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Abstract: Harris Hawk Optimization (HHO) is a well-known nature-inspired metaheuristic model
inspired by the distinctive foraging strategy and cooperative behavior of Harris Hawks. As with
numerous other algorithms, HHO is susceptible to getting stuck in local optima and has a sluggish
convergence rate. Several techniques have been proposed in the literature to improve the performance
of metaheuristic algorithms (MAs) and to tackle their limitations. Chaos optimization strategies have
been proposed for many years to enhance MAs. There are four distinct categories of Chaos strategies,
including chaotic mapped initialization, randomness, iterations, and controlled parameters. This
paper introduces SHHOIRC, a novel hybrid algorithm designed to enhance the efficiency of HHO.
Self-adaptive Harris Hawk Optimization using three chaotic optimization methods (SHHOIRC) is
the proposed algorithm. On 16 well-known benchmark functions, the proposed hybrid algorithm,
authentic HHO, and five HHO variants are evaluated. The computational results and statistical
analysis demonstrate that SHHOIRC exhibits notable similarities to other previously published
algorithms. The proposed algorithm outperformed the other algorithms by 81.25%, compared to
18.75% for the prior algorithms, by obtaining the best average solutions for 13 benchmark functions.
Furthermore, the proposed algorithm is tested on a real-life problem, which is the maximum coverage
problem of Wireless Sensor Networks (WSNs), and compared with pure HHO, and two well-known
algorithms, Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA). For the
maximum coverage experiments, the proposed algorithm demonstrated superior performance,
surpassing other algorithms by obtaining the best coverage rates of 95.4375% and 97.125% for
experiments 1 and 2, respectively.

Keywords: Harris Hawk Optimization; metaheuristic; chaos optimization; chaotic maps; self-
adaptive; maximum coverage; wireless sensor network

MSC: 68T05; 68Q32

1. Introduction

In recent years, numerous different real-world optimization challenges, such as engi-
neering and scientific experiments, have seen the widespread adoption of nature-inspired
algorithms. The optimization problem involves locating the optimal solution (maximum or
minimum) among all feasible alternatives. Due to the increasing complexity of optimiza-
tion problems, traditional mathematical methods such as gradient descent have become
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insufficient because they are time-consuming and confined to local optima. To tackle such
issues, metaheuristic algorithms have gained popularity due to their efficiency, simplicity,
easy implementation process, and low computational costs. Metaheuristic algorithms
exhibit competitive performance and outperform other solvers in solving problems since
they mimic biological and physical behavior in nature. Some examples are Particle Swarm
Optimization (PSO) [1], Genetic algorithm (GA) [2], Grey Wolf Optimizer (GWO) [3], Whale
Optimization Algorithm (WOA) [4], Flower Pollination Algorithm (FPA) [5], Salp Swarm
Algorithm (SSA) [6], Moth–Flame Optimization (MFO) [7], Artificial Bee Colony Optimiza-
tion (ABC) [8], Bat Algorithm (BA) [9], Wild Horse Optimizer (WHO) [10], Lightning Search
Algorithm (LSA) [11], and Ant Colony Optimization (ACO) [12].

The No Free Lunch theorem (NFL) [13] states that there is no optimal algorithm capable
of solving all optimization problems. Consequently, a significant number of metaheuristic
algorithms have been devised over the past two decades, and it has been demonstrated
that metaheuristic techniques can be used to efficiently and effectively find solutions to
complex problems. In other words, if an algorithm performs well in one optimization task,
it may not perform well in other optimization tasks. Therefore, the fact that a metaheuristic
algorithm works well for solving one type of problem does not necessarily guarantee that it
will work just as well for tackling another type of problem. HHO is one of the most effective
metaheuristic algorithms; it is inspired by the cooperative behavior and chasing manner
of Harris Hawks, as well as their predation and breeding behaviors in nature [14]. HHO
outperforms many well-known Swarm Intelligence (SI) approaches, such as PSO, GWO, CS,
MFO, DE, BA, and WOA, based on the outcomes of tests conducted on benchmark functions
and multiple engineering optimization problems. Moreover, the results demonstrate that
HHO obtains a good balance between exploration and exploitation, thereby enhancing
its scalability and capacity to produce high-quality solutions [15]. As with many other
algorithms, HHO has disadvantages, including the possibility of becoming locked in
local optima and the absence of a study frame with dramatic convergence. Owing to the
stochastic nature of the optimization process, achieving a balance between exploration and
exploitation is one of the most difficult aspects of devising a metaheuristic algorithm [4]. The
NFL has led to the development of HHO through a variety of techniques, including binary
HHO release, evolutionary update structures, chaotic processes, and hybrid HHO [16].

In the literature, various studies have proposed enhancements to the HHO algorithm
by incorporating different mathematical operators. For instance, Binary HHO (BHHO)
and Quadratic Binary HHO (QBHHO) were introduced as binary versions of HHO [17].
Opposite HHO (OHHO) [18] was applied for feature selection in breast cancer classification.
Chaotic HHO (CHHO) and variant chaotic HHO were proposed by Menesy et al. [19] and
Basha et al. [20], respectively, while Hussien and Amin [21] enhanced a new HHO version
based on chaotic local search, opposition-based learning, and self-adaption. Multi-Objective
Harris Hawk Optimization algorithm (MOHHO) [22] employed Pareto dominance and
crowding distance mechanisms to handle multiple objectives and improve diversity in the
search space. Shi et al. [23] proposed a framework SGLHHOSVM that combines HHO
with Support Vector Machine (SVM). Adaptive relative reflection HHO (ARHHO) was
proposed by Zuo and Wang [24]. A hybrid Harris Hawk Optimization algorithm with
Differential Evolution (HHO-DE) is proposed in [25]. Modified Harris Hawk Optimization
algorithm (MHHO) is proposed in [26]. In [27], various Harris Hawk Optimization (HHO)
algorithm techniques are proposed. These techniques, which include Improved HHO
Opposition-Based Learning (OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF),
and Improved HHO Chaotic Map (IHHOCM) to improve search efficiency and exploration
and exploitation capabilities. In [28], the authors introduced an improved version of
the Harris Hawk Optimization (IHHO) algorithm by incorporating elite opposite-based
learning and a new search mechanism.
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The theory of nonlinear dynamics chaos has found widespread application, and
several metaheuristic algorithms have used chaos to enhance performance [29]. Chaos
theory involves the study of chaotic dynamical systems, which are highly sensitive to initial
conditions and comprise an infinite number of unstable periodic motions. In particular,
the use of chaotic mapping techniques was developed to determine random parameters
in metaheuristic algorithms, leading to faster convergence and reduced chance of being
trapped in local optima [30,31]. In this context, a new variant of HHO is presented in this
paper to further enhance its performance. This variant incorporates chaos theory and a self-
adaptive technique to improve the algorithm’s exploration and exploitation capabilities.

In recent years, wireless sensor networks (WSNs) have spread rapidly. This is a
consequence of its ubiquitous daily usage in several fields. Applications for WSNs include
monitoring the environment, surveillance systems, healthcare, the Internet of Things (IoT),
and public safety [32,33]. Power scarcity is an important issue that negatively affects
the WSNs’ performance. The coverage problem of WSNs is a fundamental problem that
directly affects the energy consumption of WSNs [34]. WSN’s coverage problem of a specific
region refers to finding the minimum number of sensors to cover the maximum area [32].
Designing a WSN with a high coverage rate and a reasonable number of sensors leads to
efficient energy consumption and a longer lifetime. The maximum coverage problem for
wireless sensor networks is an NP-hard optimization problem.

