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Abstract: Biomarker selection for predictive analytics encounters the problem of identifying a
minimal-size subset of genes that is maximally predictive of an outcome of interest. For lung
cancer gene expression datasets, it is a great challenge to handle the characteristics of small sample
size, high dimensionality, high noise as well as the low reproducibility of important biomarkers in
different studies. In this paper, our proposed meta-analysis-based regularized orthogonal match-
ing pursuit (MA-ROMP) algorithm not only gains strength by using multiple datasets to identify
important genomic biomarkers efficiently, but also keeps the selection flexible among datasets to
take into account data heterogeneity through a hierarchical decomposition on regression coefficients.
For a case study of lung cancer, we downloaded GSE10072, GSE19188 and GSE19804 from the GEO
database with inconsistent experimental conditions, sample preparation methods, different study
groups, etc. Compared with state-of-the-art methods, our method shows the highest accuracy, of up
to 95.63%, with the best discriminative ability (AUC 0.9756) as well as a more than 15-fold decrease
in its training time. The experimental results on both simulated data and several lung cancer gene
expression datasets demonstrate that MA-ROMP is a more effective tool for biomarker selection and
learning cancer prediction.

Keywords: biomarker selection; meta-analysis; regularized orthogonal matching pursuit; lung cancer
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1. Introduction

Biomarker selection [1] is the process of detecting relevant genes and removing irrele-
vant and redundant ones in order to obtain a subset of biomarkers that properly describes
individuals’ predisposition to particular types of cancers with a minimum degradation in
performance. Cancer can be described as a group of diseases associated with uncontrollable
cell growth that spreads into surrounding tissues. When cancer starts in the lungs, it is
called lung cancer, and this is considered the cause of the greatest number of deaths from
2006 through 2020 [2]. With the development of new molecular and cell technologies, public
gene expression databases have growth exponentially, providing an unprecedented number
of datasets and studies. The main challenge with gene expression data is identifying new
methods that can cope with information with a small sample size, high dimensionality,
high noise as well as low reproducibility or lack of generalizability, due to small sample
sizes relative to the large number of genes and low signal-to-noise ratios in most gene
expression datasets.

Feature selection has been shown to provide an effective tool for analyzing omics data
for the removal of irrelevant, noisy and redundant data while increasing the learning accu-
racy and improving the quality of the classification results [3,4]. To avoid this problem, the
importance of feature selection has been stressed and several high-dimensional algorithms
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have been proposed. Particularly, regularization methods use different penalty functions
embedded in the learning procedure as a single process and have lower risk of over-fitting.
The least absolute shrinkage and selection operator (lasso, `1-norm) [5], which performs
continuous shrinkage and feature selection at the same time, is perhaps the most widely
used signal processing algorithm in bioinformatics, machine learning and statistics. Other
`1-norm-based learning methods typically include smoothly clipped absolute deviation
(SCAD) [6], minimax concave penalty (MCP) [7] and group lasso [8]. Specifically, lasso
solves a global optimization problem in a greedy way [9], similarly to another well-known
algorithm in signal processing—the orthogonal matching pursuit (OMP) or orthogonal
greedy algorithm.

The OMP algorithm [10] solves the problem via iterative methods using signal co-
efficients and tends to select only one from correlated features. Compared with other
alternative methods, major advantages of the OMP are its simplicity and fast implementa-
tion. This method was originally employed to select features for binary-class classification
and has been used for feature selection and signal recovery. For example, Tawfic and
Kayhan [11] proposed least support denoising–orthogonal matching pursuit (LSD-OMP) to
reconstruct an original signal with the presence of noise. Then, Ji and Zhang [12] improved
the reconstruction accuracy of the LSD-OPM through setting the threshold, eliminating
some wrong atoms and combining some support sets to locate the optimal support set. In
this paper, we utilize the MS-ROMP strategy for the biomarker selection problem. With
the development of bioinformatics, Shi et al. [13] proposed structured OMP by considering
correlations among distinct features for multi-class classification. Recently, Tsagris et al. [14]
proposed a general OMP feature selection algorithm that can handle binary outcomes,
multi-class outcomes, continuous outcomes and censored time-to-event outcomes with
applications on gene expression data. It is usually assumed that the same features in multi-
ple studies should make the same contribution to their corresponding results. However,
most existing methods identify a feature (gene) that is important in some studies but may
not affect other studies. This may be due to the different experimental conditions, sample
preparation tools, the sensitivity and accuracy of instruments, etc. Hence, it is important to
make full use of different datasets and maintain the flexibility of feature selection at the
same time.

Over the past few years, gene expression meta-analysis techniques have combined
multiple and independent studies to improve reproducibility or obtain more reliable
biomarkers [15]. There are three main types of meta-analysis methods [16]: meta-analysis
based on combining results from different studies (e.g., effect sizes, p values or ranks), meta-
analysis based on particular cross-platform normalization and a unified model on multiple
datasets without data merging that can account for the joint effects of genes on clinical
outcomes. Considering the joint modeling of multiple genes, Li et al. [17] proposed meta-
lasso, and then meta-nonconvex methods emerged gradually for solving the heterogeneity
problem [18,19]. Thus, we combine the MS-ROMP strategy with meta-analysis techniques
to improve the strength across multiple datasets.

