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1. Introduction

Tangent bundle geometry has long been a source of interest in differential geom-
etry. Tangent bundle investigation introduces several novel challenges to the study of
modern differential geometry. Using the lift function, it is convenient to generalize dif-
ferentiable structures on any manifold M to its tangent bundle. The theory of vertical,
complete, and horizontal lifts of geometrical structures and connections from a manifold
to its tangent bundle was developed by Yano and Ishihara [1]. Numerous researchers
have examined various connections and geometric structures on the tangent bundle like
Yano and Kobayashi [2], Tani [3], Pandey and Chaturvedi [4], and Khan [5,6]. Different
lifts of metallic structures to tangent bundles have been studied in [7–9]. Tangent bundles
immersed with quarter-symmetric non-metric connections, semi-symmetric P-connections,
and semi-symmetric non-metric connections on almost Hermitian manifolds, Kähler man-
ifolds, Kenmotsu manifolds, Sasakian manifolds, para-Sasakian manifolds, Riemannian
manifolds and their submanifolds, and statistical manifolds and their submanifolds have
been studied in [5,10–18]. Recently, Khan et al. [19] studied the tangent bundle of P-Sasakian
manifolds endowed with a quarter-symmetric metric connection (QSMC).

On the other hand, the notion of quarter-symmetric connection in a Riemannian
manifold with affine connection was introduced by Golab in 1975 [20]. This was fur-
ther developed by many geometers like Yano and Imai [21], Rastogi [22,23], Mishra and
Pandey [24], Mukhopadhyay et al. [25], Biswas and De [26], Sengupta and Biswas [27],
Singh and Pandey [28], and others.
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Let ∇ be a linear connection on an n-dimensional differentiable manifold Mn of class
C∞. If the torsion tensor T of ∇ defined by

T(X0, Y0) = ∇X0Y0 −∇Y0 X0 − [X0, Y0], (1)

satisfies
T(X0, Y0) = λ0(Y0)φ0X0 − λ0(X0)φ0Y0, (2)

where λ0 is a 1-form and φ0 is a (1, 1) tensor field, then the connection ∇ is called a
quarter-symmetric connection [21,29,30]. Also, if ∇ satisfies

(∇X0 g)(Y0, Z0) 6= 0, (3)

for all X0, Y0, Z0 ∈ X(Mn), the set of all vector fields on Mn, then ∇ is called a quarter-
symmetric non-metric connection (QSNMC).

We start this paper with Section 1. Section 2 is devoted to preliminaries. In Section 3,
a QSNMC in an LP-Sasakian manifold is studied. The complete lifts of LP-Sasakian
manifolds and QSNMC in an LP-Sasakian manifold to its tangent bundle are investigated in
Sections 4 and 5. In Sections 6 and 7, the complete lifts of the curvature tensor and symmetric
and skew-symmetric condition of the Ricci tensor in an LP-Sasakian manifold endowed
with QSNMC to its tangent bundle are investigated. The skew-symmetric properties of the
projective Ricci tensor and Einstein manifold endowed with QSNMC in an LP-Sasakian
manifold to its tangent bundle are studied in Sections 8 and 9. Lastly, an example of the
lift of four-dimensional LP-Sasakian manifolds to its tangent bundle is shown in Section 9,
followed by a conclusion section.

2. Preliminaries

Let Mn be a differentiable manifold and T0Mn =
⋃

p∈Mn T0p Mn be the tangent bundle,
where T0p Mn is the tangent space at a point p ∈ Mn and π : T0Mn → Mn is the natural
bundle structure of T0Mn over Mn. For any co-ordinate system (Q, xh) in Mn, where (xh)
is a local co-ordinate system in the neighborhood Q, then (π−1(Q), xh, yh) is a co-ordinate
system in T0Mn, where (xh, yh) is an induced co-ordinate system in π−1(Q) from (xh) [1].