There has been a lot of interest in studying the coverage problem of WSNs, and sev-
eral research results have been issued in recent years. In the literature, Hu et al. [35]
proposed a method to optimize large radius sensors’ deployment using binary PSO
(binary-PSO). Aziz et al. [36] used a PSO-Voronoi algorithm to minimize the coverage
hole. Ngatchou et al. [37] used a modified version of PSO, sequential PSO. In [38], Wang,
X et al. proposed virtual force-directed co-evolutionary PSO to deploy WSN with good effi-
ciency. Wang et al. [39] proposed a novel head wolf mutation strategy to enhance Wolf Pack
Algorithm (WPA) to optimize coverage. Herein [40], Alshaqqawi et al. proposed an opti-
mization approach that combined the PSO algorithm with a greedy method. Liang et al. [41]
presented the MTCLM problem to maximize the number of covered targets. In [42], Wang,
G proposes a positioning method based on a random PSO algorithm (SPSO). By integrat-
ing the locally convergent PSO with the gravity search algorithm, Mehta and Malik [43]
introduced a new hybrid optimization algorithm that modifies the PSO into a global opti-
mization algorithm. Tarnaris et al. [44] used GA, PSO, grid-based PSO, and a Voronoi-based
PSO method to maximize area coverage and area k-coverage. Bonnah et al. [45] proposed a
combination of the computed minimal exposed path and PSO algorithm using the ratio of
covered to uncovered grids as a fitness function. Li and Liu [46] proposed an optimization
algorithm for monitoring area coverage based on controlling the node position, which can
rapidly improve the coverage effect. Zhang [47] simulated the coverage optimization of
WSNs based on the Improved PSO algorithm. Gökalp [48] used the self-adaptive DE algo-
rithm (SADE) to optimize the connected target coverage for the first time in the literature.
In [49], Zhang, Y. and Zhang, Z. used DBSCAN and TDADA-II. Mobile Assisted Coverage
Hole Patching Scheme (MACHPS) is introduced by Wang et al. [50] who compared it with
two other algorithms, CMPA and CHHA. Mnasri et al. [51] proposed a hybrid approach
relying on a novel bird’s accent-based many-objective PSO algorithm (named acMaPSO)
and another variant (named acMaMaPSO), and compared their performance with the
standard PSO and the NSGA-III algorithm. Weighted Salp Swarm Algorithm (WSSA) is a
technique proposed by M. A. Syed and R. Syed in [52] to improve the performance and
convergence rate of the SSA and to compare WSSA’s performance with PSO, MFO, GWO,
WOA, MVO, and MGWO.

In this paper, we propose a new version of HHO. The proposed algorithm (SHHOIRC)
is a hybrid algorithm consisting of Harris Hawk optimization, three chaos optimiza-
tion methods (Chaotic mapped initialization, Chaotic mapped randomness, and Chaotic
mapped controlled parameter), and a self-adaptive method. SHHOIRC is tested and
compared with genuine HHO, SHHO [21], and four versions of HHO, which are pro-
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posed in [31]. In [31], Harun and Haydar proposed forty HHO variants in which HHO
is hybridized with ten distinct chaotic maps to modify its critical parameters, using four
distinct hybridization techniques. The four methods used combinations of two chaos
optimization techniques, which are Chaotic mapped randomness, and Chaotic mapped
controlled parameter. Here, SHHOIRC is compared with four variants that use quietly
comparable processes. The proposed algorithm and the other six HHO versions are applied
to 16 Benchmark functions. Furthermore, the proposed algorithm is tested on a real-life
problem, which is the maximum coverage problem, and compared with pure HHO, and
two well-known algorithms, GWO [3] and WOA [4].

This document is structured as follows. Section 2 describes Harris Hawk optimization.
The SHHOIRC algorithm and the used strategies are described in Section 3. Section 4
contains the results of the experiment, their simulation, and statistical analysis. Section 5
contains the conclusion.

2. Harris Hawk Optimization

HHO is a population-based metaheuristic technique inspired by the cooperative behav-
ior and hunting style (surprise pounce) of Harris Hawks, as well as their natural predation
and reproductive behaviors [14]. Harris Hawks forage with other family members, which
distinguishes their foraging behavior from that of other birds. This algorithm has three
phases: the Exploration phase, the Transportation phase, and the Exploitation phase. In
the Exploration phase, the hawks perch randomly according to other members or at a
random tall tree until they detect a prey. In the next phase, the Transportation phase, the
hawks determine whether to chase the prey or not according to the prey’s energy. In the
Exploitation phase, depending on the dynamic character of situations and the evasion
strategies of their prey, Harris Hawks pursue their prey in a variety of ways. Algorithm 1
explains pseudocode for HHO. The HHO phases can be modeled as follows:

2.1. Exploration Phase

In HHO, Harris Hawks represent candidate solutions, and the best solution in each
phase is regarded as the intended prey or as close to the optimal solution. Based on two
strategies, Harris Hawks settle at random in various locations and wait to detect prey.
Considering an equal probability q for each perching technique: if q < 0.5, then the position
of hawks is determined in regards to other hawks in the population and rabbit positions; if
q ≥ 0.5, then the hawk perch on a random tall tree inside the range. The position of each
hawk can be modeled as in Equation (1), considering the stated perching strategies:

X(t + 1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2 X(t)| i f q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)) i f q < 0.5

(1)

Such that X(t + 1) is the position vector of hawks in the next iteration, Xrabbit(t) is
the rabbit position in the current iteration t, X(t) is the current position vector of hawks,
Xrand(t) is a randomly selected hawk from the current population, r1, r2, r3, and r4 are
random numbers in the interval of (0, 1), LB and UB are the lower and upper bounds of
the problem, and Xm(t) is the average position of the current population of N hawks
(Equation (2)):

Xm(t) =
1
N ∑N

i=1 Xi(t) (2)

2.2. Transportation from Exploration to Exploitation

The transition from exploration to exploitation is dependent on the prey’s escaping
energy. During its fleeing behavior, the prey’s energy decreases drastically. Exploration
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occurs when |E| ≥ 1, whereas exploitation occurs in subsequent phases when |E| < 1. The
prey’s energy can be represented by Equation (3):

E = 2E0

(
1− t

T

)
(3)

where E indicates the escaping energy of the prey, T represents the maximum number of
iterations, and E0 is the initial state of the rabbit’s energy, which randomly changes inside
the interval (−1, 1) iteratively.

2.3. Exploitation Phase

In this phase, the Harris Hawks perform a surprise pounce (seven kills) by attacking
the intended prey detected in the previous phase. In the attacking stage, there are four
possible strategies proposed in regard to the escaping behavior and the chasing strategies. It
is supposed that r is the chance of a prey successfully escaping (r < 0.5) or not successfully
escaping (r ≥ 0.5) before the surprise pounce. The four strategies are as follows:

2.3.1. Soft Besiege

If r ≥ 0.5 and |E| ≥ 0.5, then the prey still has energy but cannot escape successfully.
In this case, the hawks proceed with a soft besiege. The position update formula can be
modeled as Equations (4) and (5):

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (4)

∆X(t) = Xrabbit (t)− X(t) (5)

Such that ∆X(t) represents the difference between the rabbit’s position vector and
its current location in iteration t. J is the random jump strength of the rabbit throughout
the escaping procedure. The J value changes randomly in each iteration to simulate the
rabbit motion. The jump strength can be modeled as in Equation (6), where r5 is a random
number inside (0, 1).

J = 2(1− r5) (6)

2.3.2. Hard Besiege

The prey lacks sufficient energy and cannot effectively flee when r ≥ 0.5 and |E| < 0.5.
In this case, the hawks proceed to hard besiege. The position update formula can be
modeled as Equation (7):

X(t + 1) = Xrabbit(t)− E|∆X(t)| (7)

2.3.3. Soft Besiege with Progressive Rapid Dives

If r < 0.5 and |E| ≥ 0.5, then the prey still has enough energy and can escape
successfully. This case is inspired by the actual behavior of hawks; it is assumed that, in
competitive situations, they can choose the optimal dive toward prey in order to capture it.
Consequently, the raptors can evaluate their next move based on the following rule, which
is represented by Equation (8):

Y = Xrabbit(t)− E|JXrabbit(t)− X(t)| (8)

If the hawk will dive based on the LF-based patterns, the next move is to proceed
using Equation (9):

Z = Y + S× LF(D) (9)
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Such that D is the dimension of the problem, S is a random vector by size 1× D, and
LF is the Levy Flight function (Equation (10)) where u, v are random values inside (0,1) and
β is a default constant set to 1.5.

