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Abstract: In this paper, we present an innovative 3D fractional Hénon-based memristor map and
conduct an extensive exploration and analysis of its dynamic behaviors under commensurate and
incommensurate orders. The study employs diverse numerical techniques, such as visualizing phase
portraits, analyzing Lyapunov exponents, plotting bifurcation diagrams, and applying the sample
entropy test to assess the complexity and validate the chaotic characteristics. However, since the
proposed fractional map has no fixed points, the outcomes reveal that the map can exhibit a wide
range of hidden dynamical behaviors. This phenomenon significantly augments the complexity of
the fractal structure inherent to the chaotic attractors. Moreover, we introduce nonlinear controllers
designed for stabilizing and synchronizing the proposed fractional Hénon-based memristor map.
The research emphasizes the system’s sensitivity to fractional-order parameters, resulting in the
emergence of distinct dynamic patterns. The memristor-based chaotic map exhibits rich and intricate
behavior, making it a captivating and significant area of investigation.

Keywords: Hénon-based map; memristor; discrete fractional calculus; chaotic dynamics; entropy;
control

MSC: 37M20

1. Introduction

Discrete fractional calculus has emerged as a captivating research area that has grabbed
the interest of mathematicians and scholars in various disciplines over the last decade. Its
applications span diverse fields, including biology, ecology, and applied sciences, offering
valuable insights into real-world challenges. Fractional systems have demonstrated the
ability to describe complex nonlinear phenomena with greater accuracy compared to
traditional integer-order systems [1], showcasing their unique properties, including long-
term memory, viscosity, and flexibility. Recently, there has been a surge in published articles
addressing this intriguing topic. Researchers have been offering various discrete-time
fractional operators, conducting stability analyses, and presenting numerous theoretical
findings [2–6]. Notably, Wu and Baleanu presented the first study that delves into the
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modeling of fractional chaotic maps using the left Caputo-like operator and investigates
their chaotic characteristics [7]. As a result of these advances, this work paved the way for
the emergence of more commensurate- and non-commensurate-order chaotic maps [8–13],
in addition to exploring diverse control strategies and synchronization schemes that have
been developed to synchronize the interactions between different fractional discrete chaotic
systems [14–17]. These studies reflected that the system’s behavior is highly dependent on
the chosen fractional order, showcasing its non-linear and complex nature, which makes it
a fascinating subject of study in the field of fractional dynamics.

A memory resistor, commonly known as a “memristor”, has been widely recognized
as the fourth fundamental circuit element that serves as a link between charge and magnetic
flux. The theoretical concept of the memristor was initially forwarded by Chua in 1971 [18].
For an extended period, memristor research remained primarily theoretical until the first
physical implementation of a memristor was achieved by HP laboratories in 2008. They
successfully developed the first practical memristor using nanomaterials [19]. It has since
become an essential component in various applications due to its unique properties and
potential to revolutionize memory and computing technologies. Memristors have garnered
significant attention and research interest, contributing to the advancement of various fields,
including electronics [20], computing [21], nonvolatile memory [22], and neuromorphic
systems [23].

In general, memristor-based chaotic systems are commonly designed using differential
equations in the continuous-time domain [24]. However, until recent years, discrete-time
memristive maps had not been extensively explored or discussed. In practice, discrete
chaotic systems offer the advantage of avoiding parameter sensitivity issues present in
continuous systems, making them easier to implement using digital hardware circuits [25].
Consequently, there has been a growing realization among researchers of the significance
of exploring and understanding discrete memristive maps, leading to promising advance-
ments in understanding the behavior of discrete memristor-based systems and their implica-
tions for various applications [26–30]. These studies contribute to exploring the interactions
between memristive elements and mathematical functions, providing valuable insights
into the dynamics of memristive maps and their potential applications in various fields.

The majority of the previous discrete memristors research has been focused on integer-
order systems. Regrettably, the study of discrete fractional memristors remains inadequate,
with relatively few studies dedicated to exploring their behavior and characteristics. For
instance, Lu et al. [31] developed an innovative 2D discrete memristor map by incorporat-
ing a memristor into a 1D Rulkov neuron map. In [32], Peng et al. investigated the chaotic
behaviors in the Caputo fractional memristive map, while in [33], the authors conducted
an investigation into the multistability and synchronization of fractional maps resulting
from the coupling of Rulkov neurons with locally active discrete memristors. Furthermore,
Shatnawi et al. [34] recently explored the hidden attractors and multistability in a fractional
non-fixed-point discrete memristor-based map. Additionally, the study of the fractional
memristor-based discrete chaotic map based on the Grunwald–Letnikov operator and its
implementation in digital circuits is presented in [35]. The studies highlight the intricate
and rich behavior of the system, emphasizing the significance of fractional components in
contributing to the complexity and versatility of memristor-based maps. The aforemen-
tioned papers have primarily concentrated on models with commensurate orders within
discrete memristor-based maps. However, there appears to be a noticeable gap in the
literature concerning the effect of the incommensurate-order case on the dynamics of such
maps. This indicates an underexplored area in the field of discrete memristors, particularly
in the context of incommensurate fractional memristors. Understanding the behavior and
properties of incommensurate fractional memristors could lead to valuable insights and
potential applications in various domains. Therefore, further investigation and research
in this area are essential to uncovering the unique characteristics and potential benefits of
incommensurate fractional memristors.
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Inspired by the preceding discussion, the main innovations and contributions of this
paper are summarized as follows:

1. A new 3D fractional-order Hénon-based memristor map is presented by establishing
a connection between the 2D Hénon map and the discrete memristor.

2. The rich variety of complex nonlinear dynamical behavior is comprehensively ex-
plored, and some basic dynamical characteristics demonstrated by this map, such
as phase portraits, bifurcation diagrams, and the maximum Lyapunov exponent,
are investigated.

3. To measure the complexity and demonstrate the presence of chaos in the proposed
memristor map, we give its sample entropy (SampEn) test results using a range of
fractional values, encompassing both commensurate and incommensurate cases.

4. Chaos control and synchronization of the proposed 3D fractional Hénon-based mem-
ristor map are realized based on the stability theorem of fractional-order discrete-time
linear systems.

The rest of this article is outlined as follows: In Section 2, we introduce essential
preliminary concepts related to discrete fractional calculus and we introduce the mathe-
matical model of the 3D fractional Hénon-based memristor map. In Section 3, we delve
into an analysis of the dynamic characteristics of the fractional Hénon-based memristor
map, focusing on both commensurate and incommensurate scenarios. This exploration is
facilitated through phase portrait visualization, Lyapunov exponent analysis and bifurca-
tion diagram plots. Section 4 involves the utilization of the sample entropy test (SampEn)
to quantitatively measure the complexity and validate the presence of chaos within the
map. In Section 5, we propose adaptive nonlinear controllers aimed at stabilizing and
synchronizing the proposed 3D fractional Hénon-based memristor map. In conclusion,
we provide a concise summary of the most noteworthy findings that we obtained during
our study.

2. Preliminaries and Model Description

To elucidate our memristor framework, we first provide a specific overview within
the domain of discrete fractional calculus. Then, we proceed to introduce the mathematical
construct of the fractional Hénon-based memristor map, which incorporates the Caputo-left
difference operator.

2.1. Discrete Fractional Calculus

Definition 1 ([2]). The β-th fractional sum for a function Y can be expressed as

∆−β
b Y(υ) =

1
Γ(β)

b−β

∑
l=b

(b− 1− l)(β−1)Y(l), (1)

with υ ∈ Nb+β, β > 0.

Definition 2 ([4]). The Caputo-like difference operator for a function Y(υ) can be stated as

C∆β
υY(b) = ∆−(m−β)

b ∆mX(υ) = 1
β(m−β) ∑

υ−(m−β)
l=b (υ− l − 1)(m−β−1)∆mY(l), (2)

where υ ∈ Nb+m−β, β 6∈ N and m = dβe+ 1. ∆mY(υ) and (υ− l − 1)(m−β−1) are the m-th
integer difference operator and the falling factorial function, respectively, which are written as

∆mY(υ) = ∆(∆m−1Y(υ)) =
m

∑
k=0

(
m
k

)
(−1)m−kY(υ + k), υ ∈ Nb, (3)
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and

(υ− 1− l)(m−β−1) =
β(υ− l)

β(υ + 1− l −m + β)
, (4)

Remark 1. For m = 1, we can define the Caputo-like operator by

C∆β
b Y(υ) = ∆−(1−β)

b ∆Y(υ) = 1
β(1−β) ∑

υ−(1−β)
l=b (υ− 1− l)(−β)∆Y(l), υ ∈ Nb−β+1 (5)

Theorem 1 ([7]). The solution of the following fractional difference system{
C∆β

b Z(υ) = Y(υ + β− 1, Z(υ + β− 1))
∆jZ(υ) = Zj, m = dβe+ 1,

(6)

is expressed by

Z(υ) = Z0(υ) +
1

Γ(β)

υ−β

∑
l=m−β

(υ + 1− l)(β−1)Y(l − 1 + β, Z(l − 1 + β)), υ ∈ Nb+m, (7)

where

Z0(υ) =
m−1

∑
j=0

(υ− b)j

Γ(j + 1)
∆jZ(0). (8)