2.1. Vertical and Complete Lifts

Let us define a vector field X0, a tensor field F0 of type (1, 1), a function f0, a 1-form
ω0, and an affine connection ∇ in Mn; their vertical and complete lifts are denoted by
f v
0 , Xv

0 , ωv
0 , Fv

0 , ∇v, and f c
0 , Xc

0, ωc
0, Fc

0 , ∇c, respectively. The following formulas of
complete and vertical lifts are defined by [1,5]

( f0X0)
v = f v

0 Xv
0 , ( f0X0)

c = f c
0 Xv

0 + f v
0 Xc

0, (4)

Xv
0 f v

0 = 0, Xv
0 f c

0 = Xc
0 f v

0 = (X0 f0)
v, Xc

0 f c
0 = (X0 f0)

c, (5)

ω0( f v
0 ) = 0, ωv

0(Xc
0) = ωc

0(Xv
0) = ω0(X0)

v, ωc
0(Xc

0) = ω0(X0)
c, (6)

Fv
0 Xc

0 = (F0X0)
v, Fc

0 Xc
0 = (F0X0)

c, (7)

[X0, Y0]
v = [Xc

0, Yv
0 ] = [Xv

0 , Yc
0 ], [X0, Y0]

c = [Xc
0, Yc

0 ], (8)

∇c
Xc

0
Yc

0 = (∇X0Y0)
c, ∇c

Xc
0
Yv

0 = (∇X0Y0)
v. (9)

Suppose T0M is the tangent bundle and let X0 = Xi
0

∂
∂xi be a local vector field on M,

then its vertical and complete lifts in the term of partial differential equations are

Xv
0 = Xi

0
∂

∂yi and Xc
0 = Xi

0
∂

∂xi +
∂Xi

0
∂xj yj ∂

∂yi .
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2.2. LP-Sasakian Manifolds

An n-dimensional differentiable manifold Mn is called a Lorentzian para-Sasakian
(briefly LP-Sasakian) [31] of dimension n if it admits a (1, 1)- tensor field φ0, a contravariant
vector field ξ0, a 1-form η0, and a Lorentzian metric g which satisfy

φ0
2(X0) = X0 + η0(X0)ξ0, (10)

η0(ξ0) = −1, (11)

g(φ0X0, φ0Y0) = g(X0, Y0) + η0(X0)η0(Y0), (12)

g(X0, ξ0) = η0(X0), (13)

(∇X0 φ0)(Y0) = g(X0, Y0)ξ0 + η0(Y0)X0 + 2η0(X0)η0(Y0)ξ0, (14)

∇X0 ξ0 = φ0X0. (15)

In an LP-Sasakian manifold, the following relations also hold:

φ0ξ0 = 0, η0 ◦ φ0 = 0, (16)

rank φ0 = n− 1. (17)

If we take a tensor field Φ0(X0, Y0) as

Φ0(X0, Y0) = g(X0, φ0Y0), (18)

for any vector fields X0 and Y0, then the tensor field Φ0(X0, Y0) is a symmetric (0, 2) tensor
field [31]. Since the 1-form η0 is closed in an LP-Sasakian manifold, we have [31,32]

(∇X0 η0)(Y0) = Φ0(X0, Y0), Φ0(X0, ξ0) = 0, (19)

for all X0, Y0 ∈ Mn. In an LP-Sasakian manifold, the following relations hold [32,33]:

g(R0(X0, Y0)Z0, ξ0) = g(Y0, Z0)η0(X0)− g(X0, Z0)η0(Y0), (20)

R0(ξ0, X0)Y0 = g(X0, Y0)ξ0 − η0(Y0)X0, (21)

R0(X0, Y0)ξ0 = η0(Y0)X0 − η0(X0)Y0, (22)

R0(ξ0, X0)ξ0 = X0 + η0(X0)ξ0, (23)

S0(X0, ξ0) = (n− 1)η0(X0), (24)

S0(φ0X0, φ0Y0) = S0(X0, Y0) + (n− 1)η0(X0)η0(Y0), (25)

where R0 is the Riemannian curvature tensor and S0 is the Ricci tensor of the manifold.

3. QSNMC

In an LP-Sasakian manifold (Mn, g), the linear connection ∇̈ on Mn is given by [29]

∇̈X0Y0 = ∇X0Y0 + η0(Y0)φ0X0 + a0(X0)φ0Y0, (26)

where η0 and a0 are 1-form associated with vector field ξ0 and A0 on Mn is given by

η0(X0) = g(X0, ξ0), (27)

a0(X0) = g(X0, A0), (28)

for all vector fields X0 ∈ X0(Mn), where X0(Mn) is the set of all differentiable vector fields
on Mn and the torsion tensor is given by

T̈(X0, Y0) = η0(Y0)φ0X0 − η0(X0)φ0Y0 + a0(X0)φ0Y0 − a0(Y0)φ0X0. (29)
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A linear connection satisfying (29) is called a quarter-symmetric connection. Further, by
using (26), we have

(∇̈X0 g)(Y0, Z0) = −η0(Y0)g(φ0X0, Z0)− η0(Z0)g(φ0X0, Y0)− 2a0(X0)g(φ0Y0, Z0). (30)

A linear connection ∇̈ defined by (26) which satisfies (29) and (30) is called QSNMC.