LF(D) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )


1
β

(10)

In this phase, the next location is set as the better between Y and Z. Hence, the position
formula of this phase can be modeled as Equation (11):

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(11)

2.3.4. Hard Besiege with Progressive Rapid Dives

If r < 0.5 and |E| < 0.5, then the prey still does not have enough energy and cannot
escape successfully. In this case, the hawks proceed to hard besiege with progressive rapid
dives. The position update formula can be modeled as Equation (12):

X(t + 1) =
{

Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(12)

where Y and Z are obtained using new rules (Equations (13) and (14)):

Y = Xrabbit(t)− E|JXrabbit(t)− Xm(t)| (13)

Z = Y + S× LF(D) (14)

Algorithm 1 Pseudo-code of HHO Algorithm

1: Initialize the parameters (Popsize (N), MaxIter (T), LB, UB, and Dim)
2: Initialize a population X0
3: While (iter ≤MaxIter) do
4: Compare the fitness Function for hawk xi
5: Xrabbit = the best search agent
6: for each hawk (xi) do
7: Update the escaping energy E using Equation (3)
8: if (|E| ≥ 1) then
9: Update hawk position using Equation (1)
10: end if
11: if (|E| < 1) then
12: if (r ≥ 0.5 and |E| ≥ 0.5) then
13: Update hawk position using Equation (4)
14: else if (r ≥ 0.5 and |E| < 0.5) then
15: Update hawk position using Equation (7)
16: else if (r < 0.5 and |E| ≥ 0.5) then
17: Update hawk position using Equation (11)
18: else if (r < 0.5 and |E| < 0.5) then
19: Update hawk position using Equation (12)
20: end if
21: end if
22: end for
23: End
24: Return Xrabbit
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3. SHHOIRC Algorithm

The proposed algorithm is Self-adaptive Harris Hawk Optimization with three Chaotic
Optimization methods (Chaotic mapped initialization, Chaotic mapped randomness, and
Chaotic mapped controlled parameter) called (SHHOIRC).

3.1. Chaos Optimization

Chaos is a random-like common phenomenon that occurs in nonlinear systems. It is
considered as a source of stochasticity [53]. The chaotic map can generate a huge number
of non-repetitive sequences instead of random sequences by only changing its initial values.
The following chaotic maps are examples of chaotic maps that can be used to generate
non-repetitive random numbers within specified limits, as detailed in Table 1, where
zk, and zk+1 are the chaotic variables of kth and (k + 1)th iteration, respectively. For initial
conditions of the two chaotic maps, zk is set as a random number belonging to [0, 1]. The
chaotic variable is generated using the previous chaotic variable in the sequence. In the
proposed algorithm, the Circle map is used to generate all the chaotic variables. The theory
of chaos was applied to HHO in order to enhance convergence speed and prevent it from
falling into the local minimum trap by utilizing a chaotic map to explore unvisited regions
in the search space.

Table 1. Chaotic maps’ details.

No. Map Name Map Equations Parameters

1 Circle map zk+1 = zk + ϕ− K
2π sin(2πzk)mod(1) ϕ = 2.5, K = 5

2 Logistic map zk+1 = µ (1− zk) µ = 4

3 Gaussian map
zk+1 = 0, i f zk = 0;

zk+1 = 1
zk

mod(1), i f zk 6= 0

4 Chebyshev map zk+1 = cos
(
a cos−1(zk)

)
a = 5

5 Sinusoidal map zk+1 = sin (πzk)

The chaotic maps have been introduced to improve nature-inspired algorithms for
many years. As stated in [54], there are four ways for chaotic applications to improve the
performance of the existing nature-inspired algorithms. The chaotic improvements can
be categorized as follows: Chaotic-mapped initialization, Chaotic-mapped randomness,
Chaotic-mapped iterations, and Chaotic-mapped controlled parameters. In the literature,
chaotic-mapped initialization [55] enhances PSO, chaotic-mapped randomness [56] im-
proves the Bat algorithm, chaotic-mapped iterations [53] enhance the Grey Wolf optimizer,
and chaotic-mapped controlled parameters [57] optimize GWO algorithm performance.
These approaches significantly contribute to their respective algorithms. In the proposed
algorithm, three types of strategies are used.

The first way is chaotic-mapped initialization; in this method, the chaotic variables
are used to generate the initial population of HHO. This modification can be applied
by generating random initial positions for the hawks using the chaotic variables. The
generated positions can then be limited within the upper and lower boundaries of the
search space according to the optimization problem. The initial population positions Xinitial
can be modeled as follows (Equation (15)):

Xinitial = LB + X0zk+1 × (UB− LB) (15)

where X0 is the random positions generated, and zk+1 is the chaotic variable generated
using the circle chaotic map. UB and LB are the upper and lower limits of the problem.
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The second method is chaotic-mapped randomness; in this method, the chaotic vari-
ables are used to generate the random numbers used in Equation (1) and to choose Xrand(t).
This modification can be modeled as follows (Equation (16)):

X(t + 1) =
{

Xrand(t)− zk+1 r1 |Xrand(t)− 2zk+1 r2 X(t)| i f q ≥ 0.5
(Xrabbit(t)− Xm(t))− zk+1 r3(LB + zk+1 r4(UB− LB)) i f q < 0.5

(16)

The third one is the chaotic-mapped controlled parameter; in this method, the chaotic
variables are used to generate a random number used to edit the control parameter E in
Equation (3). This modification can be modeled as follows (Equation (17)):

E = 2zk+1E0

(
1− t

T

)
(17)

3.2. Self-Adaptive Technique

To improve the diversity and exploration capabilities of the HHO, a self-adaptive
technique is used. The self-adaptive technique is integrated with HHO and a new solution
is generated using Equation (18):

vi(t + 1) = Xi(t + 1) + SR(XCurrBest − Xi(t)) (18)

Equation (18) updates the state of solution Xi(t + 1). Xi(t + 1) are the solutions ob-
tained in iteration t, which are prepared for use in the upcoming iteration t + 1, using a
proposed search equation based on self-adaptation. Xi(t) is the ith hawk solution before
starting iteration t, and XCurrBest is the best solution found so far for Xi(t). XCurrBest can
be described as the local best for the ith hawk after iteration t is performed, and SR is a
self-adaptive rate that is a random number between 0 and 1.

3.3. Proposed Algorithm

The proposed algorithm integrates the introduced three chaotic strategies and a self-
adaptive technique with HHO. The first chaotic strategy enhances HHO by allowing
individuals to spread throughout the domain of the given problem as equally as possible. In
this step, either the global or local optimum has a greater chance of gaining access by some
individuals. The second type enhances HHO by replacing pseudo-random numbers with a
non-repetitive sequence of random numbers generated by the circle chaotic map, which
enhances the exploration phase diversity and exploits all previously visited promising areas.
The third one is used to balance the ratio of exploration and exploitation for individuals
during iterations. The self-adaptive method helps control the balance between exploration
and exploitation, and the proposed search equation helps the algorithm explore previously
unvisited promising areas. The pseudocode of SHHOIRC is shown in Algorithm 2.