2.2. Fractional-Order Hénon-Based Memristor Map

The original work of Hénon [36] introduced the 2D Hénon map, which is written as{
y1(r + 1) = 1− ρ1(y1(r))

2 + y2(r),
y2(r + 1) = ρ2y1(r),

(9)

where ρ1 and ρ2 are adjustable parameters.
The memristor is a two-terminal nonlinear device that displays a pinched hysteresis in

response to the application of any periodic voltage or current stimulation. Diverse memris-
tors with discrete memristance values have been suggested through the use of differential
modeling theory [37]. As per the concept presented in reference [38], the discrete memristor
can be defined by {

vr = M(qr)ir,
qr+1 = qr + k ir,

(10)

where vr represents the output voltage, ir is the input current, and qr is the internal state
of the discrete memristor at step r. M(qr) denotes the value of the discrete memristance
function, which is equal, in this study, to

M(qr) = tanh qr.

Thus, the mathematical model for the discrete memristor (10) is formulated by{
vr = tanh (qr)ir,
qr+1 = qr + k ir.

(11)

Rong et al. [26] expanded the dimension of the Ikeda map by incorporating the
discrete memristor model (11) into the map (9), yielding the following 3D Hénon-based
memristor map:
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y1(r + 1) = 1− ρ1(y1(r))

2 + y2(r),
y2(r + 1) = ρ2y1(r) + µ tanh (y3(r))y2(r),
y3(r + 1) = y3(r) + y2(r).

(12)

where µ is the controller parameter. Figure 1 illustrates the bifurcation diagram and
Lyapunov exponent, as well as the phase attractor of the 3D Hénon-based memristor map,
while varying µ from 0 to 1. The evidence presented in Figure 1 provides that the model
demonstrates chaotic dynamics for a significant range of values, specifically within the
interval ρ ∈ (0.448, 0.531) ∪ (0.722, 0.986).

(a) (b)

(c)
Figure 1. (a) Bifurcation diagram for µ ranging from 0 to 1. (b) The corresponding Lyapunov
exponents. (c) Phase attractor of Hénon-based memristor map (12).

In this investigation, we extend the integer-order Hénon-based memristor map to
generate the fractional-order Hénon-based memristor map by employing the Caputo
difference operator. The formula representing the first-order difference of the Hénon-based
memristor map is as follows:

∆y1(r) = 1− ρ1(y1(r))
2 + y2(r)− y1(r),

∆y2(r) = ρ2y1(r) + (µ tanh (y3(r))− 1)y2(r),
∆y3(r) = y2(r),

(13)

where ∆y(r) = y(r + 1) − y(r) is the standard difference operator. In the aforemen-
tioned system, if we substitute ∆ with the Caputo-like operator c∆β

b and replace r with
$ = υ + β− 1, the resulting system becomes a fractional-order difference system:
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c∆β

b y1(υ) = 1− ρ1(y1($))
2 + y2($)− y1($),

c∆β
b y2(υ) = ρ2y1($) + (µ tanh (y3($))− 1)y2($),

c∆β
b y3(υ) = y2($),

(14)

where υ ∈ Nb+1−β, b is the initial point, and 0 < β ≤ 1 represents the fractional order.
The fixed points of the fractional-order Henon-based memristor map (14) are the

values of (y∗1 , y∗2 , y∗3) that fulfill the following set of equations:
1− ρ1

(
y∗1
)2

+ y∗2 − y∗1 = 0,
ρ2y∗1 + (µ tanh (y∗3)− 1)y∗2 = 0,
y∗2 = 0.

(15)

It is clear that, from the third equation of (15), y∗2 = 0. Substituting y∗2 in the second
equation, we obtain y∗1 = 0. Moreover, upon substituting y∗1 and y∗2 into the first equation
of (15), it becomes apparent that the system (15) does not have a solution. This signifies that
the fractional-order Henon-based memristor map (14) does not possess any fixed points.
Consequently, as indicated in reference [39], all attractors produced by the fractional-order
Henon-based memristor map (14) are hidden. This means that they are not visible in the
traditional plots of the map’s phase space.

3. Nonlinear Dynamics of the Fractional-Order Hénon-Based Memristor Map

In this section, we conduct an analysis of the behaviors of the 3D fractional-order
Hénon-based memristor map (14). The analysis is carried out across commensurate and in-
commensurate orders. We employ a range of numerical tools, such as visualizing phase por-
traits, illustrating bifurcations, and estimating the maximum Lyapunov exponent (LEmax).