In this paper, a novel meta-analysis-based regularized orthogonal matching pursuit,
namely MA-ROMP, is presented and the workflow of our proposed algorithm is shown
in Figure 1. Several microarray gene expression data points for lung cancer are obtained
from disparate platforms, standardized data and extracted common genes. After training a
unified model on multiple datasets without data merging, MA-ROMP divides the results
into tumor and nontumor disease with ROC evaluation, overlapping selected features
(genes) and the highest-ranked gene alterations as a possible biological explanation. In this
way, the MA-ROMP method is suitable for combining studies from different platforms or
conditions, and obtains reliable results with a small number of studies.
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Figure 1. The workflow of the meta-analysis-based regularized orthogonal matching pursuit (MA-
ROMP) to predict lung cancer with selected biomarkers. Several microarray gene expression data
points for lung cancer were obtained from disparate platforms, data were standardized and common
genes were extracted. After training a unified model on multiple datasets without data merging, the
MA-ROMP divides the results into tumor and nontumor disease with ROC evaluation, overlapping
selected features (genes) and the highest-ranked gene alterations as a possible biological explanation.

The results showing that our proposed MA-ROMP not only borrows strength from
across multiple datasets to identify important genomic biomarkers efficiently, but it also
mainains selection flexibility among datasets to take into account data heterogeneity
through a hierarchical decomposition on regression coefficients. Furthermore, we apply the
MA-ROMP in a real RNA expression data experiment. Compared with the state-of-the-art
methods, our proposed method MA-ROMP has good performance.

The remainder of this paper is organized as follows: The regularized orthogonal
matching pursuit algorithm for biomarker selection is presented in Section 2. In Section 3,
we describe the implementation of novel meta-analysis-based regularized orthogonal
matching pursuit (MA-ROMP). Then, we measure and discuss the performance of MA-
ROMP on both simulated data and three publicly available lung cancer gene expression
datasets in Section 4. A concluding remark is finally provided in Section 5.

2. The Regularized Orthogonal Matching Pursuit Algorithm for Biomarker Selection

As one of the main greedy pursuit algorithms, OMP is a forward search algorithm
that was first proposed for continuous outcomes in the context of signal reconstruction [20].
Tawfic and Kayhan [11] proposed that least support denoising–orthogonal matching pur-
suit (LSD-OMP) enhanced OMP by choosing an optimum support set out of many in each
iteration. Through setting the threshold, eliminating some wrong atoms and combining
some support sets to locate the optimal support set, Ji and Zhang [12] proposed a regu-
larized orthogonal matching pursuit-based multiple support (MS-ROMP) to improve the
reconstruction accuracy of the LSD-OMP.

We utilize MS-ROMP in the biomarker selection problem. Suppose y denotes a contin-
uous outcome and a data matrix X = {Xi}n

i=1 of continuous features with n observations.
The ith column of X is denoted as Xi = (xi1, xi2, · · · , xip) corresponding to the p dimen-
sional coefficient β and XS denotes the matrix with all selected genes (variables), where
S is the index set of selected genes. The algorithm initiates the current selection S ← φ,
least support set J ← φ and residuals r ← y. At each iteration, the gene with the largest (in
absolute value) Pearson linear correlation with r is selected for inclusion. If X is standard-
ized, then it suffices to compute 〈r, Xi〉, i.e., the inner product of the two vectors. We can
choose the index of the L (usually 10) biggest inner product as the optimum support set in
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each iteration. By setting the threshold λ ≥ 0, we eliminate some wrong atoms and find J∗

to satisfy
∣∣〈r, XJ∗

〉∣∣ ≥ λ
∣∣〈r, XJ

〉∣∣. After selection, a new least squares regression model is
fitted, resulting in new β coefficients, and is used to update the residuals. The procedure
stops when the `2-norm of the residuals is below the smallest positive number ε, which is
0.001 in this paper.

The computational complexity of each step of MS-ROMP is provided in Algorithm 1.
The computational complexity of lines 4–11 is O(l × (n− 1 + 1 + 1 + n2 p + 1 + 1)). Hence,
the time taken by Algorithm 1 is O(ln2 p + ln). For “high-dimensional-small-sample-size”
data, l, n� p, the computational complexity of Algorithm 1 is further reduced to O(p).

Algorithm 1 The MS-ROMP Algorithm for Biomarker Selection
Input: Outcome values y, dataset X, stop condition ε;
Hyper-Parameters: λ, L;
Output: A subset XS ⊆ X of selected genes corresponding with its coefficient β.
1: Standardize the data: Center each gene expression data and y, then scale them to unit

norm. . O(p)
2: Initialize index set S← φ, least support set J ← φ, residuals r ← y. . O(1)
3: S← φ, l ← 1. . O(1)
4: while ‖ r ‖2> ε do
5: J ← sliceMax(|〈r, Xi〉|, L), i ∈ X \ S; . O(n− 1)
6:

∣∣〈r, XJ∗
〉∣∣ ≥ λ

∣∣〈r, XJ
〉∣∣; . O(1)

7: S← S∪ {J∗}; . O(1)
8: β← least squares regression of y on XS; . O(n2 p)
9: update residuals r ← y− XS · β; . O(1)

10: l ← l + 1. . O(1)
11: end while
12: return XS, β.