In SHHOIRC, the integration of the three strategies and the self-adaptive method with
HHO is performed by using the four Equations (15)–(18), as in the flowchart in Figure 1. The
initial population is generated using Equation (15) by considering the problem limitations.
At each iteration, the positions of the hawks are updated using Equation (16). To update
the control parameter E for each hawk, use Equation (17). After generating the hawks’
solutions and obtaining HHO’s best solution for the current iteration, a new solution is
generated using Equation (18), and then the best solution among the HHO solution and
self-adaptive solution is selected as the new solution for the current iteration.
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Algorithm 2 Pseudo-code of SHHOIRC Algorithm

1: Initialize the parameters (Popsize (N), MaxIter (T), LB, UB, and Dim)
2: Initialize a population X0
3: Update Xinitial using Equation (15)
4: While (iter ≤ MaxIter) do
5: Compare the fitness Function for hawk xi
6: Xrabbit = the best search agent
7: for each hawk (xi) do
8: Update the escaping energy E using Equation (17)
9: if (|E| ≥ 1) then
10: Update hawk position using Equation (16)
11: end if
12: if (|E| < 1) then
13: if (r ≥ 0.5 and |E| ≥ 0.5) then
14: Update hawk position using Equation (4)
15: else if (r ≥ 0.5 and |E| < 0.5) then
16: Update hawk position using Equation (7)
17: else if (r < 0.5 and |E| ≥ 0.5) then
18: Update hawk position using Equation (11)
19: else if (r < 0.5 and |E| < 0.5) then
20: Update hawk position using Equation (12)
21: end if
22: end if
23: Update hawk using Equation (18)
24: end for
25: End
26: Return Xrabbit

4. Simulation Experiments

In this article, the proposed SHHOIRC, the four CHHO that are proposed by Harun
et al. [31], Self-adaptive HHO (SHHO), and genuine HHO are applied to 16 benchmark
functions. Furthermore, SHHOIRC is tested on a real-life problem, which is the maximum
coverage problem of WSN, and compared with pure HHO, and two well-known algorithms
GWO and WOA. For the maximum coverage problem, two experiments are performed. All
the experiments are applied on a PC with the following specifications: Intel Core i5-10400
CPU 2.90 GHz, 16.0 GB RAM. Table 2 shows the experimental parameter setting.

Table 2. Experimental parameter setting.

No. Parameter Name Benchmark Functions Experiments Maximum Coverage Experiments

1 Population size 30 30

2 Number of Dimensions According to function (Table 3) 30

3 Max iteration and run 500 and 5 runs (Exp1: 500, Exp2: 1000) and 10 runs for each

Table 3. List of Benchmark Functions.

No. Name Function Expressions Dimension
(d)

Initial Range
[LB, UB] Type Optimal Solution

fmin

F1 Schwefel 2.22 F(x) =
d
∑

i=1
|xi |+

d
∏
i=1
|xi | 30 [−10, 10] UM 0

F2 Schwefel 2.21 F(x) = max
1≤i≤d

|xi | 30 [−100, 100] UM 0

F3 Generalized
Rosenbrock F(x) =

d−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30, 30] UM 0
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Table 3. Cont.

No. Name Function Expressions Dimension
(d)

Initial Range
[LB, UB] Type Optimal Solution

fmin

F4 Quartic with
Noise F(x) =

d
∑

i=1
ixi

4 + random[0, 1) 30 [−1.28, 1.28] MM 0

F5 Generalized
Rastrigin F(x) =

d
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] MM 0

F6 Ackley 1
F(x) = −20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
−exp

(
1
d

d
∑

i=1
cos(2πxi)

)
+ 20 + e

30 [−32, 32] MM 0

F7
Generalized
Griewank
Function

F(x) =
d
∑

i=1

xi
2

4000 −
d

∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] MM 0

F8 Generalized
Penalized 1

F(x) = π
d

{
10sin2(πyi)

+
d
∑

i=1

(yi − 1)2[1 + 10sin2(πyi+1)
]

+(yd − 1)2

}

+
d
∑

i=1
u(xi , 10, 100, 4)

u(xi , a, k, m) =

k(xi − a)m , xi > a
0 ,−a < xi < a
k(−xi − a)m , xi < a

30 [−50, 50] MM 0

F9 Generalized
Penalized 2

F(x) = 0.1

{
sin2(3πxi)

+
d
∑

i=1

(xi − 1)2[1 + sin2(3πxi + 1)
]

+(xi − 1)2[1 + sin2(2πxi)
] }+

d
∑

i=1
u(xi , 5, 100, 4)

30 [−50, 50] MM 0

F10
Six-Hump

Camel-Back
Function

F(x) =(
4− 2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 +
(
4x2

2 − 4
)
x2

2
2 [−5, 5] MM −1.0316285

F11 Goldstein–Price
Function

F(x) =
[
1 + (x1 + x2 + 1)2(

19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)]

×
[
30 + (2x1 − 3x2)

2(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−5, 5] MM 3

F12 Hartman 3 F(x) = −
4
∑

i=1
ci exp

[
−

3
∑

j=1
aij
(
xj − pij

)2

]
3 [0, 1] MM −3.86278

F13 Hartman 6 F(x) = −
4
∑

i=1
ci exp

[
−

6
∑

j=1
aij
(
xj − pij

)2

]
6 [0, 1] MM −3.32237

F14 Shekel 5 F(x) = −
5
∑

i=1

[
(x− ai)(x− ai)

T + ci

]−1
4 [0, 10] MM −10.1532

F15 Shekel 7 F(x) = −
7
∑

i=1

[
(x− ai)(x− ai)

T + ci

]−1
4 [0, 10] MM −10.4029

F16 Shekel 10 F(x) = −
10
∑

i=1

[
(x− ai)(x− ai)

T + ci

]−1
4 [0, 10] MM −10.5364
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4.1. Measuring Performance

• Average is the mean of the values obtained in different runs:

AVG =
1
N ∑N

i=1 Fi (19)

where N and Fi are the number of runs and the value obtained in ith run, respectively.

• Standard deviation is calculated as follows:

STD =

√
1

N − 1 ∑N
i=1(Fi −Mean)2 (20)

• Best is the best (minimum or maximum according to the optimization problem) solu-
tion obtained in different runs.

• Worst is the worst (maximum or minimum according to the optimization problem)
solution obtained in different runs.

4.2. Testing HHO Versions on 16 Benchmark Functions

To evaluate the efficiency of the proposed metaheuristic SHHOIRC method, 16 well-
known benchmark functions are subjected to a series of experiments. These functions
are separated into three Unimodal functions and 13 Multimodal functions to evaluate the
algorithm’s capacity to avoid local optima and locate the global optimum. The expressions
of each test function are presented in Table 3, and specific parameters for some functions
are shown in Tables 4–6.

Each algorithm is run independently five times with 500 iterations per run and a
population size of 30 agents. Table 7 compares the proposed HHO version with six other
HHO versions (genuine HHO, SHHO, and four CHHO versions proposed in [31]) in terms
of the average solution, standard deviation values, best solutions obtained, worst solutions
obtained, and average time consumed (seconds). The four CHHO versions are categorized
into two types, PM1 and PM2, each using two different chaotic maps (Circle and Sinusoidal,
which are presented in Table 1). This study aims to demonstrate the superiority of the
proposed SHHOIRC method over other HHO variants and compare its performance on
various benchmark functions.

Table 4. Parameters of F13 (Hartman 6-Dimensional function).

i aij, j = 1,. . .,6 ci pij, j = 1,. . .,6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

Table 5. Parameters of Shekel functions: F14 (Shekel-5), F15 (Shekel-7), and 16 (Shekel-10).

i aij, j = 1,. . .,4 ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4

6 2 9 2 9 0.6
7 5 5 3 3 0.3

8 8 1 8 1 0.7
9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5
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Table 6. Parameters of F12 (Hartman 3-Dimensional function).

i aij, j = 1, . . . , 3 ci pij, j = 1, . . . , 3

1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.0381 0.5743 0.8828

Table 7. HHO versions’ results (500 iterations, 30 agents).