3.1. Commensurate-Order Fractional Hénon-Based Memristor Map

In this part, our focus is on elaborating on the different characteristics of the commensurate-
order 3D fractional Hénon-based memristor map. It is important to recognize that a
commensurate-order fractional system is comprised of equations that possess identical
orders. To this end, we will now supply the numerical formula, which is presented in the
following manner and is derived from Theorem 1:

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
1− ρ1(y1(j))2 + y2(j)− y1(j)

)
,

y2(r) = y2(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
ρ2y1(j) + (µ tanh (y3(j))− 1)y2(j)

)
,

y3(r) = y3(0) +
r−1
∑

j=0

Γ(r−j−1+β)
Γ(β)Γ(r−j)

(
y2(j)

)
,

(16)

Setting y1(0) = y2(0) = t3(0) = 0 and the parameters ρ1 = 0.15, ρ2 = −1.05 and
µ = 0.5, the bifurcation diagram is used to show the variations in the behaviors of the com-
mensurate 3D fractional Hénon-based memristor map (14), as the order β is varied from
0.8 to 1 with a step size of 0.0005. Figure 2 depicts the bifurcation and LEmax. By adjusting
the commensurate-order β, we are able to explore a rich set of dynamic characteristics
(hidden chaotic and regular) of the fractional map. In more detail, the system exhibits both
chaotic and periodic oscillations in distinct regions of its phase space. More specifically,
when β ∈ (0.804, 0.855), the trajectories of the commensurate 3D fractional Hénon-based
memristor map (14) exhibit hidden chaotic behavior, while as β transitions to the range
of β ∈ (0.855, 0.931), periodic windows with 7-period orbits appear, indicating the stabil-
ity of the states of the map. However, when the commensurate-order β falls within the
range of β ∈ (0.932, 0.984), we can observe oscillations between the chaotic and regular
trajectories in the states of the 3D fractional Hénon-based memristor map (14). During this
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range, the Lyapunov exponent (LE) also fluctuates between positive and negative values,
indicating transitions between chaotic and non-chaotic behaviors in the system. Sub-
sequently, for larger values of β, chaotic motions reappear, characterized by a positive
maximum Lyapunov exponent (LEmax), indicating chaotic dynamics in the trajectories
of the commensurate-order 3D Hénon-based memristor map. These described dynamic
features are further confirmed by the Lyapunov exponent shown in Figure 2, providing
additional evidence for the system’s complex and diverse behavior and confirming the
sensitivity of the map to changes in the commensurate-order parameter β. Furthermore,
based on the observation of the maximum Lyapunov exponent, it can be concluded that
when the maximum Lyapunov exponent is not positive, the commensurate 3D fractional
Hénon-based memristor map exhibits regular oscillations. Conversely, the presence of
chaotic oscillations is inferred when the exponent is positive.

(a) (b)
Figure 2. (a) Bifurcation of commensurate-order Hénon-based memristor map (14) for β ∈ (0.8, 1).
(b) The corresponding LEmax.

Now, considering µ as the critical parameter, we plot three bifurcations of (14) associ-
ated with µ ∈ [0, 1] as shown in Figure 3, which correspond to the commensurate orders
β = 0.85, β = 0.9 and β = 0.95. It is evident that both the parameter’s system µ and
the commensurate order β have an effect on the states of the commensurate fractional
Hénon-based memristor map (14). Indeed, as the commensurate fractional-order β and
parameter ρ increases, the commensurate 3D fractional Hénon-based memristor map (14)
displays a more extended hidden chaotic region. This leads to the emergence of more
complex oscillations and increased unpredictability in the system’s behavior. The interplay
between the fractional order and the system parameter has a significant impact on the
dynamical behavior, and these changes can result in a richer range of chaotic patterns
and intricate trajectories within the 3D Hénon-based memristor map (14). In order to
achieve a comprehensive understanding of these characteristics, Figure 4 displays the
discrete time evolution of the states y1, y2, and y3 in the suggested commensurate map.
We can observe that the trajectories are not regular or predictable. Instead, they display
irregular patterns, which is a hallmark of chaotic behavior, where small differences in the
initial conditions lead to vastly different trajectories. Additionally, Figure 5 illustrates the
phase portraits for various values of the commensurate-order β (β = 0.1, β = 0.4, β = 0.6,
β = 0.9, β = 0.98, and β = 1). From the figures, the observed trajectories in the proposed
commensurate map switch between hidden chaotic oscillations and periodic behaviors
as the commensurate-order β varies. This observation emphasizes the sensitivity of the
system to changes in β and demonstrates the richness and complexity of the dynamical
properties in the commensurate-order 3 D Hénon-based memristor map (14).
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(a) (b)

(c)
Figure 3. Three bifurcation diagrams of commensurate 3D fractional Hénon-based memristor map
and their LEmax associated with µ, for (a) β = 0.85, (b) β = 0.9, and (c) β = 0.95.