3. The MA-ROMP Algorithm for Biomarker Selection

Machine learning classifiers are very popular for predicting cancer disease using mi-
croarray gene expression data. Logistic regression, one of the most well-known algorithms
for binary classification, has no turning parameters and its prediction equation is simple
and easy to implement. In this paper, to demonstrate the effectiveness of the proposed
MA-ROMP algorithm, we use logistic regression to predict cancer risk—whether a person
will develop lung cancer or not.

Given M independent datasets, D = {X̃, Ỹ}, where X̃ = diag(X1, X2, · · · , XM),
Ỹ = (YT

1 , YT
2 , · · · , YT

M)T and the superscript T denotes the standard vector transpose.
Denote Xmi = (xmi,1, xmi,2, · · · , xmi,p) as a vector of expression profiles of the ith sam-
ple with p genes in the mth dataset and ymi the corresponding dependent variable with
the value of 0 or 1 for binary classification. In logistic regression, a logit transformation
θ(s) = es/(1 + es) is applied on the odds—that is, the probability of success divided by the
probability of failure. We assume the conditional probability that ymi takes value 1 given
the gene expression vector Xmi, and the logistic function is represented by the following
formulas:

P(ymi = 1|Xmi) = θ(βm0 + XT
miβm + εmi)

=
eβm0+XT

mi βm+εmi

1 + eβm0+XT
mi βm+εmi

, (1)

where i = 1, . . . , nm, m = 1, . . . , M,→ R, βm0 is the interception, βm ⊆ Rp is a vector of
regression coefficient for the mth data and εmi are nm independent random errors with
a normal distribution function. We hope to find the true nonzero components of βm for
each dataset.

Because of the data heterogeneity, we utilize a joint fitting approach [17] that borrows
strength from across different datasets. Consider the following hierarchical reparameterization:
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βmj = gjζmj, (2)

where j = 1, 2, . . . , p, m = 1, . . . , M, the parameter gj is an effect of the jth gene at the first
level of the hierarchy and ζmj ≥ 0 with different m’s reflects effect differences for the jth
gene among M datasets at the second level of the hierarchy. If there is no heterogeneity,
i.e., ζmj = 1, then βmj = gj.

This proposed MA-ROMP selects genomic biomarkers by solving

max
βm0,g,ζm

 M

∑
m=1
Lm(βm0, g, ζm)−

p

∑
j=1
F (gj; λg)−

p

∑
j=1

M

∑
m=1
F (ζmj; λζ)

, (3)

where F is the MS-ROMP function,

Lm(βm0, g, ζm) =
nm

∑
i=1

ymi

{
βm0 + XT

mi(g · ζm)
}
− log

[
1 + eβm0+XT

mi(g·ζm)
]
,

g = (g1, g2, · · · , gp)T , ζm = (ζm1, ζm2, · · · , ζmp)T , β0 = (β10, β20, · · · , βM0)
T ,

ζ = (ζT
1 , ζT

2 , · · · , ζT
M)T and g · ζm means the element-wise product. Furthermore, there are

two hyper-parameters: λg controls the biomarker selection algorithm at the entire-gene
level and can effectively remove unimportant genes in all M datasets, while λζ controls
each individual dataset. Hence, if gj is not equal to zero, the corresponding βmj can still be
shrunken to zero by some ζmj.

As shown in Algorithm 2, the MA-ROMP algorithm solves β0, g and ζ iteratively.
First we fix β0 and ζ to update g via MS-ROMP function F . Then, β0 and g are fixed to
update ζ. We next maximize the log-likelihood Lm for the mth dataset over β0 by fixing g
and ζ. These above training steps are repeated until the algorithm converges. At last, we
predict the cancer risk with above selected biomarkers.

Algorithm 2 The MA-ROMP Algorithm for Biomarker Selection

Input: Datasets D = {Xm, Ym}M
m=1, stop condition;

Hyper-Parameters: λg, λζ ;
Output: A subset XS ⊆ X of selected genes.
1: Standardize the data: Center each gene expression data Xm, then scale them to unit

norm. . O(p)
2: Initialize the hierarchical parameter ζ

(0)
mj ← 1, the interception β

(0)
m0 ← 0 and the iteration

index k← 1. . O(1)

3: while max |β̂(k) − β̂
(k−1)| > ε do

4: Xm ← Xmζ
(k−1)
m ; . O(nm p)

5: update g(k) ← F (g; λg); . O(p)
6: Xm ← Xmg(k); . O(nm p)
7: update ζ

(k)
m ← F (ζm; λζ); . O(p)

8: βm
(k) ← g(k)ζ(k)m ; . O(1)

9: update β
(k)
m0 ← argmax

βm0
L(β

(k−1)
m0 , βm

(k)); . O(n2
m p)

10: β̂
(k) ← (β

(k)
m0; βm

(k)). . O(1)
11: end while
12: S← index of nonzero elements in β̂. . O(1)
13: return XS.
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Regarding the overall computational complexity of MA-ROMP, we have analyzed
the function F in Algorithm 1. The details of computational complexity are given in
Algorithm 2. Lines 3–11 consume the time O(k× (nm p + p + nm p + p + 1 + n2

m p + 1)), i.e.,
O(kn2

m p + 2k(nm + 1)p + 2k). For “high-dimensional-small-sample-size” data, k, nm � p,
the computational complexity of Algorithm 2 is further reduced to O(p), which is the same
as Algorithm 1. Combining gene expression meta-analysis techniques greatly enhances
MS-ROMP’s ability to define common biomarkers across multiple datasets.