Metric HHO SHHOIRC CHHO
PM1C2

CHHO
PM1C9

CHHO
PM2C2

CHHO
PM2C9 SHHO

F1

AVG 9.86 × 10−52 1.04 × 10−59 1.18 × 10−49 1.19 × 10−44 2.69 × 10−52 9.04 × 10−45 1.03 × 10−58

STD 1.53 × 10−51 2.18 × 10−59 2.64 × 10−49 2.66 × 10−44 2.77 × 10−52 2.00 × 10−44 1.31 × 10−58

Best 8.06 × 10−55 4.95 × 10−59 5.90 × 10−49 5.94 × 10−44 6.64 × 10−52 4.47 × 10−44 2.82 × 10−64

Worst 3.66 × 10−51 7.47 × 10−63 4.58 × 10−54 3.76 × 10−52 1.33 × 10−54 8.85 × 10−50 3.06 × 10−58

AVG Time 1.19 × 10−1 2.30 × 100 5.54 × 10−1 5.21 × 10−1 1.35 × 100 1.43 × 100 7.08 × 10−1

F2

AVG 5.57 × 10−48 1.73 × 10−49 1.75 × 10−50 1.01 × 10−41 8.54 × 10−48 9.84 × 10−48 3.62 × 10−48

STD 1.24 × 10−47 3.84 × 10−49 3.59 × 10−50 1.56 × 10−41 1.91 × 10−47 1.94 × 10−47 8.08 × 10−48

Best 1.12 × 10−57 8.59 × 10−49 8.16 × 10−50 3.53 × 10−41 4.27 × 10−47 4.43 × 10−47 7.04 × 10−55

Worst 2.78 × 10−47 3.13 × 10−54 6.30 × 10−57 6.18 × 10−48 8.31 × 10−55 6.47 × 10−54 1.81 × 10−47

AVG Time 1.36 × 10−1 1.98 × 100 5.51 × 10−1 5.38 × 10−1 1.39 × 100 1.43 × 100 5.67 × 10−1

F3

AVG 2.43 × 10−2 8.35 × 10−04 8.59 × 10−03 6.02 × 10−03 3.97 × 10−03 1.33 × 10−03 8.59 × 10−04

STD 3.19 × 10−2 5.21 × 10−4 8.12 × 10−3 4.37 × 10−3 5.16 × 10−3 2.80 × 10−3 5.94 × 10−4

Best 3.21 × 10−4 1.58 × 10−3 2.02 × 10−2 1.13 × 10−2 1.29 × 10−2 6.34 × 10−3 2.99 × 10−4

Worst 7.78 × 10−2 4.09 × 10−4 6.35 × 10−4 1.74 × 10−3 9.27 × 10−5 3.42 × 10−5 1.82 × 10−3

AVG Time 2.12 × 10−1 1.72 × 100 6.39 × 10−1 6.04 × 10−1 1.53 × 100 1.56 × 100 6.59 × 10−1

F4

AVG 5.34 × 10−5 2.09 × 10−4 1.16 × 10−4 9.04 × 10−5 1.42 × 10−4 1.77 × 10−4 9.11 × 10−5

STD 4.20 × 10−5 2.47 × 10−5 7.69 × 10−5 1.56 × 10−4 5.80 × 10−5 2.58 × 10−4 5.78 × 10−5

Best 5.68 × 10−6 2.45 × 10−4 1.79 × 10−4 3.68 × 10−4 1.97 × 10−4 6.23 × 10−4 5.00 × 10−5

Worst 1.21 × 10−4 1.82 × 10−4 8.17 × 10−6 5.62 × 10−6 7.19 × 10−5 9.03 × 10−6 1.93 × 10−4

AVG Time 3.35 × 10−1 2.00 × 100 6.95 × 10−1 6.74 × 10−1 1.61 × 100 1.67 × 100 1.10 × 100

F5

AVG 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

STD 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Worst 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

AVG Time 1.77 × 10−1 1.51 × 100 6.16 × 10−1 6.30 × 10−1 1.51 × 100 1.53 × 100 4.62 × 10−1

F6

AVG 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

STD 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Worst 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

AVG Time 1.89 × 10−1 1.92 × 100 6.40 × 10−1 6.53 × 10−1 1.49 × 100 1.53 × 100 4.69 × 10−1

F7

AVG 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

STD 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Best 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Worst 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

AVG Time 2.29 × 10−1 1.80 × 100 7.01 × 10−1 6.21 × 10−1 9.42 × 10−1 9.90 × 10−1 5.06 × 10−1
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Table 7. Cont.

Metric HHO SHHOIRC CHHO
PM1C2

CHHO
PM1C9

CHHO
PM2C2

CHHO
PM2C9 SHHO

F8

AVG 1.18 × 10−5 2.33 × 10−7 4.76 × 10−6 2.16 × 10−5 6.84 × 10−6 2.16 × 10−6 3.17 × 10−7

STD 1.18 × 10−5 2.18 × 10−7 4.06 × 10−6 2.89 × 10−5 7.02 × 10−6 2.55 × 10−6 3.22 × 10−7

Best 8.71 × 10−7 5.96 × 10−7 8.60 × 10−6 6.92 × 10−5 1.87 × 10−5 6.29 × 10−6 3.53 × 10−8

Worst 3.04 × 10−5 6.17 × 10−8 3.30 × 10−7 2.02 × 10−8 4.20 × 10−7 6.61 × 10−9 8.48 × 10−7

AVG Time 7.67 × 10−1 2.60 × 100 1.02 × 100 9.72 × 10−1 1.31 × 100 1.26 × 100 1.51 × 100

F9

AVG 7.51 × 10−5 1.71 × 10−6 7.58 × 10−5 5.53 × 10−5 1.83 × 10−4 6.89 × 10−6 4.54 × 10−6

STD 7.61 × 10−5 4.64 × 10−7 1.36 × 10−4 8.37 × 10−5 2.65 × 10−4 7.49 × 10−6 4.46 × 10−6

Best 2.14 × 10−6 2.15 × 10−6 3.18 × 10−4 1.97 × 10−4 6.28 × 10−4 1.84 × 10−5 9.91 × 10−7

Worst 1.84 × 10−4 1.10 × 10−6 6.82 × 10−6 5.34 × 10−7 1.92 × 10−6 3.68 × 10−9 9.90 × 10−6

AVG Time 7.73 × 10−1 2.95 × 100 1.05 × 100 1.03 × 100 1.32 × 100 1.30 × 100 1.52 × 100

F10

AVG −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

STD 1.03 × 10−9 1.57 × 10−16 5.84 × 10−10 1.51 × 10−8 7.08 × 10−11 5.53 × 10−9 1.92 × 10−16

Best −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

Worst −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

AVG Time 1.30 × 10−1 1.95 × 100 7.23 × 10−1 7.12 × 10−1 9.67 × 10−1 9.82 × 10−1 6.79 × 10−1

F11

AVG 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

STD 1.63 × 10−8 6.08 × 10−15 8.88 × 10−8 7.16 × 10−7 4.69 × 10−7 8.83 × 10−7 4.32 × 10−15

Best 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

Worst 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

AVG Time 1.10 × 10−1 1.89 × 10+0 7.04 × 10−1 6.94 × 10−1 9.84 × 10−1 1.02 × 100 6.96 × 10−1

F12

AVG −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100

STD 1.11 × 10−3 3.85 × 10−16 4.39 × 10−3 4.73 × 10−4 5.61 × 10−4 3.31 × 10−3 5.44 × 10−16

Best −3.86 × 100 −3.86 × 100 −3.85 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100

Worst −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100

AVG Time 1.54 × 10−1 2.50 × 10+0 7.39 × 10−1 7.66 × 10−1 1.02 × 100 1.06 × 100 7.14 × 10−1

F13

AVG −3.15 × 100 −3.32 × 100 −3.17 × 100 −3.11 × 100 −3.14 × 100 −3.16 × 100 −3.27 × 100

STD 9.45 × 10−2 2.17 × 10−14 8.44 × 10−2 1.54 × 10−1 7.01 × 10−2 3.50 × 10−2 6.51 × 10−2

Best −3.22 × 100 −3.32 × 100 −3.06 × 100 −2.89 × 100 −3.03 × 100 −3.12 × 100 −3.32 × 100

