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Abstract: Fine-grained error span detection is a sub-task within quality estimation that aims to
identify and assess the spans and severity of errors present in translated sentences. In prior quality
estimation, the focus has predominantly been on evaluating translations at the sentence and word
levels. However, such an approach fails to recognize the severity of specific segments within
translated sentences. To the best of our knowledge, this is the first study that concentrates on
enhancing models for this fine-grained error span detection task in machine translation. This study
introduces a framework that sequentially performs sentence-level error detection, word-level error
span extraction, and severity assessment. We present a detailed analysis for each of the methodologies
we propose, substantiating the effectiveness of our system, focusing on two language pairs: English-
to-German and Chinese-to-English. Our results suggest that task granularity enhances performance
and that a prompt-based fine-tuning approach can offer optimal performance in the classification
tasks. Furthermore, we demonstrate that employing a large language model to edit the fine-tuned
model’s output constitutes a top strategy for achieving robust quality estimation performance.

Keywords: natural language processing; quality estimation; fine-grained error span detection

MSC: 68T50

1. Introduction

Quality estimation (QE) is the task of evaluating the quality of machine translation (MT)
outputs without relying on a gold reference, based solely on the source and the translation
output [1,2]. With the growing interest in large language models (LLMs), the significance of
QE for measuring MT quality has become increasingly important.

In prior QE studies, the focus has predominantly been on assessing the quality of
translations at the sentence or word level. Specifically, even in research that aims to pinpoint
quality at a more granular word level, analysis has been limited to determining the presence
of errors within words. However, it is essential to elucidate not only the presence of errors
in words but also the severity of these errors to provide a more detailed evaluation of the
quality in MT sentences.

Fine-grained error span detection is a word-level sub-task first proposed to address
this need in WMT 2023 that aims to predict the translation error spans as opposed to binary
OK/BAD tasks. This task uses the error spans obtained from the MQM annotations. The
task aims to predict the error span (start and end indices) and the error severity (major or
minor) for each segment. For example, consider a source sentence, “Don’t know where he
got the higher price from.”, and its corresponding MT sentence, “Er weiß nicht, woher er
den höheren Preis bekam. (He doesn’t know where he got the higher price.)”. In this case,
the span can be marked as follows, noting the severity as “minor” for both errors:

• <n>Er weiß nicht</n>, woher er den höheren Preis bekam.
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• Er weiß nicht, woher er den höheren Preis <n>bekam</n>.

In this work, we introduce a segmented process that divides the task into three main
components: (1) error detection, (2) span extraction, and (3) severity assessment. Error
detection is responsible for identifying whether a given sentence contains errors, while
the severity assessment categorizes these errors as minor or major. These components are
treated as sentence-level binary classification tasks and executed using a prompt-based
fine-tuning method. Prompt-based learning effectively leverages pre-trained knowledge
by reformulating the task at hand [3–6]. This approach validates QE tasks that determine
the presence or absence of critical errors [7]. For the span extraction task in sentences
containing errors, we employ word-level QE, which assigns OK/BAD tags to each token in
the target translation [8,9]. This method allows us to select the span containing the error.

Subsequently, we utilize an LLM, which has demonstrated remarkable capabilities
across various natural language processing (NLP) tasks [10]. These models often cannot be
efficiently fine-tuned for specific tasks. Therefore, we propose a paradigm that employs
in-context learning to improve the performance of smaller fine-tuned models through
post-editing [11].

Our models perform strongly in both English-to-German (En-De) and Chinese-to-
English (Zh-En) translations for fine-grained error span detection. These results demon-
strate that task granularity can effectively enhance performance. Furthermore, we conduct
experiments to augment the outputs of the fine-tuned models using LLM, thereby providing
empirical evidence for efficiently utilizing black-box LLM. Our final results demonstrate
a significant improvement, with an increase of 0.0755 in the F1 score compared to our
baseline. The main contributions of this paper are as follows:

• To our best knowledge, this is the first work to explore the framework of fine-grained
span detection.

• We maximize the accuracy of each sub-task by performing task granularity. In addition,
we use prompt-based fine-tuning to reduce the gap between pre-training and fine-
tuning. Through post-editing, we utilize LLM capabilities to develop the results. All
three methods can improve the performance of the model by increasing the accuracy
of error detection.

• We conduct extensive experiments on the fine-grained span detection test dataset. The
results demonstrate that our framework achieves performance above the baseline.

2. Related Work

Recent remarkable advancements in MT systems have consequently drawn increasing
attention to QE for these systems. The field of QE has also experienced rapid growth due
to the development of neural network-based architectures such as the Transformer [12]
and BERT [13]. While prior research predominantly relied on traditional natural language
processing techniques for MT-related studies [14], the acceleration of deep learning has
shifted the focus toward developing neural frameworks for QE. DeepQuest proposes
a framework that accommodates sentence-level approaches and generalizes them for
document-level QE [15]. OpenKiwi introduces a new open-source QE framework based on
bidirectional LSTM [8].

