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Abstract: The Internet of Things (IoT) is an emerging technology that has recently gained significant
interest, especially with the dramatic increase in connected devices. However, IoT networks are not yet
standardized, and the design of such networks faces many challenges, including scalability, flexibility,
reliability, and availability of such networks. Routing is among the significant problems facing IoT
network design because of the dramatic increase in connected devices and the network requirements
regarding availability, reliability, latency, and flexibility. To this end, this work investigates deploying
a multipath routing scheme for dense IoT networks. The proposed method selects a group of routes
from all available routes to forward data at a maximum rate. The choice of data transmission routes
is a complex problem for which numerical optimization methods can be used. A novel method
for selecting the optimum group of routes and coefficients of traffic distribution along them is
proposed. The proposed method is implemented using dynamic programming. The proposed
method outperforms the traditional route selection methods, e.g., random route selection, especially
for dense IoT networks. The model significantly reduced the number of intermediate nodes involved
in routing paths over dense IoT networks by 34%. Moreover, it effectively demonstrated a significant
decrease of 52% in communication overhead and 40% in data delivery time in dense IoT networks
compared to traditional models.

Keywords: Internet of Things; high-density network; multipath routing; route selection; achievable
data rate

MSC: 94A15

1. Introduction

The Internet of Things (IoT) has become integral to modern info-communication
systems [1,2]. According to the forecasts of leading manufacturers, the number of wireless
devices connected to communication networks will grow in the foreseeable future [3]. A
large number of connected devices leads to the formation of high-density networks, which
have several features associated with significant mutual influences between nodes [4–6].
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Along with the complexities of organizing high-density networks, many features
provide additional opportunities for network organization [7]. For example, when selecting
the logical structure of the network, in conditions of a large number of nodes, there is the
possibility of a more flexible approach to the solution of the problem [8]. In conditions
of low density, the possibilities of choosing a logical structure are defined exclusively by
the mutual placement of nodes [9]. However, in conditions of high density, a node can be
found in proximity, practically, to any point of space. This allows one to choose to build the
logical structure that some considerations require [10].

However, this freedom of choice requires methods for shaping the logical structure
that best meets specific needs. In [11], the authors provided a method for selecting route
parameters in IoT networks to obtain the maximum transmission speed. The authors
proved that the transmission speed of the route decreases as the number of transits increases.
If the length of the route (i.e., number of transits) is too high, which may be the case in
large-scale networks, its transmission speed may be less than required and cannot be
increased by the choice of its parameters. In such a case, the only way to increase the
transmission speed is to use multipath routing.

The ultimate objective of this work is to develop a novel route selection scheme that
selects the optimum routes over a communication network for a certain transmission
to achieve the maximum transmission speed. The main contributions of this work as
summarized as follows:

• Developing a multipath routing scheme for dense IoT networks.
• Developing a route selection model that selects a group of routes from available routes

to transmit data at higher speeds.
• Optimizing the proposed route selection model to obtain the optimum routes that

achieve the maximum transmission speed.
• Performance evaluation of the proposed route selection scheme for dense IoT networks.

The rest of the article is organized as follows. Section 2 presents the proposed multipath
routing model for dense IoT networks. Section 3 presents the developed route selection
scheme for the considered dense IoT network. Section 4 provides the optimization problem
of the proposed model and introduces the solution. Section 5 presents the obtained results.
Section 6 concludes the work and provides future directions.

2. Multipath Routing Model

Existing routing protocols in Internet protocol (IP) networks and multipath protocols
allow the implementation of multiple route choices between the source and destination [12–14].
In a high-density network, the potential number of such routes can be extremely large. The
routes to be selected may contain common sections (i.e., be dependent) or may not contain
them and be independent [15]. In general, when independent routes are used, the data
transmission speed equals the sum of the transmission speeds in each route [16].

In the case of dependent routes, it will be limited to the transmission speed of the
slowest common section [17]. In wireless networks, routes are dependent if the transmission
over any part of them depends on the activity of nodes of another route (i.e., sections do not
necessarily have to be common); it is enough that the nodes are in a mutual communication
(or influence) zone [18,19]. Therefore, it is impossible to construct completely independent
routes. At least the first and the last sites should always be considered common because
simultaneous transmission to them is possible only by one of the routes [20]. Figure 1
shows a graphical interpretation of the multipath routing model between the source node s
and the destination node t.