Worst −2.99 × 100 −3.32 × 100 −3.27 × 100 −3.30 × 100 −3.22 × 100 −3.22 × 100 −3.20 × 100

AVG Time 1.57 × 10−1 1.82 × 100 7.45 × 10−1 7.31 × 10−1 1.02 × 100 1.08 × 100 7.13 × 10−1

F14

AVG −5.05 × 100 −6.07 × 100 −5.05 × 100 −5.05 × 100 −5.05 × 100 −5.04 × 100 −5.06 × 100

STD 3.06 × 10−3 2.28 × 100 3.28 × 10−3 4.27 × 10−4 1.28 × 10−3 1.50 × 10−2 7.69 × 10−16

Best −5.05 × 100 −5.06 × 100 −5.05 × 100 −5.05 × 100 −5.05 × 100 −5.02 × 100 −5.06 × 100

Worst −5.05 × 100 −1.02 × 101 −5.05 × 100 −5.06 × 100 −5.05 × 100 −5.05 × 100 −5.06 × 100

AVG Time 1.91 × 10−1 2.27 × 100 7.60 × 10−1 7.49 × 10−1 1.07 × 100 1.06 × 100 7.74 × 10−1

F15

AVG −5.09 × 100 −6.15 × 100 −5.08 × 100 −5.09 × 100 −5.09 × 100 −4.41 × 100 −6.15 × 100

STD 2.40 × 10−3 2.38 × 100 4.47 × 10−3 2.60 × 10−4 2.67 × 10−3 1.46 × 100 2.38 × 100

Best −5.09 × 100 −5.09 × 100 −5.08 × 100 −5.09 × 100 −5.08 × 100 −1.79 × 100 −1.04 × 101

Worst −5.08 × 100 −1.04 × 101 −5.09 × 100 −5.09 × 100 −5.09 × 100 −5.08 × 100 −5.09 × 100

AVG Time 2.17 × 10−1 2.13 × 10+0 7.98 × 10−1 7.61 × 10−1 1.07 × 100 1.08 × 100 8.10 × 10−1
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Table 7. Cont.

Metric HHO SHHOIRC CHHO
PM1C2

CHHO
PM1C9

CHHO
PM2C2

CHHO
PM2C9 SHHO

F16

AVG −5.12 × 100 −8.37 × 100 −6.17 × 100 −7.29 × 100 −5.12 × 100 −4.57 × 100 −8.37 × 100

STD 5.29 × 10−3 2.96 × 100 2.33 × 100 2.96 × 100 4.07 × 10−3 1.21 × 100 2.96 × 100

Best −5.13 × 100 −5.13 × 100 −5.12 × 100 −5.13 × 100 −5.12 × 100 −2.41 × 100 −1.05 × 101

Worst −5.12 × 100 −1.05 × 101 −1.03 × 101 −1.05 × 101 −5.13 × 100 −5.11 × 100 −5.13 × 100

AVG Time 2.62 × 10−1 2.08 × 100 8.02 × 10−1 7.85 × 10−1 1.10 × 100 1.13 × 100 8.30 × 10−1

The results presented in Table 7 demonstrate that the proposed HHO version (SHHO-
IRC) outperformed the other six algorithms in terms of average solutions obtained for 13 out
of the 16 benchmark functions. HHO outperformed the other algorithms for four functions,
while CHHO PM1C2 and SHHO performed the best for three functions, respectively. All
seven HHO versions obtained the same best average solution for F5 and F7. In terms of the
best average solutions with the lowest standard deviation, SHHOIRC outperformed the
other algorithms for nine benchmark functions, while CHHO PM1C2, SHHO, and pure
HHO performed the best for three functions. All seven HHO versions obtained the same
best average solution with the same lowest standard deviation values for F5 and F7.

HHO consumed the least time for 16 benchmark functions. Regarding the best solu-
tions obtained, SHHOIRC outperformed the other algorithms for 6 benchmark functions,
while genuine HHO performed the best for 5, and SHHO for 10 functions. All seven HHO
versions obtained the same best solution for F5 and F7. Finally, in terms of the lowest
worst solutions obtained, SHHOIRC outperformed the other algorithms for 10 benchmark
functions, CHHO PM2C9 for 5, and genuine HHO, CHHO PM1C9, and SHHO for 3 func-
tions. All seven HHO versions obtained the same lowest worst solution for F5 and F7.
According to the results presented in Table 7, the proposed hybrid algorithm, SHHOIRC,
demonstrated superior performance compared with the other seven algorithms tested. The
study concludes that SHHOIRC is a competitive algorithm. Additionally, when compared
to the genuine HHO algorithm, SHHOIRC outperformed it by obtaining better average
solutions on 14 benchmark functions. When compared to the two CHHO PM1 versions,
SHHOIRC outperformed all of them for 13 benchmark functions in terms of average solu-
tions achieved. Similarly, when compared with the five CHHO PM2 versions, SHHOIRC
outperformed all of them for 15 benchmark functions. By comparing the proposed algo-
rithm with the SHHO algorithm, SHHOIRC outperformed it by obtaining better average
solutions on 15 benchmark functions.

Figure 2 displays the convergence curve of the average solutions obtained by the
7 HHO versions for 16 benchmark functions (F1–F16) in 500 iterations. Upon comparing
the 7 HHO versions, the proposed algorithm outperformed the other HHO versions in
terms of obtaining the best average solution for 13 benchmark functions out of the 16 tested.
Therefore, the study concludes that the proposed SHHOIRC algorithm outperforms both
the genuine HHO and other HHO versions.

According to the number of the best average solutions obtained in the experiment on
benchmark functions, it may be concluded that SHHOIRC outperformed other algorithms
by 81.25 percent, compared to 18.75 percent for the prior algorithms.
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Statistical Analysis

Statistical tests should be conducted to evaluate the performance of metaheuristic
algorithms [58]. Statistical analysis is required to determine the best algorithm among
the proposed algorithm and the other six HHO versions. An evaluation of an algorithm’s
performance based on the number of test functions on which it performs better is not
an appropriate method for selecting the best algorithm. Instead, the success order of
the proposed algorithms should be considered across all test functions. The well-known
non-parametric Friedman test is used to evaluate the efficiency of the proposed algorithm.
The rank values of the proposed algorithms derived from the Friedman test are shown
in Table 8. The rank for algorithm i for a specific problem j is denoted as rj

i , such that
1 ≤ i ≤ n and 1 ≤ j ≤ k, where n is the number of benchmark problems and k is the



Mathematics 2023, 11, 4181 18 of 27

number of tested algorithms. The average values are used to evaluate the performance
of the algorithms more precisely. The average rank for each algorithm is denoted as Rj,
which is the sum of the ranks for each algorithm across all performance metrics divided
by the number of performance metrics (benchmark functions), which is calculated using
Equation (21):

Rj =
1
n ∑n

i rj
i (21)

To determine which algorithm is more successful in the HHO algorithm, Table 8
provides the success scores of the HHO variants. During success scoring, for example,
the HHO version that solves the F1 test function best, in terms of the mean value metric,
receives one point, while the HHO version that solves the F1 test function worst receives
seven points. With 33 total points, the proposed SHHOIRC algorithm is the most successful
by obtaining the smallest number of total points. To apply the Friedman test, the average
rank for each algorithm is calculated. The average ranks for each algorithm are shown
in Table 8 in the last row. The best average rank is obtained by SHHOIRC, with a value
of 4.2539.

The Friedman test is used to determine whether there are significant differences
between the performances of multiple algorithms on multiple tasks. In this case, the test
compares the performance of seven algorithms (k = 7) on 16 benchmark functions (n = 16).
We can then use the Friedman test formula (Equation (22)) to calculate the test statistic:

F =
12n

k(k + 1)

[
∑j R2

j −
k(k + 1)2

4

]
(22)

Friedman’s measure is obtained with a value of 21.2076.