4. Complete Lifts from an LP-Sasakian Manifold to Its Tangent Bundle

Let the tangent bundle be denoted by T0Mn in an LP-Sasakian manifold (Mn, g).
Taking complete lifts by mathematical operators on (10)–(16) and (18)–(25), we obtain

(φ2
0(X0))

c = Xc
0 + ηc

0(Xc
0)ξ

v
0 + ηv

0(Xc
0)ξ

c
0, (31)

ηc
0(ξ

c
0) = ηv

0(ξ
v
0) = 0, ηc

0(ξ
v
0) = ηv

0(ξ
c
0) = −1, (32)

gc
(
(φ0X0)

c, (φ0Y0)
c
)
= gc(Xc

0, Yc
0) + ηc

0(Xc
0)η

v
0(Y

c
0) + ηv

0 (Xc)ηc
0(Y

c
0), (33)

gc(Xc
0, ξc

0) = ηc
0(Xc

0), (34)

(∇c
Xc

0
φc

0)Y
c
0 = gc(Xc

0, Yc
0)ξ

v
0 + gc(Xv

0 , Yc
0)ξ

c
0 + ηc

0(Y
c
0)Xv

0 + ηv
0(Y

c
0)Xc

0

+ 2
{

ηc
0(Xc

0)η
c
0(Y

c
0)ξ

v
0 + ηc

0(Xc
0)η

v
0(Y

c
0)ξ

c
0 + ηv

0(Xc
0)η

c
0(Y

c
0)ξ

c
0

}
,

(35)

∇c
Xc

0
ξc

0 = (φ0X0)
c, (36)

φc
0ξc

0 = φv
0ξv

0 = φc
0ξv

0 = φv
0ξc

0 = 0, (37)

ηc
0 ◦ φc

0 = ηv
0 ◦ φv

0 = ηc
0 ◦ φv

0 = ηv
0 ◦ φc

0 = 0, (38)

Φc
0(Xc

0, Yc
0) = gc(Xc

0, φc
0Yc

0), (39)

(∇c
Xc

0
ηc

0)Y
c
0 = Φc

0(Xc
0, Yc

0), (40)

Φc
0(Xc

0, ξc
0) = 0, (41)

gc(Rc(Xc
0, Yc

0)Zc
0, ξc

0) = gc(Yc
0 , Zc

0)η
v
0 (Xc

0) + gc(Yv
0 , Zc

0)η
c
0(Xc

0)

− gc(Xc
0, Zc

0)η
v
0(Y

c
0)− gc(Xv

0 , Zc
0)η

c
0(Y

c
0),

(42)

Rc(ξc, Xc
0)Y

c
0 = gc(Xc

0, Yc
0)ξ

v
0 + gc(Xv

0 , Yc
0)ξ

c
0 − ηc

0(Y
c
0)Xv

0 − ηv
0(Y

c
0)Xc

0, (43)

Rc(Xc
0, Yc

0)ξ
c
0 = ηc

0(Y
c
0)Xv

0 + ηv
0 (Y

c
0)Xc

0 − ηc
0(Xc

0)Y
v
0 − ηv

0(Xc
0)Y

c
0 , (44)

Rc(ξc
0, Xc

0)ξ
c
0 = Xc

0 + ηc
0(Xc

0)ξ
v
0 + ηv

0(Xc
0)ξ

c
0, (45)

Sc(Xc
0, ξc

0) = (n− 1)ηc
0(Xc

0), (46)

Sc(φc
0Xc

0, φc
0Yc

0) = Sc(Xc
0, Yc

0) + (n− 1)
{

ηc
0(Xc

0)η
v
0 (Y

c
0) + ηv

0(Xc
0)η

c
0(Y

c
0)
}

. (47)

5. Complete Lifts of QSNMC of an LP-Sasakian Manifold in the Tangent Bundle

In an LP-Sasakian manifold (Mn, g) and its tangent bundle T0Mn, let us take complete
lifts by mathematical operators on Equations (26)–(30), and we have