Figure 4. Time evolution of the commensurate 3D fractional Hénon-based memristor map (14) for
β = 0.98.
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(a) (b) (c)

(d) (e) (f)
Figure 5. Phase portraits of (14) for different values of β (a) β = 0.85, (b) β = 0.9, (c) β = 0.95,
(d) β = 0.965, (e) β = 0.98, (f) β = 1.

3.2. Incommensurate-Order Fractional Hénon-Based Memristor Map

In this section, we delve into the dynamics of the incommensurate-order fractional
Hénon-based memristor map. The concept of the incommensurate order entails utilizing
different fractional orders for each equation within the system. The representation of the
incommensurate-order fractional Hénon-based memristor map is as follows:

c∆β1
b y1(υ) = 1− ρ1(y1($))

2 + y2($)− y1($),
c∆β2

b y2(υ) = ρ2y1($) + (µ tanh (y3($))− 1)y2($),
c∆β3

b y3(υ) = y2($),

(17)

By utilizing Theorem 1, we can express the numerical representation of the incommen-
surate fractional 3D Hénon-based memristor map (17) as follows:

y1(r) = y1(0) +
r−1
∑

j=0

Γ(r−j−1+β1)
Γ(β1)Γ(r−j)

(
1− ρ1(y1(j))2 + y2(j)− y1(j)

)
,

y2(r) = y2(0) +
r−1
∑

j=0

Γ(r−j−1+β2)
Γ(β2)Γ(r−j)

(
ρ2y1(j) + (µ tanh (y3(j))− 1)y2(j)

)
,

y3(r) = y3(0) +
r−1
∑

j=0

Γ(r−j−1+β3)
Γ(β3)Γ(r−j)

(
y2(j)

)
,

(18)

We analyze the dynamics and characteristics of this map to understand its unique be-
havior and explore the implications of employing distinct fractional orders in the system’s
equations. These investigations offer a deeper understanding of how the fractional orders
impact the system dynamics and underscore the importance of considering incommensu-
rate orders in the analysis of the model’s behavior. In Figure 6, we observe the variation
of the order β1 from 0.7 to 1 with a step size of ∆β1 = 0.0005. These figures illustrate the
bifurcation and its corresponding Lyapunov exponent of the incommensurate-order 3D
fractional Hénon-based memristor map (17) for β2 = 0.9 and β3 = 1, the parameters value
ρ1 = 0.15, ρ2 = −1.05, µ = 0.5, and the initial conditions (y1(0) = y2(0) = y3(0)) = 0.
From Figure 6a, it is evident that the state of the incommensurate Hénon-based memris-
tor map (17) exhibits periodic behavior for larger values of β1 as evidenced by negative
Lyapunov exponents as shown in Figure 6b. On the other hand, as β1 decreases, hidden
chaotic behaviors emerge with positive values of LEmax. As the incommensurate-order β1
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decreases further, the trajectories undergo a transition state, and as β1 drops below 0.745,
the states of the fractional Hénon-based memristor map (17) exhibit a divergence towards
infinity. In addition, the bifurcation chart and its corresponding largest Lyapunov exponent
(LEmax), where the parameter β3 is varied within the range (0, 1), are presented in Figure 7.
In this analysis, we maintain the incommensurate orders as β1 = β3 = 1. From Figure 7,
it is evident that, unlike the previous case, the trajectories of the incommensurate model
exhibit hidden chaotic behavior when the order β2 takes larger values as indicated by the
positive values of LEmax. When β2 decreases, the trajectories transition from chaotic to
regular motion, where the states of the incommensurate-order fractional Hénon-based
memristor map (17) become stable within the interval β2 ∈ (0.65, 0.78) ∪ (0.897, 0.97). The
Lyapunov exponent (LEmax) displayed in Figure 7b fluctuates between positive and nega-
tive values when β1 lies within the region β2 ∈ (0.87, 0.897). This outcome indicates the
presence of chaotic behavior with the emergence of periodic windows. Additionally, as β2
decreases even further, the maximum Lyapunov exponent values increase until they reach
their highest value, indicating that the fractional Hénon-based memristor map becomes
chaotic. We also see that when the incommensurate-order β3 continues to decrease, the
map shows transition states, and the trajectories go to infinity. The observed changes in the
largest Lyapunov exponent and the corresponding dynamic patterns illustrate the system’s
sensitivity to variations in the parameter β2, highlighting the complexity and versatility of
the incommensurate-order 3D fractional Hénon-based memristor map.

(a) (b)
Figure 6. (a) Bifurcation of (17). (b) Corresponding LEmax versus the incommensurate fractional-order
β1 for β2 = 0.9 and β3 = 1.

(a) (b)
Figure 7. (a) Bifurcation of (17). (b) Corresponding LEmax versus the incommensurate fractional-order
β2 for β1 = β3 = 1.