The presence of dependent sections inevitably reduces the data transfer rate because
the activity of the influencing node in the dependent route must suspend the transfer [21].
Thus, routes should be selected with no mutual influence to increase the transmission speed
of communicated data, except for the first and last sections. These routes are assumed to be
large enough for dense IoT networks. The geometric dimensions of such a network must
be sufficiently large compared to the size of the communication zone of the node [22]. The
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problem naturally degenerates with small network sizes (i.e., small-scale networks) since,
in some of the applications of such networks, there is no need to build a route or build
simple routes. This is the case in some indoor IoT applications.
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For the proposed multipath routing model, we assume the network has M different
routes between the source node s and the destination node t. Routes can contain different
numbers of transits and serve different traffic flows. Generally, the data transfer rate along
each route is random. It depends on the number of nodes in the route (i.e., transit sections),
the data transfer rate on each route, and the properties of the served traffic flows.

A set of n known available routes (R) can be used to transfer traffic from the source
node s to the destination node t. The set R is defined as follows.

R = {r1, r2, r3, · · · , rn } ∀ n ∈ R, (1)

The received data rate on each available route i is random and equal to bi, where bi is
defined in Equation (2).

bi =
L
xi

, (2)

where L is the amount of data (bits) and xi is the delivery time (s). Data transferred over a
group of routes are processed in parallel. Simultaneous transmission over several routes is
impossible in the case under consideration; however, this applies only to the route’s first
and last links. When transmitting over several routes, it is necessary to distribute the data
transmitted. The distribution is built on the basis that each route carries a fraction of the
data.

∑k
i= βi= 1 , 0 i1, (3)

where βi is the fraction of data carried by the ith route. The delivery time for the allocated
fraction of data on each route used is a random variable with a distribution function Fi(X).
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Then, there is a set of distribution functions of the delivery time of available routes (F),
defined as follows.

F = {F1(x), F2(x), F3(x), · · · , Fn(x) } ∀ n ∈ R, (4)

where x is a random value—delivery time. Since the routes are independent, the values of
the delivery times in routes are also random and independent. The connection is realized
using a set of routes W, which is a subset of available routes. The set W is defined as follows.

W = {w1, w2, w3, · · · , wk } ∀ k ∈ R, k < n, W ⊂ R, (5)

The delivery time over the group of routes T is also a random variable determined by
the slowest route from W. The transmission process is terminated when all data transmis-
sion is complete. Figure 2 presents the transmission process over a route group.

T = max
w
{xw1, xw2, xw3, · · · , xwk } ∀ k ∈ R, k < n, (6)

xwi = L
βi
bi

, (7)

where xwi is the delivery time for the ith route of the selected route group, and W is the set
of selectable routes. The distribution function of the delivery time T is Gw(x) and is defined
as follows.

Gw(x) = ∏k
i=1 Fwi(x) ∀ k ∈ R, k < n, (8)
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Figure 2. A transmission process over a group of routes.

The mathematical expectation of the delivery time T is E(T) and is defined as follows.

t = E(T) = E
(

max
w
{xw1, xw2, xw3, · · · , xwk }

)
=
∫ ∞

0
xdGW(x) ∀ k ∈ R, k < n, W ⊂ R, (9)

The problem of selecting channels in a group is not trivial because Equations (8) and (9)
depend on the distributions of delivery times of each selected route [23]. Moreover, the
number of solutions when choosing a group of routes can be significant (e.g., for n = 20, the
number of variants can reach tens of thousands). The proposed model in this work aims to
solve this problem by minimizing the mean value of the selected groups. Most existing
models seek to get the optimum group of routes; however, each considers different ways.
We consider a novel method and novel objectives while selecting routes.
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3. Route Selection Method

The purpose of developing a method for selecting routes in a group is to reduce
the data delivery time (i.e., to increase the equivalent data transfer rate). According to
Equations (6), (8) and (9), we can reduce the average data delivery time (i.e., increasing
the transmission speed) by increasing the number of routes in group k, choosing specific
values of traffic distribution coefficients βi, and selecting routes with certain distribution
functions Fi(t).