Table 8. Ranks of the proposed algorithm and the other HHO versions.

HHO SHHOIRC CHHO
PM1C2

CHHO
PM1C9

CHHO
PM2C2

CHHO
PM2C9 SHHO

F1 4 1 2 5 7 3 6

F2 4 2 3 1 7 5 6

F3 7 1 2 6 5 4 3

F4 1 7 3 4 2 5 6

F5 4 4 4 4 4 4 4

F6 1.5 5 1.5 5 5 5 5

F7 4 4 4 4 4 4 4

F8 6 1 2 4 7 5 3

F9 5 1 2 6 4 7 3

F10 6 1 6 3 5 2 4

F11 2 1 2 4 6 5 7

F12 4 1 4 7 3 2 6

F13 5 1 2 3 7 6 4

F14 6 1 2 5 3 4 7

F15 3 1 2 6 4 5 7

F16 6 1 2 4 3 5 7

Total 69 33 44 71 76 71 82

Average rank 18.3291 4.2539 7.3916 19.6914 22.5625 19.6914 26.2656
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To determine whether the calculated test statistic is significant, we need to compare
it to the critical value from the χ2-distribution with d f degree of freedom. The degrees
of freedom d f for the Friedman test are k− 1, where k is the number of algorithms being
compared. In this case, k = 7, so d f = 6. Using a significance level of 0.05, the critical value
for d f = 6 is 12.59. Since the calculated test statistic (F = 21.2076) is greater than the critical
value (12.59), we can reject the null hypothesis that all algorithms perform equally well.
We can conclude that there is at least one algorithm that performs significantly better or
worse than the others.

To determine the best algorithm, the average ranks obtained in Table 8 are examined.
The algorithm with the lowest average rank is considered the best. In this case, the
algorithm with the lowest average rank is SHHOIRC, with an average rank of 4.2539.
Therefore, SHHOIRC is considered the best algorithm based on the Friedman test.

In conclusion, the Friedman test indicates that there are significant differences in the
performances of the seven algorithms on the 16 benchmark functions. The best-performing
algorithm on average is SHHOIRC, followed by SHHO, HHO, CHHO PM1C2, CHHO
PM2C2, CHHO PM1C9, and CHHO PM2C9.

4.3. Wireless Sensor Network Coverage Optimization

The maximum coverage problem of a WSN can be modeled as follows: It is assumed
that we have m sensors that will be used to cover the monitoring region, and the set S of m
sensors as S = {s1, s2, . . . , si, . . . , sm}, where si is the ith sensor node, and its coordinate
is (xi, yi). And the coordinate of target point t is (xt, yt), which is in the monitoring region.

In this paper, we used the Boolean (deterministic) sensing model, which is the most
commonly used sensing model. In this model, if a point (target) t in the monitoring area is
located within sensing range rs of sensor node si, then it is assumed that t is covered by
si. Therefore, the coverage function, C(si, t), of sensor si and point t can be modeled as in
Equation (23):

C(si, t) =
{

1, i f d(si, t) ≤ rs
0, otherwise

(23)

where d(si, t) is the Euclidean distance between sensor node si and target point t, and rs is
the sensing range.

The coverage of single target point t in the monitoring region by all the sensor nodes
of the WSN is in Equation (24):

C(S, t) = Vm
i=1C(si, t) (24)

To calculate the network’s net coverage, we divide the observing area into g equal
squares grids. We determine the number of grid points in row gh, and columns gw.
Therefore, the number of grid points g is gw × gh. The grid points are set as G = {t1,
t2, . . . , tj, . . . , tg}, and the coordinate of target point tj is

(
xtj , ytj

)
. Consequently, the

definition of the WSN coverage rate is the ratio of the covered grid points, and the number
of all grid points is modeled in Equation (25):

C(S, G) =
∑

gw
xt=1 ∑

gh
yt=1 C(S, t)

gw× gh
(25)

For the sensor nodes set S = {s1, s2, . . . , si, . . . , sm} in the WSN, (xi, yi), representing
si coordinates. In HHO, each hawk represents a solution (sensor distribution) for the WSN
maximum coverage problem. The encoding of each seahorse is:

X = {x1, y1, x2, y2, . . . , xi, yi, . . . , xm, ym} (26)
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The objective/fitness function used to evaluate each sensor distribution is modeled as
(Equation (27)):

f (X) = −C = −
∑

gw
xt=1 ∑

gh
yt=1 C(sall , t)

gw× gh
(27)

Therefore, the coverage optimization problem can be defined as follows: the optimiza-
tion variable is X, and in this optimization problem, we search for the best solution X to
minimize f (X), to find the maximal coverage.

Herein, we used a WSN that includes 30 sensor nodes, with sensing radius rs = 2.5 m.
These sensors are distributed in a 20× 20 m2 monitoring region. The HHO population size
PS = 30. The number of grid points is set to 402 for a more accurate coverage rate. In this
paper, we tested SHHOIRC, genuine HHO, GWO, and WOA on two maximum coverage
experiments. In the first experiment, the maximum number of iterations in each run is
500, with a maximum number of runs of 10. In the second one, the maximum number of
iterations in each run is 1000, with a maximum number of runs of 10. The results of the
first and second experiments are shown in Tables 9 and 10, respectively.

The two experiments compare the proposed HHO version (SHHOIRC) with pure
HHO and two well-known swarm intelligence algorithms (GWO and WOA) in terms
of average solution, standard deviation values, best solutions obtained, worst solutions
obtained, and average time consumed. The four algorithms are used to solve the stated
maximum coverage problem for wireless sensor networks.

4.3.1. Experiment 1 (500 Iterations)

Table 9 shows the results obtained by the four algorithms for the stated maximum
coverage problem (500 iterations). Table 1 shows comparisons between the solutions
obtained in terms of average, best, and worst solutions, standard deviation values, and
average time.

Table 9. Results obtained for maximum coverage problem by the four algorithms (500 iterations).

AVG Best Worst STD AVG Time

SHHOIRC 92.45 95.4375 90.625 1.7194 1726.5590

HHO 90.0625 91.4375 88.625 1.1273 949.8674

GWO 87.1063 94.5 78.9375 6.0276 425.0602

WOA 87.7375 92.375 82.5625 2.6411 403.2416

Table 10. Results obtained for maximum coverage problem by the four algorithms (1000 iterations).

AVG Best Worst STD AVG Time

SHHOIRC 93.8064 97.125 91.9375 1.6246 4183.2866

HHO 91.6313 93.125 90 0.9183 1947.2500

GWO 90.6313 96.125 79.125 4.6276 781.6393

WOA 89.2 92 85 2.2783 864.4674

In terms of average solutions obtained by the proposed algorithm SHHOIRC, HHO,
GWO, and WOA, it is shown that the proposed algorithm SHHOIRC outperformed the
other three algorithms. Based on this metric, SHHOIRC achieved the highest average
score of 92.45%, followed by HHO (90.06%). The worst-performing algorithms in terms of
average score were GWO (87.11%) and WOA (87.74%).

In terms of the best solution, the proposed algorithm SHHOIRC achieved the highest
best solution with a value of 95.44%, followed by GWO (94.5%), and the lowest best solution
was obtained by HHO with a value of 91.44%. The highest worst solution was obtained by
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SHHOIRC with a value of 90.625%, and the lowest worst solution was obtained by GWO
with a value of 78.94%.

The standard deviation metric shows the variability in fitness values achieved by
each algorithm across multiple runs. Based on this metric, GWO had the highest standard
deviation of 6.03, followed by WOA (2.64). The algorithms with the lowest standard
deviation were HHO (1.13), and SHHOIRC (1.72). In terms of the average time consumed,
SHHOIRC had the longest runtime of 1726.56 s. The algorithms with the shortest runtime
were WOA (403.24) and GWO (425.06).