Now, to provide a more detailed illustration of the influence of incommensurate orders
on the behaviors of the Hénon-based memristor map, further investigation is carried out.
These investigations offer a deeper understanding of how the fractional orders impact
the system dynamics and underscore the importance of considering incommensurate or-
ders in the analysis of the model’s behavior. The three bifurcation diagrams presented
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in Figure 8 demonstrate the behaviors of the incommensurate Hénon-based memristor
map (17) as the parameter µ varies within the range [0, 1]. The simulations are con-
ducted with the value of parameters ρ1 = 0.15 and ρ2 = −1.05, and the initial conditions
(y1(0) = y2(0) = y3(0)) = 0. It is evident that these diagrams exhibit distinct patterns,
indicating that the change in fractional orders (β1, β2, β3) significantly impacts the states of
the incommensurate-order 3D fractional Hénon-based memristor map (17). For instance,
when (β1, β2, β3) = (0.85, 0.9, 1), the system’s states evolve from periodic to hidden chaotic
behavior as the parameter µ increases. On the other hand, when (β1, β2, β3) = (1, 0.7, 1),
oscillatory motion is observed, with trajectories remaining stable for small values of µ and
becoming chaotic for large values of µ. In the case of (β1, β2, β3) = (1, 1, 0.9), a hidden
chaotic region is evident throughout the interval, except for some periodic regions, where
the model exhibits regular oscillations, especially when µ ∈ (0.66, 0.81). These results
emphasize the sensitivity of the incommensurate 3D fractional Hénon-based memristor
map (17) to changes in the orders β1, β2 and β3, resulting in a diverse range of hidden
dynamic behaviors, including hidden chaotic and periodic motion. This highlights the
significance of incommensurate orders in shaping the system’s dynamics. Additionally,
the phase portraits of the state variables of the incommensurate fractional Hénon-based
memristor map (17) as shown in Figure 9 further support the notion that incommensurate
orders more accurately represent the system’s behaviors. Overall, the study emphasizes
the intricate and diverse nature of the incommensurate-order 3D fractional Hénon-based
memristor map and the significance of the choice of fractional orders in modeling and
characterizing its dynamics.

(a) (b)

(c)
Figure 8. Bifurcations of (17) versus the parameter system µ for (a) (β1, β2, β3) = (0.85, 0.9, 1)
(b) (β1, β2, β3) = (1, 0.7, 1) (c) (β1, β2, β3) = (1, 1, 0.9).
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(a) (b) (c)

(d) (e) (f)
Figure 9. Phase portraits of (17) for different values of incommensurate orders β1, β2 and β3

(a) (β1, β2, β3) = (0.85, 0.9, 1), (b) (β1, β2, β3) = (1, 0.6, 1), (c) (β1, β2, β3) = (1, 0.7, 1), (d) (β1, β2, β3) =

(1, 0.9, 1), (e) (β1, β2, β3) = (1, 1, 0.7), (f) (β1, β2, β3) = (1, 1, 0.9).

4. The Sample Entropy Test (SampEn)

In this study, we employ the sample entropy (SampEn) method to assess the complex-
ity of both the commensurate-order 3D fractional IHénon-based memristor map (14) and
the incommensurate-order 3D fractional Hénon-based memristor map (17). Unlike approxi-
mate entropy (ApEn), SampEn can effectively measure the irregularity of time series regard-
less of the embedding dimension (m) and the similarity coefficient (r). Consequently, SampEn
provides a more consistent and unbiased measure compared to ApEn [40]. The SampEn
values indicate the complexity level of the time series, with higher values corresponding to
higher complexity [41]. The calculation of SampEn is performed as follows:

SampEn = − log
Ψj+1(r)

Ψj(r)
, (19)

where Ψj(r) is expressed as

Ψj(r) =
1

m− j + 1

m−j+1

∑
i=1

log Cj
i (r). (20)

and r = 0.2std(C) is the tolerance defined, and std(C) represents the standard deviation.
The sample entropy results for the commensurate-order 3D fractional Hénon-based

memristor map (14) and the incommensurate-order 3D fractional Hénon-based memris-
tor map (17) are presented in Figure 10, with the initial conditions set as (y1(0), y2(0),
Y3(0)) = (0, 0.0) and parameter values ρ1 = 0.15 and ρ1 = −1.05. The obtained SampEn
values indicate the complexity levels of the time series, with larger values corresponding to
higher complexity. The results demonstrate that both the commensurate and incommen-
surate fractional Hénon-based memristor maps exhibit higher complexity as indicated by
their larger SampEn values. These findings align with the results obtained from the maxi-
mum Lyapunov exponent analysis, further confirming the chaotic nature of the dynamics
in the proposed fractional map. The higher complexity and chaotic behavior support the
significance of fractional orders in capturing the rich dynamics of the proposed fractional
Hénon-based memristor map.
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(a) (b)
Figure 10. The sample entropy results of the fractional Hénon-based memristor map versus the
parameter µ for (a) β = 0.9, (b) (β1, β2, β3) = (1, 0.7, 1).