When selecting a group of routes, the main objective is reducing the average data
delivery time (i.e., minimizing Equation (9)).

We consider the gamma distribution for the proposed model with the probability
density f(x) defined as follows [24].

f (x) =
xk−1

θkΓ(k)
e−

x
θ ∀ k ∈ R, k < n, (10)

where k and θ are distribution parameters. We consider plotting the probability density
function for a network with three available routes (i.e., n = 3), where k = 2. We consider a
random delivery time over the selected routes with the values x1, x2, and x3. The considered
mathematical expectations of these random variables are introduced as follows.

E(X1) = 15.0, 0.0; E(X2) = 60.0, 5.0; E(X3) = 60.0, 0.0, (11)

The variances of the three variables are introduced as follows. Figure 3 presents the
probability densities of the three routes.

D(X1) = 75.0, 0.0; D(X2) = 30.0, 3.0; D(X3) = 180.0, 0.0, (12)
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Figure 3. Probability densities of the random variables x1, x2, and x3.

These random variables have different mathematical expectations (shown with dashed
lines) and dispersions. Using the mathematical expectation value, you should choose the
values with the lowest mathematical expectation values (i.e., x1 and x3).

Figure 4 shows the probability density functions of possible choice results: g1,2(x),
g1,3(x), and g2,3(x). According to Equation (5), the probability density is defined for the
resulting solutions as follows.

gi,j(x) =
dGi,j(x)

dx
∀ i, j ∈ R, (13)
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The mathematical expectation (mi,j(x)) is defined as follows.

mi,j(x) =
∫ 1

0
xgi,j(x)dx ∀ i, j ∈ R, (14)

The results indicate that the lowest mathematical expectation value of Equation (9) is
achieved when selecting routes x1 and x2 since the lowest mi,j in Figure 4 is m1,2 (m1,2 = 60.0,
5.0). For other choices, the values of mathematical expectation, according to Equation (6),
are m1,3 = 60.0, 9.0, and m2,3 = 76.0, 7.0.

4. Optimizing the Proposed Route Selection Model

However, evaluating the mathematical expectation of the delivery time is insufficient
for choosing a route. The route selection problem should be considered as the minimization
of the mathematical expectation of delivery time E(T) in a group of routes by selecting a set
of k routes W from the total number of n available routes R. The problem’s solution is a set
of selected routes at which the minimum value of mathematical expectation of data transfer
time is achieved, according to Equation (6). The optimization problem can be formulated
as follows.

Wmin = argmin
w

{
E
(

max
w
{xw1, xw2, xw3, · · · , xwk }

)}
∀ k ∈ R, k < n, W ⊂ R, (15)

The objective function is defined as follows to solve the previously introduced opti-
mization problem.

tw = E
(

max
w
{xw1, xw2, xw3, · · · , xwk }

)
∀ k ∈ R, k < n, W ⊂ R, (16)

The solution of the previously introduced optimization problem Equation (15), consid-
ering Equation (8), introduces a large computation complexity using traditional solution
methods. The problem introduced in Equation (15) is formulated concerning the data
delivery time (xi), which depends on the proportion of the data transmitted (βi), according
to Equation (7). Thus, it is necessary to solve the problem of choosing βi that meets the
problem’s solution, which significantly complicates the solution.
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In this work, we propose to solve the problem sequentially in two stages. In the first
stage, the problem of choosing k routes is solved under the assumption that all traffic
distribution coefficients are equal (i.e., βi = β = 1/k, i = 1,. . ., k)). In the second stage, the
problem of selecting values of distribution coefficients βi is solved. Algorithms 1 and 2
provide the pseudo-code of the proposed two stages.

Algorithm 1 First stage of the optimum route selection

Input data:
R: Set of known routes.
n: Number of known routes.
W: Set-group of selected routes.
K: Number of selected routes.

Step 1. Input initial data R, n, W, k and initialize variables i = j = s = 1, W = ϕ, T = ϕ.

Step 2. Choose a route ri.
[This step selects a route from the set R to further evaluate its effect on the target
function ri ∈ R, ri /∈W.]