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Yc

0 + ηc
0(Y

c
0)(φ0X0)

v + ηv
0(Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v

+ av(Xc
0)(φ0Y0)

c,
(48)
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T̈c(Xc
0, Yc

0) = ηc
0(Y

c
0)(φ0X0)

v + ηv
0(Y

c
0)(φ0X0)

c − ηc
0(Xc

0)(φ0Y0)
v

− ηv
0(Xc

0)(φ0Y0)
c + ac

0(Xc
0)(φ0Y0)

v + av
0(Xc

0)(φ0Y0)
c

− ac
0(Y

c
0)(φ0X0)

v − av
0(Y

c
0)(φ0X0)

c,

(49)

ηc
0(Xc

0) = gc(Xc
0, ξc

0), (50)

ac(Xc
0) = gc(Xc

0, Ac
0), (51)

(∇̈c
Xc

0
gc)(Yc

0 , Zc
0) = −ηc

0(Y
c
0)gc

(
(φ0X0)

v, Zc
0

)
− ηv

0 (Y
c
0)gc

(
(φ0X0)

c, Zc
0

)
− ηc

0(Zc
0)gc

(
(φ0X0)

v, Yc
0

)
− ηv

0 (Zc
0)gc

(
(φ0X0)

c, Yc
0

)
− 2ac(Xc

0)gc
(
(φ0Y0)

v, Zc
0

)
− 2av(Xc

0)gc
(
(φ0Y0)

c, Zc
0

)
.

(52)

The connection given by Equation (48) is said to be a QSNMC on an LP-Sasakian manifold in
its tangent bundle if the torsion tensor T̈c of T0Mn endowed with ∇̈c satisfies Equation (49)
and the complete lifts of Lorentzian metric gc fulfill the relation (52).

Theorem 1. If an LP-Sasakian manifold (Mn, g) with an almost Lorentzian para-contact metric
structure (φ0, ξ0, η0, g) admitting a QSNMC ∇̈ which satisfies (49) and (52), then the QSNMC in
the tangent bundle is given by

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Y0 + ηc

0(Y
c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v + av(Xc
0)(φ0Y0)

c.

Proof. Let ∇̈c be the complete lifts of a linear connection in Mn given by

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Yc

0 + Hc
0(Xc

0, Yc
0). (53)

Now, we shall determine the complete lifts of the tensor field Hc
0 such that ∇̈c satisfies (49)

and (52). From (53), we have

T̈c(Xc
0, Yc

0) = Hc
0(Xc

0, Yc
0)− Hc

0(Y
c
0 , Xc

0). (54)

We denote
Gc

0(Xc
0, Yc

0 , Zc
0) = (∇̈c

Xc
0
gc)(Yc

0 , Zc
0). (55)

From (53) and (55), we have

gc
(

Hc
0(Xc

0, Yc
0), Zc

0

)
+ gc

(
Hc

0(Xc
0, Zc

0), Yc
0

)
= −Gc

0(Xc
0, Yc

0 , Zc
0). (56)

Using (52), (53), (55), and (56) we have
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gc
(

T̈c(Xc
0, Yc

0), Zc
0

)
+ gc

(
T̈c(Zc

0, Xc
0), Yc

0

)
+ gc

(
T̈c(Zc

0, Yc
0), Xc

0

)
= gc

(
Hc

0(Xc
0, Yc

0), Zc
0

)
− gc

(
Hc

0(Y
c
0 , Xc

0), Zc
0

)
+ gc

(
Hc

0(Zc
0, Xc

0), Yc
0

)
− gc

(
Hc

0(Xc
0, Zc

0), Yc
0

)
+ gc

(
Hc

0(Zc
0, Yc

0), Xc
0

)
− gc

(
Hc

0(Y
c
0 , Zc

0), Xc
0

)
= gc

(
Hc

0(Xc
0, Yc

0), Zc
0

)
− gc

(
Hc

0(Xc
0, Zc

0), Yc
0

)
− Gc

0(Zc
0, Xc

0, Yc
0) + Gc

0(Y
c
0 , Xc

0, Zc
0)

= 2gc
(

Hc
0(Xc

0, Yc
0), Zc

0

)
+ Gc

0(Xc
0, Yc

0 , Zc
0) + Gc

0(Y
c
0 , Xc

0, Zc
0)− Gc

0(Zc
0, Xc

0, Yc
0)