4. Experiments

To demonstrate the performance of our proposed MA-ROMP algorithm, we compare
it with seven state-of-the-art methods, that is, lasso, SCAD, MCP, meta-lasso, meta-SCAD,
meta-MCP and MS-ROMP.

4.1. Simulations

In order to simulate multiple datasets, we suppose that the number of datasets M is
10, and nm is used to represent the sample size where m = 1, . . . , M. Moreover, nm = 50
and the number of genes (features) p is 1000. We generate the gene expression data Xm in
normal distribution, associated with the response ym, based on the following logistic model:

P(ymi = 1|Xmi) =
eβm0+XT

mi β
∗
m+εmi

1 + eβm0+XT
mi β

∗
m+εmi

, (4)

where the interception βm0 = 0, the independent random noise εmi ∼ N(0, 1) and the
nonzero regression coefficient β∗

m of the first 10 genes are generated via a joint fitting
approach in Equation (2). To allow possible different covariance structures, the effect of the
gene g for all M datasets is generated from N(3, 0.52) and the discrepancy among different
datasets ζ is generated from Bernoulli(π0), where π0 : 0.2, 0.5 and 0.9 from low to high
heterogeneity. This means that for the first 10 genes, 1 gene is important with a probability
of π0 in each dataset. For each case, we run 50 replicates.

The optimal hyperparameters of all methods are selected by minimizing the Bayesian
information criterion (BIC) defined as:

BIC(λ) =
M

∑
m=1
{−2Lm(β̂m,λ) + log(nm)d fλ}, (5)

where the mth dataset’s estimated coefficients with hyperparameter λ are expressed as
β̂m,λ, d fλ is the number of nonzero parameters, nm is the sample size and β̂m,λ is the
log-likelihood with β∗

m being replaced by its estimate β̂m,λ.
The biomarker selection performances of the eight methods are summarized using

selection sensitivity, specificity and accuracy of coefficient β in Table 1. The sensitivity
is the proportion of nonzero β∗mjs that are correctly estimated as nonzero, the specificity
is the proportion of zero β∗mjs that are correctly estimated as zero and the accuracy is
the proportion of β∗mjs that are correctly estimated. The specificity and accuracy of the
coefficient in Table 1 for all eight methods are similar. The sensitivity of the methods
without a meta-analysis learning policy, which are lasso, SCAD, MCP and MS-ROMP,
dramatically decreases as π0 increases, while meta-lasso, meta-SCAD, meta-MCP and
MA-ROMP still have steady performances. Especially when data heterogeneity is strong
(π0 = 0.2), our proposed MA-ROMP has the superior performance.



Mathematics 2023, 11, 4171 7 of 13

Table 1. Results of the synthetic data, sensitivity, specificity and accuracy of coefficient β of the four
methods are based on 50 simulations. Standard errors are given in parentheses.

Methods π0 = 0.9 π0 = 0.5 π0 = 0.2

SCAD
Sensitivity 0.470 (0.021) 0.400 (0.001) 0.310 (0.011)
Specificity 0.946 (0.011) 0.942 (0.001) 0.940 (0.002)
Accuracy 0.941 (0.001) 0.937 (0.001) 0.934 (0.001)

lasso
Sensitivity 0.540 (0.049) 0.520 (0.156) 0.360 (0.197)
Specificity 0.947 (0.013) 0.948 (0.011) 0.945 (0.011)
Accuracy 0.943 (0.013) 0.944 (0.013) 0.940 (0.013)

MCP
Sensitivity 0.560 (0.002) 0.520 (0.001) 0.320 (0.101)
Specificity 0.899 (0.001) 0.894 (0.001) 0.890 (0.001)
Accuracy 0.896 (0.001) 0.890 (0.001) 0.885 (0.001)

MS-ROMP
Sensitivity 0.610 (0.002) 0.570 (0.011) 0.410 (0.002)
Specificity 0.944 (0.001) 0.922 (0.001) 0.943 (0.001)
Accuracy 0.939 (0.001) 0.917 (0.001) 0.937 (0.001)

meta-SCAD
Sensitivity 0.890 (0.001) 0.870 (0.001) 0.690 (0.056)
Specificity 1 (0) 0.999 (0.001) 0.981 (0.004)
Accuracy 0.999 (0.001) 0.998 (0.001) 0.978 (0.003)

meta-lasso
Sensitivity 0.960 (0.001) 0.860 (0.001) 0.670 (0.048)
Specificity 0.986 (0.001) 0.984 (0.001) 0.984 (0.001)
Accuracy 0.986 (0.001) 0.983 (0.001) 0.981 (0.001)

meta-MCP
Sensitivity 0.990 (0.032) 0.930 (0.001) 0.700 (0.067)
Specificity 0.964 (0.002) 0.999 (0.001) 0.976 (0.004)
Accuracy 0.965 (0.002) 0.998 (0.001) 0.975 (0.004)

MA-ROMP
Sensitivity 0.900 (0.001) 1 (0) 0.790 (0.001)
Specificity 0.994 (0.001) 0.995 (0.001) 0.993 (0.001)
Accuracy 0.993 (0.001) 0.995 (0.001) 0.991 (0.001)

