3913 (1.7224)

OLS 0.1140 (0.1166) 2.2063 (2.6667) 2.0490 (12.9143) - (-)
300 LAD 0.1597 (0.1726) 0.3016 (0.3629) 0.2406 (0.2751) 0.3699 (0.4413)

EXP 0.1385 (0.1356) 0.2434 (0.2624) 0.2229 (0.2740 ) 0.3681 (0.4213)
HB 0.1189 (0.1242) 0.2388 (0.2597) 0.2074 (0.2528) 0.3629 (0.4087)

OLS 0.0677 (0.0754) 1.3708 (1.5933) 3.2699 (-) - (-)
500 LAD 0.1043 (0.1177) 0.1046 (0.1065) 0.1410 (0.1513) 0.1945 (0.2207)

EXP 0.0914 (0.0891) 0.1414 (0.1428) 0.1376 (0.1440) 0.2129 (0.2366)
HB 0.0722 (0.0787) 0.1485 (0.1636) 0.1266 (0.1406) 0.2085 (0.2365)

Table 4. The mean (SD) of MSPE under different error distributions and sample sizes.

n Methods
N(0, 1) MN t(2) Cauchy (0, 1)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

OLS 0.3588 (0.3542) 7.3662 (8.8633) 7.3858 (-) - (-)
100 LAD 0.4677 (0.4338) 1.4368 (1.7128) 0.9803 (0.9559) 1.9208 (2.7565)

EXP 0.4426 (0.4447) 1.0267 (1.6935) 0.7628 (0.8031) 1.3085 (1.3842)
HB 0.3792 (0.3800) 0.8862 (0.9175) 0.7665 (0.7987) 1.4059 (1.6041)

OLS 0.1266 (0.1173) 2.3559 (2.6711) 2.1143 (12.5808) - (-)
300 LAD 0.1767 (0.1725) 0.3310 (0.3619) 0.2613 (0.2739) 0.4033 (0.4421)

EXP 0.1607 (0.1349) 0.2703 (0.2626) 0.2502 (0.2712) 0.4017 (0.4206)
HB 0.1317 (0.1246) 0.2662 (0.2597) 0.2274 (0.2509) 0.3969 (0.4090)

OLS 0.0775 (0.0751) 1.4681 (1.5899) 3.6659 (-) - (-)
500 LAD 0.1165 (0.1175) 0.1172 (0.1067) 0.1563 (0.1508) 0.2207 (0.2209)

EXP 0.1105 (0.0889) 0.1635 (0.1429) 0.1601 (0.1448) 0.2399 (0.2368)
HB 0.0821 (0.0785) 0.1706 (0.1644) 0.1409 (0.1411) 0.2353 (0.2365)

4. Applications to Real Data

In this section, we illustrate the proposed robust estimation procedure for a semi-
functional linear model with autoregressive errors by two real data analyses. The first
example is the electricity consumed data, and the second one is the Tecator data.

4.1. Electricity Consumption Data

This subsection aims to compare the proposed robust estimation method with the OLS
method, that is, whether the proposed robust estimation method is as good as the OLS estima-
tion method in the absence of outliers in the data set. For this purpose, we consider electricity
consumption data, which is available on the website http://www.eia.doe.gov/emeu/aer,
(accessed on 31 December 2022). The data set includes the electricity consumption ci (KWH)
from January 1973 to January 2016 (517 months) (see Figure 2) and annual average retail price
zi (per KWH, including tax) (43 years).

As shown in Figure 2, the time series obviously shows some linear trends and some het-
erogeneity in the variance structure. Similar to Aneiros and Vieu [10] and Yu et al. [27], we
eliminate the heteroscedasticity and the linear trend of the electricity retail sales data by dif-
ferencing the log(electricity data) and obtain the time series (see Figure 3): Xi = log(ci+1)−
log(ci), i = 1, 2, · · · , 516. Let xi(s) =

{
X12(i−1)+s, i = 1, 2, · · · , 43, s = 1, 2, · · · , 12

}
be the

monthly log (difference electricity data).

http://www.eia.doe.gov/emeu/aer
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Figure 2. The ln (electricity data) from January 1973 to January 2016.

Figure 3. The differenced log (electricity data) from January 1973 to January 2016.

There is only one observation per month, so we use 10 cubic B-spline basis functions
to convert the discrete monthly electricity data into functional continuous smooth annual
curve predictors {xi(t), t ∈ [1, 12], i = 1, 2, · · · , 43} (see Figure 4). The response variable
is yi(s) = X12i+s, which represents the electricity consumption data in the s-month of the
i-year, where i = 1, 2, · · · , 42, s = 1, 2, · · · , 12. The electricity data set is divided into the
training sample {yi(s), zi, xi(t)}41

i=1 and the test sample {y42(s), z42, x42(t)}.
To ascertain whether there are outliers in the data set, the boxplot of the electricity consump-

tion data from January to December is displayed in Figure 5. As shown in Figure 5, there are
some outliers in March and November. Hence, the robust method may perform better than OLS.
Meanwhile, to determine whether the random errors are serially correlated, we first display the
autocorrelation function plot (see Figure 6) of the residual sequences {ε̂i(s)}41

i=1, s = 1, · · · , 12
of the the following semi-functional linear model (SFLM) based on the HB estimation procedure:

yi(s) =
∫ 12

1
β(t)xi(t)dt + g(zi) + εi(s), i = 1, 2, · · · , 41; s = 1, · · · , 12. (19)
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From Figure 6, it can be seen that there exist serial correlations for random error
sequences εi(8) and εi(9). We further use the Ljung–Box (LB) test statistics to test whether
first-fourth order serial correlations exist. The corresponding p−values are 0.0049 and
0.0013, respectively. Under the given significance level of 0.05, we can also conclude that
the random error sequences εi(8) and εi(9) are the fourth-order serial correlation, which
is consistent with Figure 6. Hence, we consider using the robust method to estimate the
following SFLAR model based on the training set:

yi(s) =
∫ 12

1
β(t)xi(t)dt + g(zi) + εi, εi =

q

∑
l=1

alεi−l + ei, i = 1, 2, · · · , 41, (20)

and then the test set is used to predict the values of y42(s).