= 2gc
(

Hc
0(Xc

0, Yc
0), Zc

0

)
− 2
{

ηc
0(Zc

0)gc
(
(φ0X0)

v, Yc
0

)
+ ηv

0(Zc
0)gc

(
(φ0X0)

c, Yc
0

)}
− 2
{

ac
0(Xc

0)gc
(
(φ0Y0)

v, Zc
0

)
+ av

0(Xc
0)gc

(
(φ0Y0)

c, Zc
0

)}
− 2
{

ac
0(Y

c
0)gc

(
(φ0X0)

v, Zc
0

)
+ av

0(Y
c
0)gc

(
(φ0X0)

c, Zc
0

)}
+ 2
{

ac
0(Zc

0)gc
(
(φ0X0)

v, Yc
0

)
+ av

0(Zc
0)gc

(
(φ0X0)

c, Yc
0

)}
,

or,

Hc
0(Xc

0, Yc
0) =

1
2

{
T̈c(Xc

0, Yc
0) +

′T̈c(Xc
0, Yc

0) +
′T̈c(Yc

0 , Xc
0)
}
+ ac

0(Xc
0)(φ0Y0)

v

+ av
0(Xc

0)(φ0Y0)
c + ac

0(Y
c
0)(φ0X0)

v + av
0(Y

c
0)(φ0X0)

c

+ gc
(

φ0X0)
c, Yc

0

)
ξv

0 + gc
(

φ0X0)
v, Yc

0

)
ξc

0

− gc
(

φ0X0)
c, Yc

0

)
Av

0 − gc
(

φ0X0)
v, Yc

0

)
Ac

0,

where ′T̈c is a tensor field of type (1, 2) defined by

gc
(
′T̈c(Xc

0, Yc
0), Zc

0

)
= gc

(
T̈c(Zc

0, Xc
0), Yc

0

)
,

or,

Hc
0(Xc

0, Yc
0) = ηc

0(Y
c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v + av(Xc
0)(φ0Y0)

c,

which gives

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Y0 + ηc

0(Y
c
0)(φ0X0)

v + ηv
0(Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v + av(Xc
0)(φ0Y0)

c.

6. Curvature Tensor of LP-Sasakian Manifolds Endowed with QSNMC to
Tangent Bundle

Let R̈c
0 and Rc

0 be the curvature tensors of the connections ∇̈c and∇c to tangent bundle
T0Mn, respectively.

R̈c
0(Xc

0, Yc
0)Zc

0 = ∇̈c
Xc

0
∇̈c

Yc
0
Zc

0 − ∇̈c
Yc

0
∇̈c

Xc
0
Zc

0 − ∇̈c
[Xc

0,Yc
0 ]

Zc
0. (57)



Mathematics 2023, 11, 4163 7 of 15

Using (48) in (57), we have

R̈c
0(Xc

0, Yc
0)Zc

0 = Rc
0(Xc

0, Yc
0)Zc

0 + gc
(
(φ0X0)

c, Zc
0

)
(φ0Y0)

v

+ gc
(
(φ0X0)

v, Zc
0

)
(φ0Y0)

c − gc
(
(φ0Y0)

c, Zc
0

)
(φ0X0)

v

− gc
(
(φ0Y0)

v, Zc
0

)
(φ0X0)

c + ηc
0(Y

c
0)η

c
0(Zc

0)Xv
0

+ ηc
0(Y

c
0)η

v
0 (Zc

0)Xc
0 + ηv

0(Y
c
0)η

c
0(Zc

0)Xc
0

− ηc
0(Xc

0)η
c
0(Zc

0)Y
v
0 − ηc

0(Xc
0)η

v
0(Zc

0)Y
c
0

− ηv
0 (Xc

0)η
c
0(Zc

0)Y
c
0 + ac

0(Y
c
0)gc(Xc

0, Zc
0)ξ

v
0

+ ac
0(Y

c
0)gc(Xv

0 , Zc
0)ξ

c
0 + av

0(Y
c
0)gc(Xc

0, Zc
0)ξ

c
0

− ac
0(Xc

0)gc(Yc
0 , Zc

0)ξ
v
0 − ac

0(Xc
0)gc(Yv

0 , Zc
0)ξ

c
0

− av
0(Xc

0)gc(Yc
0 , Zc

0)ξ
c
0 + ac

0(Y
c
0)η

c
0(Xc

0)η
c
0(Zc

0)ξ
v
0

+ ac
0(Y

c
0)η

c
0(Xc

0)η
v
0(Zc

0)ξ
c
0 + ac

0(Y
c
0)η

v
0(Xc

0)η
c
0(Zc

0)ξ
c
0

+ av
0(Y

c
0)η

c
0(Xc

0)η
c
0(Zc

0)ξ
c
0 − ac

0(Xc
0)η

c
0(Y

c
0)η

c
0(Zc

0)ξ
v
0

− ac
0(Xc

0)η
c
0(Y

c
0)η

v
0(Zc

0)ξ
c
0 − ac

0(Xc
0)η

v
0(Y

c
0)η

c
0(Zc

0)ξ
c
0

− av
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)ξ
c
0 + dac

0(Xc
0, Yc

0)(φ0Z0)
v

+ dav
0(Xc

0, Yc
0)(φ0Z0)