Step 3.
Calculate the value of the target function (Solve Equation (16)), Then:

T = T ∪ tw.g
[This step calculates the next value of the target function and includes it in the set
of values of the target function T. (At each iteration i (iteration of Phase I) the
value of the target function is calculated for g selected routes, and g varies in
Phase II from 1 to k.)]

Step 4.

Check the end of Phase I.
If (i < n − g)

i = i + 1
go to Step 2.

Else
perform the next step

(go to step 5)
End if

[Phase I runs until all available routes from the set R that are not included in the
set of selected routes W are checked]

Step 5.

Include the route in a group of selected routes.
Calculate r:

r = argmin
s
{T, s = 1, 2, · · · , n− g}

Then:
W = W ∪ r

[At this step, the set of target function values T is examined, and the minimum
value is selected, and the route for which the corresponding value of the target
function was obtained is included in the group of routes.]

Step 6.

Ending Phase II:
If (g < k)

g = g + 1,
i = 1,
go to step 2

Else
Perform the next step (go to step 7).

End if

Step 7. Output the set of selected routes W
End
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Algorithm 2 Second stage of the optimum route selection

Input data:
W: Set (group) of selected routes.
β: Set of traffic distribution coefficients.
b: Set of data transmission rate values for the selected channels.
K: Number of chosen routes.

Step 1. Input initial data W, k and initialize variables i = j = s = 1, β = 1/k, T = ϕ.

Step 2. Choosing the βi coefficient
[This step selects the coefficient βi from the set β to further evaluate its effect on the target function, βi ∈ β.]

Step 3.

Calculation of the value of the target function for the changed traffic distribution coefficients βi.
In this step, the value of βi is changed by ∆β, and all other values βj are corrected through multiplication by ηj
coefficients so that the condition is:

k
∑

j=1
β jηj + βi = 1 ∀ k ∈ R, k < n, j 6= i

Then, calculate the objective function as follows.

ti = min
{

E
(

max
{

β1
∗

b1
, β2

∗

b2
, · · · , βi

∗

bi
, · · · , βk

∗

bk

})
, E
(

max
{

β1
∗∗

b1
, β2

∗∗

b2
, · · · , βi

∗∗

bi
, · · · , βk

∗∗

bk

})}
,

Where:

βi
∗ =

{
βi + ∆β i f βi + ∆β < 1

1 otherwise

βi
∗∗ =

{
βi − ∆β i f βi − ∆β > 0

1 otherwise
β j
∗ = β j

1−βi−∆β
1−βi

, j = 1, 2, · · · , k, j 6= i

β j
∗∗ = β j

1−βi+∆β
1−βi

, j = 1, 2, · · · , k, j 6= i
[This step calculates the value of the target function and includes it in the set of values of the target function T.
(At each iteration i (iteration of phase I) the value of the target function is calculated for k routes.)]

Step 4.

Check the end of Phase I.
If (i < k)

i = i + 1
go to step 2.

Else
perform the next step (go to step 5)

End if
[Phase I is executed until all traffic distribution coefficients β have been checked.]

Step 5.
Changing traffic distribution ratios.

β = β∗ = argmin
s
{T, s = 1, 2, · · · , k}

[In this step, the set of values of the target function T is examined and the minimum value is selected, the traffic
distribution coefficients corresponding to this solution are chosen.]

Step 6.

Ending Phase II:
If the resulting solution gave the value of the target function t0, less

than the value obtained at the previous iteration t0 < T0
i = 1,
go to step 2

Else
Perform the next step (go to step 7).

End if

Step 7. Output the set of traffic distribution coefficients β.
End

4.1. First Stage

The problem of the first stage is a knapsack problem, which has many variants. The
solution of the first stage problem is complicated due to nonlinearity. This work proposes
an approximate solution to the problem using dynamic programming. During the solution
of the first stage of the problem, all traffic distribution coefficients are assumed to be equal.
The problem’s solution is to select k traffic service routes from n available routes by the
minimum data transfer time criterion.
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The problem is solved iteratively, and the solution is organized into two nested phases:
phase I and II. Algorithm 1 provides the pseudo-code of the first and second phases of the
proposed method. In phase I, the route that leads to the greatest delivery time reduction
is selected from all available routes, while in phase II, we compare the value of the target
function with the value obtained in the previous phase and the number of selected routes.
The phases are repeated every iteration until the optimum number of k routes is selected
among the group of routes or when the new route selection does not reduce the data
delivery time.