XLM-RoBERTa [16] leverages a large-scale multilingual dataset, CommonCrawl [17],
to train RoBERTa [18] using masked language modeling (MLM) techniques. This model
has demonstrated exceptional performance in cross-lingual tasks, thereby elevating the
effectiveness of subsequent QE work. TransQuest offers a straightforward architecture that
facilitates training with various types of input (e.g., different language pairs or domains)
and enables transfer learning in low-resource settings [19]. COMETKIWI employs a method
proposed in IST-Unbabel’s WMT 2022 submission paper, integrating the COMET frame-
work with OpenKiwi’s predictive estimator structure for sentence- and word-level tasks [20].
Research also exists that proposes self-supervised pre-training using tag-refinement strate-
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gies and tree-based annotation techniques to create a human-aligned translation error rate
(TER)-based artificial corpus [21].

Despite these paradigmatic shifts, work on quantifying the severity of word-level
errors in MT systems remains conspicuously absent. Our research aims to address this gap,
offering a more granular approach to quality verification and proposing methodologies to
evaluate the quality of MT systems from various perspectives.

3. Methods

In this section, we introduce the applied model architecture for the segmented process
(Section 3.1), the prompt-based fine-tuning method for the binary classification tasks
(Section 3.3), and strategies for utilizing LLM (Section 3.2). The overall process of our
method is presented in Figure 1.

Figure 1. The overall process.

3.1. Task Segmentation

We aim to address the fine-grained error span detection task by segmenting it into
distinct sub-tasks and applying suitable model architectures to each.

(1) error detection: To discern the presence or absence of errors at the sentence level, we
consider an outcome variable y, which is predicted to be either “error” or “non-error”. We
utilize both the source sentence and the MT sentence as inputs: xerror = <s> wsrc

1 , . . . , wsrc
m

</s> wmt
1 , . . . , wmt

n </s>, where m and n represent the lengths of the source (src) sentence
and the MT (mt) sentence. <s> and </s> are two special tokens to annotate the start and
the end of the sentence. The token </s> is also employed as a separator token. To train the
model, we utilize the binary cross-entropy loss:

Lsent(θ) = −(y log(ypred) + (1− y) log(1− ypred)) (1)

where y is the true label and ypred is the predicted probability of the “error” class.
(2) span extraction: To identify the error span within a sentence containing mistakes,

we perform word-level QE. Word-level QE works at a lower granularity level, to predict
binary quality labels yi ∈ {OK, BAD} for all 1 ≤ i ≤ n MT words, indicating whether that
word is a translation error. We perform binary classification solely on the tokens of the
MT sentence to identify regions predicted as BAD (Figure 2). To train the model for the
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word-level QE task, we also use the binary cross-entropy loss function, calculated over all
MT words:

Lword(θ) = −
n

∑
i=1

yi log(yword
pred,i) + (1− yi) log(1− yword

pred,i) (2)

where yi is the true label of the ith MT word, and yword
pred,i is the predicted probability that

the ith MT word is BAD.

Figure 2. Model architecture of word-level error detection.

(3) severity assessment: We predict the error severity as either “minor” or “ma-
jor” specifically for sentences where the error span is annotated. This classification is
conducted based on the same model architecture used for error presence detection. To for-
mulate the input for the model, we concatenate the source sentence with the MT sentence,
which includes the annotated error span: xseverity = <s> wsrc

1 , . . . , wsrc
m </s> wmt

1 , . . . , <n>
wmt

i , . . . , wmt
j </n>, . . . , wmt

n+2 </s>, where i is the start index of error span and j is the end
index of error span. The special tokens <n> and </n> demarcate the start and end of the
error span.

3.2. Prompt-Based Fine-Tuning

In this task, we design the binary classification model to predict error label y given
source sentence xsrc and translation sentence xmt. Specifically, we apply prompt-based
learning that bridges the gap between the pre-training and fine-tuning [22]. We adopt a pre-
trained language model, XLM-RoBERTa, that is trained with MLM objectives. Considering
these, we construct a template that reformulates tasks in a cloze style to fill the masked part
in the given input text [23,24].

We define xprompt as a form of input that incorporates a template containing [MASK]
tokens, xsrc and xtgt. To reduce the overhead associated with prompting in our experiments,
we adopt a null prompt for training: xprompt = <s> xsrc xmt [MASK] </s>. The prompt
varies based on the template. For the given xprompt, the model is then trained to predict the
appropriate word to fill in the [MASK] position, such as “great” or “terrible”.