4.2. Real-Data Analysis

Cancer is a major public health problem worldwide. Moreover, lung cancer was the
most common cause of cancer death according to [21]. We demonstrate our proposed
method by analyzing lung cancer microarray expression data from NCBI’s gene expression
omnibus (GEO, https://www.ncbi.nlm.nih.gov/gds/, accessed on 24 September 2023) for
the different experimental datasets with the accession numbers in Table 2. GSE10072 [22]
contains 107 samples from 58 tumor and 49 nontumor tissues with 22,283 genes obtained
using GEO Platform GPL96. GSE19188 [23] contains 91 patients from 91 tumor and 65 adja-
cent normal lung tissue samples with 54,675 genes obtained using GEO Platform GPL570.
GSE19804 [24] contains 60 pairs of tumor and adjacent normal lung tissue specimens with
54,675 genes obtained using GEO Platform GPL570.

Table 2. Summaries of datasets in the lung cancer.

Datasets GSE10072 GSE19188 GSE19804

Platform GPL96 GPL570 GPL570
Total sample size 107 156 120

No. of genes 22,283 54,675 54,675

These above three balanced datasets come from inconsistent experimental conditions,
sample preparation methods, measurement sensitivities or precision, and also from dif-
ferent study groups and biological sample selections. We extracted 22,277 common genes
from these three lung cancer gene expression datasets as the merged set of genes. In order
to keep class balance, we randomly selected from two types of samples respectively, and
divided the data into 70% training and 30% test sets.

https://www.ncbi.nlm.nih.gov/gds/
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We measure the computational efficiency of each meta-analysis-based algorithm dur-
ing the the K-fold cross-validation. Typically, K is chosen to be 5 or 10 in medium-sized
datasets. The special case of K-fold cross-validation is called leave-one-out cross-validation,
which is similar to the jack-knife method only for small data, and costly for data of other
scales. Our training data were medium-sized, so we used 10-fold cross validation.

Figure 2 shows the boxplot for training times of four meta-analysis-based algorithms
during the 10-fold cross-validation. The median training times of MA-ROMP, meta-lasso,
meta-MCP and meta-SCAD (the red lines within each blue box) are 402.65 s, 4964.9 s,
6327.05 s and 4641 s respectively. The blue box length is the interquartile range and the
crosses in red denote outliers. Our proposed MA-ROMP requires the shortest training
time, and the computational complexity of MA-ROMP has been illustrated in Algorithm 2.
Unlike the orthogonal matching pursuit-based method, meta-lasso, meta-MCP and meta-
SCAD utilized an approximate message passing algorithm [25] containing a pseudo-inverse
operation, which consumes considerable time in high dimensions and sparse data.

Figure 2. Boxplot for the training times of four meta-analysis-based algorithms during the 10-fold
cross-validation. The median training times of MA-ROMP, meta-lasso, meta-MCP and meta-SCAD
(the red lines within each blue box) are 402.65 s, 4964.9 s, 6327.05 s and 4641 s respectively. The blue
box length is the interquartile range and the crosses in red denote outliers.

As shown in Table 3, when the hyper-parameters λg = 0.01, λζ = 0.01, the MA-ROMP
performs better than other three meta-analysis-based methods with the highest accuracy
of up to 95.63%, and is on average 11 times faster than meta-SCAD. Moreover, we used
the area under the curve (AUC) as the performance metric in binary classification. Ideally,
ROC curves that are closer to the upper-left corner (0, 1) indicate superior performance, as
this signifies higher sensitivity and lower false-positive rates. Our proposed MA-ROMP
exhibited a shape closest to the upper-left corner, along with the best discriminative ability
with AUC 0.9756, in Figure 3, that moved up 11.64%, compared with the meta-MCP, method
and cut its training time more than 15 times.

Table 4 gives the names of selected genes in each dataset. To further validate the genes
selected by our proposed method, we performed an alterations analysis using cBioPortal
(https://www.cbioportal.org/, accessed on 24 September 2023), illustrated in Figure 4,
and the overlap of commonly selected genes across the different methods is shown in
Figure 5. As seen in Table 4 and Figures 4 and 5, COL11A1 is associated with angiogenesis,
invasion and drug resistance in cancer, and it is the most altered gene, representing 20% of
all alteration in all patients, and was selected by meta-SCAD and MA-ROMP in Table 4. Per-
haps that is why, so far, meta-SCAD has shown a better performance than meta-lasso and
meta-MCP, as shown in Table 3, despite the limited amount of selected genomic biomarkers.
Additionally, the growth factor FGF-14 negatively regulates COL11A1 expression in lung

https://www.cbioportal.org/
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cancer cells [26]. Yi et al. [27] identified that COL11A1 acted downstream of secreted phos-
phoprotein 1 (SPP1), which facilitates cell migration and invasion. This SPP1, also called
osteopontin, is expressed in tumor cells, and alterations were detected in 2.7% of patients.
Many studies demonstrated that its methylation variability and mRNA expression level
are both correlated with prognosis in multiple cancer types [28,29]. SPP1-related signals
are considered to represent a potential target for anti-cancer immunotherapies [30,31].

Table 3. Results of three lung cancer datasets; sensitivity, specificity and accuracy of different methods
are based on 50 simulations. Standard errors are given in parentheses.