c,

(58)

where
Rc

0(Xc
0, Yc

0)Zc
0 = ∇c

Xc
0
∇c

Yc
0
Z0 −∇c

Yc
0
∇c

Xc
0
Z0 −∇c

[Xc
0,Yc

0 ]
Zc

0, (59)

is the curvature tensor of ∇c with respect to the Riemannian connection. Contracting (58),
we obtain

S̈c
0(Y

c
0 , Zc

0) = Sc
0(Y

c
0 , Zc

0)− γcgc
(
(φ0Y0)

c, Zc
0

)
+
[
1− ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)

+
[
ηc

0 − ac
0(ξ

c
0)
][

ηc
0(Y

c
0)η

v
0(Zc

0) + ηv
0(Y

c
0)η

c
0(Zc

0)
]

+ dac
0

(
(φ0Z0)

c, Yc
0

)
,

(60)

and
r̈0

c = rc
0 − (n− 1)ac

0(ξ
c
0) + λc

0 − γc2
, (61)

where S̈c
0 and r̈0

c are the Ricci tensor and scalar curvature with respect to ∇̈c.

λc
0 = trace dac

0

(
(φ0Z0)

c, Yc
0

)
and γc = trace φc

0. (62)

Theorem 2. In an LP-Sasakian manifold (Mn, g) with tangent bundle T0Mn admitting QSNMC,
we have the following:

1. The complete lifts of curvature tensor R̈c
0 are given by Equation (58).

2. The complete lifts of Ricci tensor S̈c
0 are given by Equation (60).

3. The complete lifts of scalar curvature r̈0 are given by Equation (61).

Let us consider that R̈c
0(Xc

0, Yc
0) = 0 in (58), and by contracting it we also obtain

Sc
0(Y

c
0 , Zc

0) = γcgc
(
(φ0Y0)

c, Zc
0

)
−
[
1− ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)

−
[
ηc

0 − ac
0(ξ

c
0)
][

ηc
0(Y

c
0)η

v
0 (Zc

0) + ηv
0 (Y

c
0)η

c
0(Zc

0)
]

− dac
0

(
(φ0Z0)

c, Yc
0

)
,

(63)
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which gives
rc

0 = (n− 1)ac
0(ξ

c
0)− λc

0 + γc2
. (64)

Theorem 3. In an LP-Sasakian manifold, (Mn, g), with tangent bundle T0Mn endowed with
QSNMC whose curvature tensor vanishes, then the complete lift of rc

0 is given by (64).

From (58), it follows that

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Xc

0, Zc
0, Wc

0) = 0, (65)

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Xc

0, Yc
0 , Wc

0 , Zc
0)

= ηc
0(Y

c
0)η

v
0 (Zc

0)gc(Xc
0, Wc

0) + ηv
0 (Y

c
0)η

c
0(Zc

0)gc(Xc
0, Wc

0)

− ηc
0(Xc

0)η
v
0(Zc

0)gc(Yc
0 , Wc

0)− ηv
0(Xc

0)η
c
0(Zc

0)gc(Yc
0 , Wc

0)

+ ηc
0(Y

c
0)η

v
0(W

c
0)gc(Xc

0, Zc
0) + ηv

0(Y
c
0)η

c
0(W

c
0)gc(Xc

0, Zc
0)

− ηc
0(Xc

0)η
v
0(W

c
0)gc(Yc

0 , Zc
0)− ηv

0(Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Y

c
0)η

v
0(W

c
0)gc(Xc

0, Zc
0) + av

0(Y
c
0)η

c
0(W

c
0)gc(Xc

0, Zc
0)

− ac
0(Xc

0)η
v
0(W

c
0)gc(Yc

0 , Zc
0)− av

0(Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Y

c
0)η

v
0(Zc

0)gc(Xc
0, Wc

0) + av
0(Y

c
0)η

c
0(Zc

0)gc(Xc
0, Wc

0)

− ac
0(Xc

0)η
v
0(Zc

0)gc(Yc
0 , Wc

0)− av
0(Xc

0)η
c
0(Zc

0)gc(Yc
0 , Wc

0)