The result of executing Algorithm 1 is a group of routes that can be used for data
transmission in multipath routing. However, this group is obtained when the traffic is
evenly distributed among the selected routes, which is not the best solution when the route
parameters are different. The obtained solution can be improved by rationally choosing
the values of traffic distribution coefficients βi. The use of dynamic programming is also
proposed to solve this problem [25].

4.2. Second Stage

The proposed method is similar in structure to the above-described method, and the
main steps are presented in Algorithm 2. It is also organized in an iterative procedure with
two main phases: phase I and II (internal and external cycles).

Phase I attempts to change the values of βi by small variations (±∆β), taking into
account the constraints, and chooses the value of i, for which the change has the greatest
effect (i.e., the smallest value of the target function (delivery time) was obtained). Thus,
phase I results in changing one of the values of βi by the value ±∆β and adjusting the
values of the others.

In phase II, we check if the value of the target function has changed compared to the
previous phase. When the value decreases, the process passes to the next cycle; otherwise,
the process stops, and the current values of βi are considered the problem’s solution. The
considered variations (±∆β) determine the results’ accuracy and the volume of calculations
in the search for a solution. Algorithm 2 provides the pseudo-code for the selection of
traffic distribution coefficients.

5. Numerical Evaluation and Analysis

The proposed model is simulated using the Matlab platform with an initial value of
∆β of 0.1. Table 1 provides the considered simulation parameters. The simulation was
conducted utilizing an IoT network comprising a total of 30 nodes, randomly distributed
within the network topology, with the characteristics introduced in Table 1. The proposed
route selection algorithm was implemented for the network with twelve available routes,
i.e., n = 12. A group of six routes, i.e., k = 6, was chosen as the selected routes, and the
traffic distribution coefficients were calculated. The model was built in a discrete event
modeling system. It implements traffic generation in the source node and the foreground
traffic served by the network elements through which the selected routes pass [26].

Table 1. Simulation parameters [13].

Parameter Value

Number of network nodes 32
MAC protocol IEEE 802.11

Packet size 128 bytes
Number of available routes 12

Initial energy of nodes 4 J
Energy dissipated per bit 50 nJ/bit

Traditional routing protocol OLSR protocol
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Figure 5 shows the structure of the considered model network, which is an ad hoc
network consisting of 32 nodes, including source and destination nodes. All network nodes
support the IEEE 802.11 protocol.
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Figure 6 presents the obtained data rate of the simulation during the first ten seconds.
The introduced results are for the network with the proposed route selection scheme and
the traditional routing. The considered traditional routing scheme was the multipath
optimized link state routing (OLSR) protocol [27]. The OLSR protocol supports the use
of multiple parallel routes; however, the proposed method focuses on choosing a group
of these routes. The developed route selection scheme increases the network speed by
selecting the optimum routes and transferring data over them.
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Figure 6 shows five sections corresponding to the sequential solution of the route
selection problem for different values of k = 1, 2, 3, 4, and 5 (red curve). Increasing the
number of channels in the group increases the data transfer rate between the source and
destination nodes.
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The simulation was performed to evaluate the effectiveness of the proposed route
group selection method when the route group was increased, without using the proposed
algorithm, randomly and with an equal probability distribution of traffic over the routes
(blue curve). The proposed route selection scheme improved the transmission rate, com-
pared to random selection and equal-probability traffic distribution, by 40%. However, the
proposed algorithm is limited by its computation cost, even with reduced computations.

The speed of data delivery using the proposed method was higher than with an
arbitrary choice of a set of routes; it follows that the delay in data delivery using this
method was decreased by the same value, i.e., by 40%.

Various performance metrics, including packet delivery rate (PDR), number of mul-
tiple relays (MPR), packet delivery time, routing latency, and energy consumption, were
considered for assessing performance. We measured these parameters for the proposed
and the other four multipath routing models. We considered four common routing algo-
rithms for performance comparisons. These algorithms are the OLSR, directional OLSR
(DOLSR), mobility and load aware OLSR (ML-OLSR), and multi-objective OLSR (MO-
OLSR) [13,27,28].