Methods
Training Data

Sensitivity Specificity Accuracy

MA-ROMP 0.9788 (0.001) 0.9465 (0.001) 0.9644 (0.001)
meta-lasso 0.4722 (0.001) 0.6667 (0.002) 0.6683 (0.001)
meta-MCP 0.4722 (0.001) 0.6667 (0.001) 0.6683 (0.002)

meta-SCAD 0.5470 (0.004) 0.9167 (0.001) 0.7178 (0.001)

Methods
Training Data

Sensitivity Specificity Accuracy

MA-ROMP 1 (0) 0.9188 (0.001) 0.9563 (0.001)
meta-lasso 0.4119 (0.003) 0.6528 (0.002) 0.5249 (0.011)
meta-MCP 0.4050 (0.013) 0.6528 (0.002) 0.5215 (0.001)

meta-SCAD 0.5278 (0.001) 0.9231 (0.001) 0.6571 (0.004)

Figure 3. The ROC curves obtained by different methods with meta-analysis learning policy in three
lung cancer datasets. The area under the curve (AUC) of MA-ROMP, meta-lasso, meta-MCP and
meta-SCAD are 0.9756, 0.8551, 0.8592 and 0.6118 respectively.
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Table 4. The genomic biomarkers selected by different meta-analysis-based methods in three lung
cancer datasets.

Methods GSE10072 GSE19188 GSE19804

MA-ROMP

COL11A1 COL11A1 COL11A1
COL10A1 COL10A1 COL10A1

CRISP1 CRISP1 CRISP1
MC5R MC5R GPM6A

GPM6A GPM6A SPP1
SPP1 SPP1 ADAMTS8

ADAMTS8 ADAMTS8 LINC00216
LINC00216 LINC00216

meta-MCP

EDNRB EDNRB EDNRB
CA4 CA4 CA4

GPM6A GPM6A GPM6A
ADH1B ADH1B ADH1B
TNNC1 TNNC1 TNNC1
AGER AGER AGER

TMEM100 TMEM100 TMEM100

meta-SCAD GREM1 GREM1 GREM1
COL11A1 COL11A1 COL11A1

meta-lasso GPM6A GPM6A GPM6A
AGER AGER AGER

Figure 4. The highest ranked gene alterations in the lung caner dataset selected by MA-ROMP.

Figure 5. Overlap of commonly selected genes across the different meta-analysis-based methods in
lung cancer datasets.
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Another unique genomic biomarker selected by MA-ROMP is ADAMTS8, which can
also inhibit lung cancer by targeting vascular endothelial growth factor (VEGFA) [32,33]
with a maximum gene alteration of 5% in all patients. ADAMTS8 is under the regulation of
GATA1, which has been linked to survival time in lung cancer patients [34]. The ADAMTS
(A disintegrin and metalloproteinase with thrombospondin motifs) family members play
important roles in tumor progression through regulating angiogenesis.

Although meta-lasso and meta-SCAD selected just two genomic biomarkers, GPM6A
was selected by the meta-lasso, MA-ROMP and meta-MCP methods and alterations were
detected in 1.8% of patients. GPM6A is a transmembrane protein widely distributed
on the surface of neuronal cells in the central nervous system and is closely related to
tumor growth [35]. Zhang et al. [36] identified that GPM6A downregulation promotes the
progression of lung adenocarcinoma cells.

5. Conclusions

In this paper, we have proposed a meta-analysis-based regularized orthogonal match-
ing pursuit (MA-ROMP) algorithm to recognize genomic biomarkers with both biological
and clinical significance. This MA-ROMP method is suitable for combining studies from dif-
ferent platforms or conditions, and obtains reliable results with a small number of studies.
It is pointed out that the successful running this method needs data standardization.

Compared with state-of-the-art methods, our method shows the highest accuracy
of up to 95.63% with the best discriminative ability (AUC 0.9756) as well as a more than
15-fold decrease in its training time. Therefore, our method not only borrows strengths
from across multiple datasets to identify important genomic biomarkers efficiently, but
also maintains selection flexibility among datasets to take into account data heterogeneity
through a hierarchical decomposition on regression coefficients. The experimental results
demonstrate that our proposed MA-ROMP is a more effective tool for biomarker selection
and learning prediction.

Author Contributions: S.W.: conceptualization, data curation, formal analysis, funding acquisition, in-
vestigation, methodology, validation, visualization and writing—original draft; B.-Y.W.: conceptualization,
formal analysis, investigation, validation and writing—review and editing; H.-F.L.: conceptualization,
formal analysis, funding acquisition, methodology, project administration, resources, supervision
and writing—review and editing. All authors gave final approval for publication and agreed to be
held accountable for the work performed herein. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (61976150), the
Central Government’s Guide to Local Science and Technology Development Fund (YDZJSX2021C005,
YDZJSX2022A016), the Natural Science Foundation of Shanxi Province (20210302124272) and the
Foundation of Taiyuan University of Technology (2022QN029).

Data Availability Statement: The datasets analyzed during the current study are available in NCBI’s
gene expression omnibus with the accession numbers GSE10072, GSE19188 and GSE19804.