+ 2
[

ac
0(Y

c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
v
0(W

c
0) + ac

0(Y
c
0)η

c
0(Xc

0)η
v
0(Zc

0)η
c
0(W

c
0)

+ ac
0(Y

c
0)η

v
0 (Xc

0)η
c
0(Zc

0)η
c
0(W

c
0) + av

0(Y
c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
c
0(W

c
0)
]

− 2
[

ac
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)η
v
0(W

c
0) + ac

0(Xc
0)η

c
0(Y

c
0)η

v
0(Zc

0)η
c
0(W

c
0)

+ ac
0(Xc

0)η
v
0(Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0) + av

0(Xc
0)η

c
0(Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0)
]

+ 2dac
0(Xc

0, Yc
0)gc

(
(φ0Z0)

c, Wc
0

)
.

(66)

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0)− ′R̈c

0(Zc
0, Wc

0 , Xc
0, Yc

0)

= ηc
0(Y

c
0)η

v
0(Zc

0)gc(Xc
0, Wc

0) + ηv
0(Y

c
0)η

c
0(Zc

0)gc(Xc
0, Wc

0)

− ηc
0(Xc

0)η
v
0 (W

c
0)gc(Yc

0 , Zc
0)− ηv

0(Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Y

c
0)η

v
0(W

c
0)gc(Xc

0, Zc
0) + av

0(Y
c
0)η

c
0(W

c
0)gc(Xc

0, Zc
0)

− ac
0(Xc

0)η
v
0 (W

c
0)gc(Yc

0 , Zc
0)− av

0(Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Zc

0)η
v
0(Y

c
0)gc(Xc

0, Wc
0) + av

0(Zc
0)η

c
0(Y

c
0)gc(Xc

0, Wc
0)

− ac
0(W

c
0)η

v
0 (Y

c
0)gc(Xc

0, Zc
0)− av

0(W
c
0)η

c
0(Y

c
0)gc(Xc

0, Zc
0)

+ ac
0(Y

c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
v
0(W

c
0) + ac

0(Y
c
0)η

c
0(Xc

0)η
v
0(Zc

0)η
c
0(W

c
0)

+ ac
0(Y

c
0)η

v
0(Xc

0)η
c
0(Zc

0)η
c
0(W

c
0) + av

0(Y
c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
c
0(W

c
0)

− ac
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)η
v
0(W

c
0)− ac

0(Xc
0)η

c
0(Y

c
0)η

v
0(Zc

0)η
c
0(W

c
0)

− ac
0(Xc

0)η
v
0(Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0)− av

0(Xc
0)η

c
0(Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0)

+ ac
0(Zc

0)η
c
0(Xc

0)η
c
0(Y

c
0)η

v
0(W

c
0) + ac

0(Zc
0)η

c
0(Xc

0)η
v
0(Y

c
0)η

c
0(W

c
0)

+ ac
0(Zc

0)η
v
0 (Xc

0)η
c
0(Y

c
0)η

c
0(W

c
0) + av

0(Zc
0)η

c
0(Xc

0)η
c
0(Y

c
0)η

c
0(W

c
0)

− ac
0(W

c
0)η

c
0(Xc

0)η
c
0(Y

c
0)η

v
0 (Zc

0)− ac
0(W

c
0)η

c
0(Xc

0)η
v
0(Y

c
0)η

c
0(Zc

0)

− ac
0(W

c
0)η

v
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)− av
0(W

c
0)η

c
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)

+ dac
0(Xc

0, Yc
0)gc

(
(φ0Z0)

c, Wc
0

)
− dac

0(Zc
0, Wc

0)gc
(
(φ0X0)

c, Yc
0

)
,

(67)
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and

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Zc

0, Xc
0, Wc

0) +
′R̈c

0(Zc
0, Xc

0, Yc
0 , Wc

0)

= dac
0(Xc

0, Yc
0)gc

(
(φ0Z0)

c, Wc
0

)
+ dac

0(Y
c
0 , Zc

0)gc
(
(φ0X0)

c, Wc
0

)
+ dac

0(Zc
0, Xc

0)gc
(
(φ0Y0)

c, Wc
0

)
.

(68)

If the 1-form ac
0 is closed, then from (68) we have

′R̈c
0(Xc

0,Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Zc

0, Xc
0, Wc

0)

+ ′R̈c
0(Zc

0, Xc
0, Yc

0 , Wc
0) = 0,

(69)

where

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) = gc

(
R̈c

0(Xc
0, Yc

0)Zc
0, Wc

0

)
and ′Rc

0(Xc
0, Yc

0 , Zc
0, Wc

0) = gc
(

Rc
0(Xc

0, Yc
0)Zc

0, Wc
0

)
.