5. Control of Fractional Hénon-Based Memristor Map

In many real-world applications, it is essential to ensure that the system behaves in a
stable and regulated manner. Control mechanisms are introduced to influence the system’s
dynamics, guiding it towards desired states or trajectories. This is particularly important
in applications where maintaining a specific behavior or avoiding chaotic outcomes is a
priority. Chaotic systems often undergo bifurcations, leading to unpredictable and undesirable
behavior. By incorporating control parameters into the map, we can exert influence over these
bifurcations, stabilizing the system or steering it towards specific regions of the phase space.
This is vital for controlling and mitigating chaotic behavior.

Control is frequently used in synchronization and communication systems to ensure
that different parts of a system remain coordinated. By introducing control into our map,
we can explore its utility in synchronization tasks, making it relevant to applications in
secure communications and information transfer. In this section, we introduce nonlinear
controllers designed for stabilizing and synchronizing the proposed fractional Hénon-based
memristor map’s behavior, making it applicable to a wide range of practical scenarios.

5.1. Stabilization of Fractional Hénon-Based Memristor Map

Here, a stabilization controller is proposed to stabilize the suggested fractional Hénon-
based memristor chaotic map. The main objective of the stabilization method is to design
an effective adaptive controller that drives all states of the map towards zero asymptotically.
To achieve this goal, we begin by revisiting the stability theorem for the fractional maps.

Theorem 2 ([42]). Let y(r) = (y1(r), . . . , yn(r))T and B ∈ Mn(R). The zero fixed point of the
linear fractional-order map

C∆β
b y(r) = B y($), (21)

∀ r ∈ Nb+1−β is asymptotically stable if

λι ∈
{

γ ∈ C : |γ| ≤
(

2 cos
|arg γ| − π

2− β

)β

and |arg γ| ≥ β π

2

}
, (22)

where λι are the eigenvalues of the matrix B.

Now, the controlled fractional Hénon-based memristor map is given by
c∆β

b y1(υ) = 1− ρ1(y1($))
2 + y2($)− y1($) + C1($),

c∆β
b y2(υ) = ρ2y1($) + (µ tanh (y3($))− 1)y2($) + C2($),

c∆β
b y3(υ) = y2($) + C3($),

(23)
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where $ = υ+ β− 1 and C = (C1, C2, C3)
T is the adaptive controller. The following theorem

introduces control laws aimed at stabilizing the proposed novel fractional Hénon-based
memristor map.

Theorem 3. If suitable control laws are designed as follows,
C1($) = −1 + ρ1(y1($))

2 − y2($)− α1y1($),
C2($) = −ρ2y1($)− µy2($) tanh (y3($))− α2y2($),
C3($) = −y2($)− α3y3($),

(24)

where −1 ≤ α1 ≤ 2β − 1, −1 ≤ α2 ≤ 2β − 1 and 0 ≤ α3 ≤ 2β, then the fractional Hénon-based
memristor map can be stabilized at its equilibrium point.

Proof. Substituting C1, C2 and C3 into (23) yields the following linear system:

C∆β
b Y(r) = BY($), (25)

where Y = (y1, y2, q)T and

B =

−(1 + α1) 0 0
0 −(1 + α2) 0
0 0 −α3


Since −1 ≤ α1 ≤ 2β − 1, −1 ≤ α2 ≤ 2β − 1 and 0 ≤ α3 ≤ 2β, it is easy to see that the

eigenvalues of the matrix B satisfy

|λj| ≤
(

2 cos
|arg λj| − π

2− β

)β

and |arg λj| = π ≤ β π

2
, j = 1, 2, 3.

So, by employing Theorem 2, the controlled fractional Hénon-based memristor map is
asymptotically stable.

To validate the findings of Theorem 3, numerical simulations were performed. Figures 11
and 12 present the time series of the controlled fractional Hénon-based memristor map (23)
for β = 0.7, α1 = −0.2, α2 = 0.1 and α3 = 0.8. It is evident from the figures that the system’s
states approach zero asymptotically, confirming the successful stabilization results.

Figure 11. Cont.
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Figure 11. Attractors of the controlled fractional Hénon-based memristor map (23) for β = 0.7 and
initial condition (y1(0), y2(0), y3(0) = (0.2,−0.5,−0.2).