Acknowledgments: The authors would like to thank members of the Brain Science and Intelligent
Computing team at the College of Computer Science and Technology at the Taiyuan University of
Technology (TYUT) for the useful discussions and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature selection for high-dimensional data. Prog. Artif. Intell. 2016,

5, 65–75. [CrossRef]
2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [CrossRef] [PubMed]
3. Dokeroglu, T.; Deniz, A.; Kiziloz, H.E. A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing

2022, 494, 269–296. [CrossRef]
4. Hu, L.; Yang, Y.; Tang, Z.; He, Y.; Luo, X. FCAN-MOPSO: An Improved Fuzzy-based Graph Clustering Algorithm for Complex

Networks with Multi-objective Particle Swarm Optimization. IEEE Trans. Fuzzy Syst. 2023, 14, 1–16. [CrossRef]

http://doi.org/10.1007/s13748-015-0080-y
http://dx.doi.org/10.3322/caac.21763
http://www.ncbi.nlm.nih.gov/pubmed/36633525
http://dx.doi.org/10.1016/j.neucom.2022.04.083
http://dx.doi.org/10.1109/TFUZZ.2023.3259726


Mathematics 2023, 11, 4171 12 of 13

5. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [CrossRef]
6. Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001,

96, 1348–1360. [CrossRef]
7. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [CrossRef]

[PubMed]
8. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2006,

68, 49–67. [CrossRef]
9. Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [CrossRef]
10. Mallat, S.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415.

[CrossRef]
11. Tawfic, I.; Kayhan, S. Compressed sensing of ECG signal for wireless system with new fast iterative method. Comput. Methods

Programs Biomed. 2015, 122, 437–449. [CrossRef] [PubMed]
12. Ji, C.; Zhang, X. Reguladzation orthogonal matclling pursuit based on multiple support. Syst. Eng. Electron. 2020, 42, 8.
13. Shi, X.; Xing, F.; Guo, Z.; Su, H.; Liu, F.; Yang, L. Structured orthogonal matching pursuit for feature selection. Neurocomputing

2019, 349, 164–172. [CrossRef]
14. Tsagris, M.; Papadovasilakis, Z.; Lakiotaki, K.; Tsamardinos, I. The γ-OMP algorithm for feature selection with application to

gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 1214–1224. [CrossRef] [PubMed]
15. Toro-Domínguez, D.; Villatoro-García, J.A.; Martorell-Marugán, J.; Román-Montoya, Y.; Alarcón-Riquelme, M.E.; Carmona-Sáez,

P. A survey of gene expression meta-analysis: Methods and applications. Brief. Bioinform. 2021, 22, 1694–1705. [CrossRef]
16. Huang, H.H.; Rao, H.; Miao, R.; Liang, Y. A novel meta-analysis based on data augmentation and elastic data shared lasso

regularization for gene expression. BMC Bioinform. 2022, 23, 353. [CrossRef]
17. Li, Q.; Wang, S.; Huang, C.C.; Yu, M.; Shao, J. Meta-analysis based variable selection for gene expression data. Biometrics 2014,

70, 872–880. [CrossRef]
18. Zhang, H.; Li, S.J.; Zhang, H.; Yang, Z.Y.; Ren, Y.Q.; Xia, L.Y.; Liang, Y. Meta-Analysis Based on Nonconvex Regularization. Sci.

Rep. 2020, 10, 5755. [CrossRef]
19. Hu, Z.; Zhou, Y.; Tong, T. Meta-Analyzing Multiple Omics Data With Robust Variable Selection. Front. Genet. 2021, 12, 1–16.

[CrossRef]
20. Khosravy, M.; Gupta, N.; Patel, N.; Duque, C.A. Recovery in compressive sensing: A review. Compressive Sens. Healthc. 2020,

2020, 25–42.
21. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

22. Landi, M.T.; Dracheva, T.; Rotunno, M.; Figueroa, J.D.; Liu, H.; Dasgupta, A.; Mann, F.E.; Fukuoka, J.; Hames, M.; Bergen, A.W.;
et al. Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival. PLoS
ONE 2008, 3, e1651. [CrossRef] [PubMed]

23. Hou, J.; Aerts, J.; den Hamer, B.; van IJcken, W.; den Bakker, M.; Riegman, P.; van der Leest, C.; van der Spek, P.; Foekens, J.A.;
Hoogsteden, H.C.; et al. Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction.
PLoS ONE 2010, 5, e10312. [CrossRef]

24. Lu, T.P.; Tsai, M.H.; Lee, J.M.; Hsu, C.P.; Chen, P.C.; Lin, C.W.; Shih, J.Y.; Yang, P.C.; Hsiao, C.K.; Lai, L.C.; et al. Identification of a
novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women. Cancer Epidemiol. Biomarkers Prev. 2010,
19, 2590–2597. [CrossRef] [PubMed]

25. Donoho, D.L.; Maleki, A.; Montanari, A. Message passing algorithms for compressed sensing: I. motivation and construction. In
Proceedings of the 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010), Cairo, Egypt, 6–8 January 2010;
pp. 1–5.