Since packet delivery is used as a performance metric of routing schemes, we con-
sidered it as a key performance indicator of the proposed model. Packet delivery maps
to communication overhead and route failure. Figure 7 provides the recorded PDR of
the proposed multipath routing model compared to the four multipath routing protocols.
The delivered packets were recorded for different numbers of deployed nodes. With the
increase in the number of deployed nodes, the percentage of delivered packets decreased
due to the higher communication overhead. However, the proposed model proved to have
higher efficiency than other models even with the increase in the number of deployed nodes.
This is due to the reduction of overhead achieved by gathering packets and transmitting
over the optimum routes.
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Figure 7. Percentage of packet delivery for different numbers of nodes.

Figure 8 presents the node deployment of the 30-node scenario, while Figure 9 presents
the average number of MPRs for the proposed model and considered algorithms. The
recorded measures were carried out for the five considered cases. As the density of devices
increased, i.e., number of network nodes per area increased, the average number of MPRs
increased. However, the average number of MPRs of the cases of the proposed model was
reduced compared to the four other algorithms, which indicates shorter paths and, thus,
less overhead and lower latencies.
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The proposed model reduced the number of intermediate nodes by an average of 17%
for the low-density network, e.g., cases 1 and 2. However, it had a higher efficiency in
high-density networks, e.g., cases 4 and 5, by reducing MPRs by nearly 34%.

Figure 10 provides the average percentage of consumed energy of the proposed
multipath routing compared to the four other algorithms. The measures were recorded
for different numbers of deployed devices. The energy consumption increased with the
increase in number of end devices due to the traffic overhead that requires retransmission
due to packet loss. However, the proposed model selects the optimum route path, which
reduced the energy cost.
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Figure 11 presents the average delay in delivering packets for the proposed and the
considered algorithms. The delay was recorded for different numbers of deployed network
nodes to investigate the effect of the network density on packet delays. This indicates the
robustness of the routing algorithm against network density. The results indicate that the
proposed model outperformed the other four models regarding packet delay. This is due to
the optimized selection of intermediate paths and parallel routes, which reduces the overall
path and the required time for packet delivery.
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The last considered metric was the overhead of the routing algorithm, which maps
to the amount of data and processing power required to route packets through a network.
Managing routing overhead is crucial to maintain efficient network operation and minimize
any negative impact on network performance. Figure 12 presents the results of routing
overhead for the proposed and the considered models. The proposed model reduced the
overhead by considerable values. It significantly reduced overhead for dense networks,
e.g., case 5, by 52% compared to 31% for low-density networks.
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The time complexity of the proposed and traditional routing schemes is calculated as
shown in Table 2.

Table 2. Comparative analysis of the complexity.

The Proposed Model The Common Traditional Routing Schemes

αT = k. O(Log k) αT = n. O(Log n)

n is the total available routes, while k is the selected routes from n (k <= n). Since k is
considerably less than n, the time complexity is significantly lower than that of the other
traditional routing schemes. Hence, the proposed method can be applied efficiently to
improve the network reliability, availability, scalability, energy usage, and latency, through
the optimized construction of parallel routes.

6. Conclusions

The analysis of multipath routing methods has shown that their use in IoT networks
allows data transfer between network nodes at speeds significantly higher than the trans-
mission speed of single-path routing. The number of routes in high-density IoT networks
can be large enough to solve the multipath routing problem; therefore, such networks use
independent routes. Selecting a group of routes with different parameters requires solving
the problem of traffic distribution and can lead to different results, including a decrease
in the equivalent transfer rate. Ensuring its increase requires a method that provides a
rational choice of both the routes and the coefficients of traffic distribution over these routes.
This work provided a method for choosing the optimum routes from a given number of
available routes to achieve maximum data transfer. The proposed model uses dynamic
programming to solve the proposed model. Moreover, the proposed method increased the
efficiency of utilizing network resources. The introduced route selection scheme improved
the transmission rate by 40%, compared to random selection and equal-probability traffic
distribution. Also, it outperformed the OLSR, DOLSR, ML-OLSR, and MO-LSR algorithms
in terms of energy usage, packet delivery delay, packet delivery ratio, and routing overhead.
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