Figure 12. The stabilized states of the controlled fractional Hénon-based memristor map (23) for
β = 0.7 and initial condition (y1(0), y2(0), y3(0) = (0.2,−0.5,−0.2).

5.2. Synchronization Scheme of Fractional Hénon-Based Memristor Map

In the following, nonlinear controllers for achieving synchronization of the fractional
Hénon-based memristor map are presented. The synchronization process aims to minimize
the error between the master map and the slave map, forcing it to converge toward zero.
The commensurate fractional Hénon-based memristor map, represented by Equation (14),
is considered the master map, while the slave Hénon-based memristor map is defined
as follows: 

c∆β
b y1s(υ) = 1− ρ1(y1s($))

2 + y2s($)− y1s($) + U1($),
c∆β

b y2s(υ) = ρ2y1s($) + (µ tanh (y3s($))− 1)y2s($) + U2($),
c∆β

b y3s(υ) = y2s($) + U3($).

(26)
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U1, U2 and U3 represent the synchronization controllers. The fractional error map is
defined as follows:

C∆β
b e1(υ) =− e1(υ)(ρ1(y1s + y1) + 1) + e2(υ) + U1($),

C∆β
b e2(υ) =ρ2e1(υ) + µ(y2s tanh (y3s)− y2 tanh (y3))− e2(υ) + U2($),

C∆β
b e3(υ) =e2($) + U3($)

(27)

The control rule proposed to establish this synchronization scheme is outlined in the
theorem presented below.

Theorem 4. Subject to
U1($) = e1(υ)(ρ1(y1s + y1)− γ1)− e2(υ),
U2($) = −ρ2e1(υ)− µ(y2s tanh (y3s)− y2 tanh (y3))− γ2e2($),
U3($) = −e2($)− γ3e3($)

(28)

where 0 ≤ 1 + γi ≤ 2β (i = 1, 2) and 0 ≤ γ3 ≤ 2β, the master Hénon-based memristor map (14)
and slave Hénon-based memristor map (26) are synchronized.

Proof. Substituting the control law (28) into the fractional error map (27), we obtain

C∆β
d
(
e1(υ), e2(υ), e3(υ)

)T
= B× (e1($), e2($), e3($)

)T , (29)

where

B =

−(1 + γ1) 0 0
0 −(1 + γ2) 0
0 0 −γ3


The eigenvalues of the matrix B are λ1 = −(1 + γ1), λ2 = −(1 + γ2) and λ3 = −γ3.

It is easy to see that for 0 ≤ 1 + γi ≤ 2β (i = 1, 2) and 0 ≤ γ3 ≤ 2β, the eigenvalues satisfy
the stability condition stated in Theorem 2, demonstrating that the zero solution of the
fractional error map (27) is asymptotically stable, leading to the achieved synchronization
of the master Hénon-based memristor map (14) and the slave Hénon-based memristor
map (26).

To confirm the validity of this result, numerical simulations are conducted using
MATLAB. The values of the specific parameters chosen are β = 0.98, γ1 = 0.1, γ2 = −0.3,
γ3 = 1, and the initial values (e1(0), e2(0), e3(0)) = (−0.1, 0.1, 0.2). Figure 13 presents
the time evolution of the states of the fractional error map (27). The figure clearly illus-
trates that the errors tend to zero, validating the effectiveness of the earlier discussed
synchronization process.

Figure 13. Cont.
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Figure 13. Synchronization states of the fractional error map (27).

6. Conclusions

The presented article introduced a novel 3D fractional Hénon-based memristor map
and thoroughly investigated its behavior under commensurate and incommensurate frac-
tional orders. The analysis of the map revealed the absence of any fixed points, revealing
that the map can exhibit intricate and diverse complex hidden dynamical behaviors. By em-
ploying a range of analytical methods, such as Lyapunov exponent calculations, bifurcation
analysis, and phase portraits, the distinct behaviors of the proposed fractional Hénon-based
memristor map are thoroughly explored across various scenarios. Furthermore, the sample
entropy algorithm is utilized to quantitatively assess the model’s complexity. The results
highlight the substantial influence exerted by the system parameters and fractional-orders
on the states of the fractional Hénon-based memristor map. These parameters play a
crucial role in shaping the system’s hidden dynamics and behavior, causing variations in
trajectories within the map’s state space. Ultimately, the paper introduces effective control
laws that ensure the stabilization and synchronization of the proposed map, driving its
states towards asymptotic convergence to zero. Through the numerical simulations con-
ducted, this research offers an extensive understanding of the system’s dynamics, revealing
numerous intriguing and diverse hidden chaotic behaviors. These findings hold significant
value in elucidating the implications of fractional memristive maps, further enriching the
field of chaotic dynamics and nonlinear systems.
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