26. Nallanthighal, S.; Heiserman, J.P.; Cheon, D.J. Collagen Type XI Alpha 1 (COL11A1): A Novel Biomarker and a Key Player in
Cancer. Cancers 2021, 13, 935. [CrossRef]

27. Yi, X.; Luo, L.; Zhu, Y.; Deng, H.; Liao, H.; Shen, Y.; Zheng, Y. SPP1 facilitates cell migration and invasion by targeting COL11A1
in lung adenocarcinoma. Cancer Cell Int. 2022, 22, 324. [CrossRef]

28. Liu, Y.; Ye, G.; Dong, B.; Huang, L.; Zhang, C.; Sheng, Y.; Wu, B.; Han, L.; Wu, C.; Qi, Y. A pan-cancer analysis of the oncogenic
role of secreted phosphoprotein 1 (SPP1) in human cancers. Ann. Transl. Med. 2022, 10, 279. [CrossRef]

29. Tang, H.; Chen, J.; Han, X.; Feng, Y.; Wang, F. Upregulation of SPP1 Is a Marker for Poor Lung Cancer Prognosis and Contributes
to Cancer Progression and Cisplatin Resistance. Front. Cell Dev. Biol. 2021, 9, 646390. [CrossRef]

30. Zhang, Y.; Du, W.; Chen, Z.; Xiang, C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune
escape in lung adenocarcinoma. Exp. Cell Res. 2017, 359, 449–457. [CrossRef]

31. Matsubara, E.; Yano, H.; Pan, C.; Komohara, Y.; Fujiwara, Y.; Zhao, S.; Shinchi, Y.; Kurotaki, D.; Suzuki, M. The Significance
of SPP1 in Lung Cancers and Its Impact as a Marker for Protumor Tumor-Associated Macrophages. Cancers 2023, 15, 2250.
[CrossRef]

32. Zhang, Y.; Hu, K.; Qu, Z.; Xie, Z.; Tian, F. ADAMTS8 inhibited lung cancer progression through suppressing VEGFA. Biochem.
Biophys. Res. Commun. 2022, 598, 1–8. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1214/09-AOS729
http://www.ncbi.nlm.nih.gov/pubmed/17244211
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1214/009053604000000067
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1016/j.cmpb.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26428598
http://dx.doi.org/10.1016/j.neucom.2018.12.030
http://dx.doi.org/10.1109/TCBB.2020.3029952
http://www.ncbi.nlm.nih.gov/pubmed/33035156
http://dx.doi.org/10.1093/bib/bbaa019
http://dx.doi.org/10.1186/s12859-022-04887-5
http://dx.doi.org/10.1111/biom.12213
http://dx.doi.org/10.1038/s41598-020-62473-2
http://dx.doi.org/10.3389/fgene.2021.656826
http://dx.doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://dx.doi.org/10.1371/journal.pone.0001651
http://www.ncbi.nlm.nih.gov/pubmed/18297132
http://dx.doi.org/10.1371/journal.pone.0010312
http://dx.doi.org/10.1158/1055-9965.EPI-10-0332
http://www.ncbi.nlm.nih.gov/pubmed/20802022
http://dx.doi.org/10.3390/cancers13050935
http://dx.doi.org/10.1186/s12935-022-02749-x
http://dx.doi.org/10.21037/atm-22-829
http://dx.doi.org/10.3389/fcell.2021.646390
http://dx.doi.org/10.1016/j.yexcr.2017.08.028
http://dx.doi.org/10.3390/cancers15082250
http://dx.doi.org/10.1016/j.bbrc.2022.01.110
http://www.ncbi.nlm.nih.gov/pubmed/35149432


Mathematics 2023, 11, 4171 13 of 13

33. Wang, F.; Su, Q.; Li, C. Identidication of novel biomarkers in non-small cell lung cancer using machine learning. Sci. Rep. 2022,
12, 16693. [CrossRef] [PubMed]

34. Wang, L.L.; Chen, Z.S.; Zhou, W.D.; Shu, J.; Wang, X.H.; Jin, R.; Zhuang, L.L.; Hoda, M.A.; Zhang, H.; Zhou, G.P. Down-regulated
GATA-1 up-regulates interferon regulatory factor 3 in lung adenocarcinoma. Sci. Rep. 2017, 7, 2551. [CrossRef] [PubMed]

35. Falch, C.M.; Sundaram, A.Y.M.; Øystese, K.A.; Normann, K.R.; Lekva, T.; Silamikelis, I.; Eieland, A.K.; Andersen, M.; Bollerslev, J.;
Olarescu, N.C. Gene expression profiling of fast- and slow-growing non-functioning gonadotroph pituitary adenomas. Eur. J.
Endocrinol. 2018, 178, 295–307. [CrossRef]

36. Zhang, Q.; Deng, S.; Li, Q.; Wang, G.; Guo, Z.; Zhu, D. Glycoprotein M6A Suppresses Lung Adenocarcinoma Progression via
Inhibition of the PI3K/AKT Pathway. J. Oncol. 2022, 2022, 4601501. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41598-022-21050-5
http://www.ncbi.nlm.nih.gov/pubmed/36202977
http://dx.doi.org/10.1038/s41598-017-02700-5
http://www.ncbi.nlm.nih.gov/pubmed/28566697
http://dx.doi.org/10.1530/EJE-17-0702
http://dx.doi.org/10.1155/2022/4601501

	Introduction
	The Regularized Orthogonal Matching Pursuit Algorithm for Biomarker Selection
	The MA-ROMP Algorithm for Biomarker Selection
	Experiments
	Simulations
	Real-Data Analysis

	Conclusions
	References