Figure 4. Annual curves of electricity data in the commercial sector from January 1973 to January 2016.

Figure 5. The boxplots from January to December.
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Figure 6. Autocorrelation graph of residual sequences from January (s = 1) to December (s = 12).

We also compare the robust estimation procedure (LAD, EXP and HB) with OLS
to illustrate the proposed mehtod. Further, to implement our approach, the unknown
function g(·) is approximated by a cubic B-spline function with equispaced knots. The
truncation parameters J and K are selected by the BIC method and calculated according to
Equation (13) in Section 2. Similar to Aneiros and Vieu [10] and Yu et al. [27], the following
two error criteria, mean quadratic error (MQE):

MQE =
1

12

12

∑
s=1

(y42(s)− ŷ42(s))
2, (21)

and mean relative quadratic error (MRQE):

MRQE =
1

12

12

∑
s=1

(y42(s)− ŷ42(s))
2

Var(y(s))
(22)

are used to evaluate the prediction ability of the model, where Var(y(s)) is the empirical
variance of {yi(s)}41

i=1. Table 5 shows the MQE and MRQE of LAD, HB, EXP and OLS
estimation. It can be seen from Table 5 that the robust estimation procedure performs better
than OLS when there are some outliers.
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Table 5. MQE and MRQE of three estimation methods under the SFLAR model.

Criterions
Methods

OLS LAD HB EXP

MQE 0.00017 0.00016 0.00017 0.00017

MRQE 0.34483 0.27929 0.31347 0.34435

4.2. Tecator Data

In this subsection, we further apply the robust procedure to analyze the Tecator spec-
tral data set, which originated from http://lib.stat.cmu.edu/datasets/tecator, (accessed
on 31 December 2022). This data set consists of 215 meat samples. Each sample records
a spectrometric curve corresponding to a spectrum of absorbance measured at 100 wave-
lengths between 850 and 1050 nm by the Near-Infrared Transmission (NIT) principle, and
the contents of moisture, protein and fat measured in percentages. Chen et al. [28], Aneiros
and Vieu [29], Lin et al. [30] and Sang et al. [31] have conducted extensive research on these
data, aiming to predict the content of certain components (such as fat) by using spectral
absorbance. Recently, Cai et al. [15] predicted fat content (Y) according to water content
(Z1), protein content (Z2) and spectral curve X(t).

This paper is interested in whether the accuracy of LAD, EXP and HB is better than
OLS in predicting fat content (y) when the distribution of the response is not normal, and
the random errors are correlated. For this purpose, we first use the Shapiro–Wilk statistic to
test whether the fat content distribution is normal. The p−value of the test statistic is 0.000,
which indicates that the distribution is not normal. Further, the skewness value (0.796)
shows that the data have a right-skewed distribution. The least squares estimation may not
be effective, so the robust method is adopted. Then, like in Section 4.1, we apply the LB test
statistics to test whether there are first-order serial correlations based on the HB method.
The corresponding p−value is 0.0222, which is less than the given significance level of 0.05.
Therefore, we also apply the robust method to estimate the following SFLAR model:

yi =
∫ 1050

850
β(t)xi(t)dt + g(zi) + εi, εi = a1εi−1 + ei, i = 1, 2, · · · , 215, (23)

where the response variable yi is the fat content of the i-th sample, and the explanatory
variables zi and xi(t) stand for the protein and the spectrometric curve of the i-th sample,
respectively.

Similar to Cai et al. [15], the two criteria, mean absolute prediction error (MAPE):

MAPE =
1

214

215

∑
i=2
|yi − ŷi|, (24)

and the median prediction error (MPE):

MPE = median
i∈{2,3,··· ,215}

|yi − ŷi| (25)

are used to evaluate the prediction effect of different methods. From the values of MAPE
and MPE of LAD, HB, EXP and OLS displayed in Table 6, it can be seen that the robust
methods have better performance than the OLS estimation when the distribution of the
response is not normal.

http://lib.stat.cmu.edu/datasets/tecator
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Table 6. MAPE and MPE of three estimation methods under SFLAR.

Criterions
Methods

OLS LAD HB EXP

MAPE 1.862 1.771 1.783 1.891

MPE 1.528 1.345 1.388 1.138

5. Conclusions

This paper considers the estimation problem of a semi-functional linear model with
autoregressive errors when the random error follows a heavy-tailed distribution, or there
are some outliers. The traditional estimation methods, such as the least square or likelihood
method, are susceptible to outliers or heavily tailed errors, resulting in the corresponding
estimation no longer being effective. Therefore, this paper introduces the robust estimation
procedure. Simulation research and two real data analyses show that if the random
error follows the normal distribution, the robust estimation has the same good statistical
properties as the OLS. However, if the random error is heavily tailed, the robust estimation
outperforms the OLS method.
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