Additionally, we introduce a function v : y ∈ Y → w ∈ W as a function called the
verbalizer that maps the label y ∈ Y to the label word wy ∈WY. In this case, Y denotes the
label set of a targeting task (e.g., Y = {NOT, ERR} or {minor, major}), and WY denotes the
corresponding set of label words (e.g., WY = {great, terrible}).

3.3. Post-Editing with LLM

We combine the LLM with our fine-tuned smaller model, allowing them to work
together to improve performance on the supervised task. We provide the following in-
structions and two examples to GPT-4 [10] to post-edit the outputs generated by the
fine-tuned model:
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You are an expert in the Fine -grained error span detection task. The
goal of this task is to predict the word -level translation error
spans. You will be asked to predict both the error span (start and
end indices) as well as the error severity (major or minor) for each
segment. There can be multiple error spans , and you must indicate
the severity of the error for the existing spans. If no errors exist
in the translation , the error span is (-1,-1) and the error severity
is no-error.

Review this result by checking the work done by the other workers.
If the work was done correctly , mark it as 'GOOD '; if there were any
errors , re-annotate the Error Span and Error Severity.

To avoid inconsistencies , we expect the indices of the error spans
to correspond to characters in the target string before
tokenization , i.e., the target string that will be provided as
test~data.

4. Experiments
4.1. Setting
4.1.1. Datasets

During the fine-tuning, we use the expert-based human evaluation datasets for the
submissions of WMT 2020, 2021, and 2022 for En-De and Zh-En [25]. The datasets re-
annotated the WMT En-De and Zh-En test sets newstest2020, newstest2021, TED talks,
and generalMT2022 with raters that are professional translators and native speakers of the
target language (Table 1). In cases where multiple errors exist within a single sentence, the
severity of each error is annotated. We analyze the number of errors in each sentence and
present the findings in Figure 3.

Figure 3. The number of errors contained per sentence, analyzed based on the sentences in which the
error exists.
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Table 1. Label distribution of the training datasets used by our system.

Non-Error Minor Major

newstest2020 En-De 14,039 55,632 7608
Zh-En 15,961 57,214 50,074

newstest2021 En-De 5876 3910 2110
Zh-En 2857 5461 8903

TED talks En-De 4404 2164 1867
Zh-En 4297 2266 3352

generalMT2022 En-De 11,240 12,946 3141
Zh-En 14,415 15,820 15,777

4.1.2. Implementation Details

For training, we choose the large version of XLM-RoBERTa as the backbones of all our
models. All models are implemented with PyTorch (https://pytorch.org/, (accessed on 5
September 2023)) and Transformers (https://huggingface.co/, (accessed on 5 September
2023)). We utilize the checkpoints of the pre-trained language model ‘xlm-roberta-large’. For
sequence-level classification tasks, we use a batch size of 16, the Adam optimizer with a
learning rate of 3× 10−5, and train for 10 epochs. For the word-level classification task, we
use a batch size of 32, the Adam optimizer with a learning rate of 2× 10−5, and train for
10 epochs. The experiments are performed on an NVIDIA RTX A6000 environment.

4.1.3. Evaluation Setup

We primarily evaluate our systems regarding the F1 score between the predicted labels
and the human annotations for each translation direction (https://wmt-qe-task.github.io/
subtasks/task2/, (accessed on 15 September 2023)). Additionally, we present both precision
and recall scores for all predictions as part of our system evaluation. We report performance
metrics based on predictions made on the official test dataset, for which gold-labeled data
are publicly available. The test dataset and evaluation script can be accessed from the WMT
2023 QE Task GitHub repository (https://github.com/WMT-QE-Task/wmt-qe-2023-data,
(accessed on 15 September 2023)). The tasks require about 30 min of learning each.

4.2. Results of Detailed Process

The section demonstrates that handling segmented tasks can improve performance.
Our proposed model (ED→SE→SA), which tackles tasks sequentially, shows the most
promise by outperforming all other models in both F1 score and other metrics (Table 2).

Table 2. Performance comparison for our fine-grained method. We perform an ablation study for each
segmented task. ED is Error Detection, SE is Span Extraction, and SA is Severity Assessment. ED+SE+SA
performs all detailed tasks simultaneously, while ED→SE→SA performs the tasks sequentially. The
highest score is highlighted in bold.