Figure 3a shows the convergence curve of average solutions obtained so far by the
four algorithms, and Figure 3b shows the convergence curve of the best solutions obtained
so far by the four algorithms. As shown in Figure 3, the highest solutions are obtained by
the proposed algorithm SHHOIRC.
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Figure 4a shows the initial distribution of sensor nodes for the best solution obtained
by SHHOIRC, and Figure 4b shows the final distribution of sensor nodes for the best
solution obtained by SHHOIRC with a coverage rate of 95.4375%.
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4.3.2. Experiment 2 (1000 Iterations)

Table 10 shows the results obtained by SHHOIRC, HHO, GWO, and WOA for the
stated maximum coverage problem (1000 iterations). Table 10 shows comparisons between
the solutions obtained in terms of average, best, and worst solutions, standard deviation
values, and average consumed time.
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In terms of average solutions obtained by the proposed algorithm SHHOIRC and
the three algorithms, it can be seen that the proposed algorithm SHHOIRC outperformed
the other algorithms. In terms of the average solution, SHHOIRC obtained the best value
of 93.81%. The worst average solution was obtained by WOA with a value of 89.2%. In
terms of the best solution, the proposed algorithm SHHOIRC achieved the highest best
solution with a value of 97.13%, and the lowest best solution was obtained by WOA with a
value of 92%. On the other hand, the highest worst solution was obtained by SHHOIRC
with a value of 91.94%, and the lowest worst solution was obtained by GWO with a value
of 79.13%.

In terms of average time consumed, the highest time consumption was obtained by
SHHOIRC with a value of 4183.29 s, and the lowest time consumption was obtained by
GWO with a value of 781.64 s. Based on the STD metric, the lowest standard deviation
value of 0.92 was obtained by the HHO algorithm, and the highest standard deviation
value of 4.63 was obtained by GWO.

Figure 5a shows the convergence curve of average solutions obtained so far by the
four algorithms, and Figure 5b shows the convergence curve of best solutions obtained so
far by the four algorithms. As shown in Figure 5, the highest solutions are obtained by the
proposed algorithm SHHOIRC. Figure 6a shows the initial distribution of sensor nodes
for the best solution obtained by SHHOIRC, and Figure 6b shows the final distribution of
sensor nodes for the best solution obtained by SHHOIRC with a coverage rate of 97.125%.
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4.3.3. Statistical Analysis

For Experiment 1, we performed a one-way analysis of variance (ANOVA) to com-
pare the mean performance of the algorithms. The results from one-way ANOVA for
Experiment 1 are shown in Table 11. The one-way ANOVA test conducted on the data
from Experiment 1 yielded an F-statistic of 4.98. To determine whether the calculated test
statistic is significant, we need to compare it with the critical value from the F-distribution
with d f 1 and d f 2 degrees of freedom. The degrees of freedom d f 1 and d f 2 for the
one-way ANOVA test are k− 1 and k(n− 1), respectively, where k is the number of algo-
rithms being compared and n is the number of runs. In this case, k = 4 and n = 10, so
d f 1 = 3 and d f 2 = 36. Using a significance level of 0.05, the critical value for the stated
d f 1 and d f 2 is 2.87. Since the calculated test statistic (F = 4.98) is greater than the critical
value (2.87), we can reject the null hypothesis that all algorithms perform equally well. We
can conclude that there is at least one algorithm that performs significantly better or worse
than the others. The corresponding p-value is 0.0054, which is less than 0.05. In this case,
the p-value of 0.0054 suggests that the observed differences in mean performances among
the algorithms in Experiment 1 are statistically significant.

Table 11. Results obtained by one-way ANOVA for Experiment 1.

Source of
Variation

Sum of Squares
(SS)

Degrees of
Freedom (df)

Mean Sum of
Squares (MSS) F-Computed (Fc) p-Value

Columns SSTr = 177.517 d f 1 = 3 MSSTr = 59.1725 4.98 0.0054

Error SSE = 427.81 d f 2 = 36 MSSE = 11.8836

Total SST = 605.327 39

Moving on to Experiment 2, the results from one-way ANOVA for Experiment 2 are
shown in Table 12. The one-way ANOVA test conducted on the data from Experiment 2
yielded an F-statistic of 4.98. By comparing the calculated test statistic (F = 4.98) with the
critical value (2.87) for the stated d f 1 and d f 2 using a significance level of 0.05, it is notably
greater. Therefore, we can reject the null hypothesis that all algorithms perform equally
well and conclude that there is at least one algorithm that performs significantly better or
worse than the others. Since the corresponding p-value is 0.0054, the low p-value (less than
0.05) indicates that the observed differences in mean performances among the algorithms
in Experiment 2 are statistically significant.

Table 12. Results obtained by one-way ANOVA for Experiment 2.

Source of
Variation

Sum of Squares
(SS)

Degrees of
Freedom (df)

Mean Sum of
Squares (MSS) F-Computed (Fc) p-Value

Columns SSTr = 122.47 d f 1 = 3 MSSTr = 37.4902 4.98 0.0054

Error SSE = 270.79 d f 2 = 36 MSSE = 7.522

Total SST = 383.261 39

From the boxplot of Experiments 1 and 2 shown in Figure 7a,b, it can be observed that
the SHHOIRC boxplot is located higher than the other algorithms. The ‘+’ marks represent
the outliers.

Based on the statistical analysis performed on the data from Experiments 1 and 2, we
can conclude that SHHOIRC has a significantly higher mean than the other algorithms
tested. Specifically, SHHOIRC showed a significantly higher mean performance than pure
HHO, GWO, and WOA. The significant differences in mean performances, supported
by the calculated p-values, suggest that SHHOIRC is the best algorithm among the four
algorithms in these experiments.
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5. Conclusions

The proposed novel hybrid algorithm, SHHOIRC, incorporates self-adaptation and
combines the HHO algorithm with three chaotic optimization techniques. On 16 well-
known benchmark functions, the proposed algorithm was evaluated, and its performance
was compared to that of authentic HHO and five other HHO variants. The proposed
algorithm SHHOIRC significantly improves the performance of HHO. SHHOIRC obtained
the best results in terms of average solution and best average solutions with the lowest
standard deviation for 13 benchmark functions. In addition, statistical analyses employing
the Friedman test and success scores confirmed that SHHOIRC is the most effective algo-
rithm among the seven HHO variants evaluated. These results indicate that the proposed
hybridization approach, which combines HHO with three chaotic optimization methods
and incorporates self-adaptation, can be used to enhance the performance of other meta-
heuristic algorithms. The novel hybrid algorithm SHHOIRC and six other HHO variants
are evaluated using sixteen well-known benchmark functions. The proposed algorithm
SHHOIRC significantly improves the efficiency of HHO. The simulation experiment and
statistical analysis demonstrate that the new hybrid algorithm SHHOIRC outperformed
the other four CHHO variants, SHHO, and HHO. Furthermore, the proposed algorithm
was tested on a real-life problem, which is the maximum coverage problem of WSN, and
compared with genuine HHO, GWO, and WOA. The results of the experiments indicate
that the proposed algorithm SHHOIRC performs better than the other algorithms tested in
solving the maximum coverage problem for WSN. In both Experiments 1 and 2, SHHOIRC
achieved the highest average solution and best solution values, while also having a rel-
atively low standard deviation value. The statistical analysis of the results from both
experiments shows that SHHOIRC has a significantly higher mean performance than the
other algorithms tested. This indicates that SHHOIRC is a promising algorithm for solving
maximum coverage problems in WSN and could be further developed and optimized
for other related problems. The proposed algorithm SHHOIRC exhibits considerable
improvement in HHO performance.

In the future, we intend to apply SHHOIRC to more real-world problems, and we
anticipate achieving new breakthroughs in their resolution. In addition, we intend to
introduce novel integration techniques to assist metaheuristic algorithms in escaping each
local minimum.
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