En-De Zh-En

F1 Score Precision Recall F1 Score Precision Recall

ED+SE+SA 0.1389 0.1723 0.1163 0.1577 0.2592 0.1133
ED→SE+SA 0.1344 0.1711 0.1107 0.1161 0.2638 0.0744
ED+SE→SA 0.1423 0.1435 0.1386 0.1483 0.2619 0.1034

ED→SE→SA 0.1891 0.1989 0.1801 0.1741 0.1896 0.1609

For the En-De task, models performing all three tasks simultaneously (ED+SE+SA) and
those executing two tasks concurrently while isolating one (ED→SE+SA and ED+SE→SA)
exhibit marginal performance improvements over the baseline. Notably, the model focusing
solely on SA within the sequence (ED+SE→SA) demonstrates a significant improvement

https://pytorch.org/
https://huggingface.co/
https://wmt-qe-task.github.io/subtasks/task2/
https://wmt-qe-task.github.io/subtasks/task2/
https://github.com/WMT-QE-Task/wmt-qe-2023-data
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in recall, thereby substantiating the importance of the SA model. Our proposed model
(ED→SE→SA) outperforms all other models and the baseline. The F1 score jumps to a
significantly higher 0.1891, and our model also maintains a balance between precision and
recall, indicating robustness.

Our method balances precision and recall better for the Zh-En task, which is evident
from the precision score of 0.1896. Although the precision is lower than the baseline, the
trade-off produces a better F1 score. Our method achieves the highest F1 score of 0.1741,
compared to the baseline score of 0.1555. Furthermore, our method outperforms in terms of
both precision and recall, clocking at 0.1896 and 0.1609, respectively. The improved F1 score
balances precision and recall, and the positive results from our ablation studies collectively
argue in favor of adopting a sequential approach for fine-grained tasks in MT.

4.3. Results of Prompt-Based Fine-Tuning

In this section, we apply and compare two training strategies—conventional fine-tuning
and prompt-based fine-tuning—for ED and SA tasks. We evaluate the performance of these
strategies using the F1 score as the metric. As indicated in Table 3, the prompt-based fine-
tuning approach outperforms conventional fine-tuning in terms of F1 score across both tasks.

Table 3. Results for the error determination and severity assessment tasks. Compare the F1 scores of
fine-tuning and prompt-based fine-tuning for those tasks.

En-De Zh-En

ED Fine-tuning 0.7473 0.7670
Prompt-based Fine-tuning 0.7585 0.7740

SA Fine-tuning 0.4309 0.6705
Prompt-based Fine-tuning 0.4801 0.6720

For the ED task, we achieved an F1 score of 0.7585 for the En-De language pair and
0.774 for the Zh-En pair. We observe similarly high performance in the SA, registering F1
scores of 0.4801 and 0.672, respectively. These findings have several important implications.
Firstly, the superior performance of prompt-based fine-tuning suggests its compatibility
with our proposed task decomposition strategy. Additionally, enhancing the performance
of this approach could further improve the overall efficacy of our system. These results
signify that prompt-based fine-tuning can improve task-specific performance without
substantially altering the model parameters or data structures. As a result, this approach
demonstrates high adaptability and flexibility when applied to new datasets or tasks.

4.4. Results of Post-Editing

In this Table 4, in-context learning (LLM alone) generally demonstrates a lower F1
score for both language pairs. In contrast, our edited fine-tuned models with the LLM
exhibit better performance, with F1 scores of 0.2144 and 0.2096 for En-De and Zh-En,
respectively.

Table 4. Comparison of the performance of modifying the output of a fine-tuned model using LLM
with the performance of LLM alone.

En-De Zh-En

F1 Score Precision Recall F1 Score Precision Recall

In-Context Learning 0.1447 0.2380 0.1040 0.1821 0.1461 0.2418
Edited Fine-tuned Models 0.2144 0.2237 0.2058 0.2096 0.2159 0.2037

The precision and recall figures also back the superiority of the edited fine-tuned models.
For instance, in the En-De pairing, the fine-tuned models yield a precision and recall of
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0.2237 and 0.2058, notably higher than the 0.238 and 0.104 reported for the in-context learning
approach. This suggests not just a general improvement in classification accuracy (as seen in
the F1 scores), but also a more balanced performance regarding both false positives and false
negatives. Similar trends are observed for the Zh-En language pair. These results indicate
that editing fine-tuned models offers a more effective strategy for language learning tasks
between these specific language pairs, at least based on the metrics provided.

5. Conclusions

Our approach employed fine-grained error span detection by segmenting tasks and
leveraging prompt-based fine-tuning as a robust classification methodology, focusing on
two language pairs: En-De and Zh-En. Additionally, we adopted a strategy for LLM-based
editing of the output. Through comprehensive experiments and analysis, we demonstrated
the efficacy of our system for the given task. Processing tasks sequentially, especially in F1
scores, resulted in a significant performance enhancement by 0.0502 compared to handling
tasks concurrently. Additionally, by incorporating prompt-based fine-tuning, we further
benefited in the binary classification task. The post-editing approach using LLM improved
the F1 score and presented a more balanced precision and recall than the in-context learning
method. Our methodology refined quality estimation, allowing for more precise and granular
measurements. As part of our future work, we intend to apply our methodology across
diverse language pairs and explore its integration with the latest MT strategies.
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