Theorem 4. In an LP-Sasakian manifold, (Mn, g) with tangent bundle T0Mn endowed with a
QSNMC, the curvature tensor satisfies relations (65)–(68). In particular, if the complete lift of
1-form ac

0 is closed, then

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Zc

0, Xc
0, Wc

0) +
′R̈c

0(Zc
0, Xc

0, Yc
0 , Wc

0) = 0.

7. Symmetric and Skew-Symmetric Condition of the Ricci Tensor of ∇̈c in an
LP-Sasakian Manifold Endowed with a QSNMC to Tangent Bundle

From Equation (60), we have

S̈c
0(Zc

0, Yc
0) = Sc

0(Zc
0, Yc

0)− γcgc
(
(φ0Z0)

c, Yc
0

)
+
[
1− ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0) +
[
ηc

0 − ac
0(ξ

c
0)
][

ηc
0(Y

c
0)η

v
0(Zc

0)

+ ηv
0(Y

c
0)η

c
0(Zc

0)
]
+ dac

0

(
(φ0Y0)

c, Zc
0

)
.

(70)

From (60) and (70), we have

S̈c
0(Y

c
0 , Zc

0)− S̈c
0(Zc

0, Yc
0) = dac

0

(
(φ0Z0)

c, Yc
0

)
− dac

0

(
(φ0Y0)

c, Zc
0

)
. (71)

If S̈c
0(Y

c
0 , Zc

0) is symmetric, then the left-hand side of (71) vanishes, and then

dac
0

(
(φ0Z0)

c, Yc
0

)
= dac

0

(
(φ0Y0)

c, Zc
0

)
. (72)

Moreover, if Equation (72) holds, then from (71), S̈c
0(Y

c
0 , Zc

0) is symmetric.

Theorem 5. In an LP-Sasakian manifold (Mn, g) with tangent bundle T0Mn endowed with
QSNMC ∇̈c, the Ricci tensor S̈c

0(Y
c
0 , Zc

0) with respect to QSNMC is symmetric if and only if
relation (72) holds.
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From (60) and (70), we have

S̈c
0(Y

c
0 , Zc

0) + S̈c
0(Zc

0, Yc
0) = 2Sc

0(Y
c
0 , Zc

0)− 2γcgc
(
(φ0Y0)

c, Zc
0

)
+ 2
[
1− ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)

+ 2
[
n− ac

0(ξ
c
0)
][

ηc
0(Y

c
0)η

v
0(Zc

0)

+ ηv
0(Y

c
0)η

c
0(Zc

0)
]
+ dac

0

(
(φ0Y0)

c, Zc
0

)
+ dac

0

(
(φ0Z0)

c, Yc
0

)
.

(73)

By taking the skew-symmetry of S̈c
0(Y

c
0 , Zc

0), the left-hand side of (73) will vanish and
we have

Sc
0(Y

c
0 , Zc

0) = γcgc
(
(φ0Y0)

c, Zc
0

)
−
[
1− ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)−
[
n− ac

0(ξ
c
0)
]

[
ηc

0(Y
c
0)η

v
0(Zc

0)− ηv
0(Y

c
0)η

c
0(Zc

0)
]

− 1
2

[
dac

0

(
(φ0Y0)

c, Zc
0

)
+ dac

0

(
(φ0Z0)

c, Yc
0

)]
.

(74)

Moreover if Sc
0(Y

c
0 , Zc

0) is given by (74), then from (73), we have

Sc
0(Y

c
0 , Zc

0) + Sc
0(Zc

0, Yc
0) = 0.

Theorem 6. The necessary and sufficient condition for the Ricci tensor of ∇̈c in an LP-Sasakian
manifold (Mn, g) endowed with QSNMC ∇̈c in the tangent bundle T0Mn to be skew-symmetric is
that the Ricci tensor of the Levi-Civita connection ∇c is given by (74).

8. Skew-Symmetric Properties of the Projective Ricci Tensor in an LP-Sasakian
Manifold Endowed with QSNMC ∇̈c in the Tangent Bundle

Chaki and Saha defined the projective Ricci tensor in a Riemannian manifold as [34]

P0(X0, Y0) =
n

n− 1

[
S0(X0, Y0)−

r0

n
g(X0, Y0)

]
. (75)

So, the projective Ricci tensor with respect to QSNMC ∇̈ is defined as

P̈0(X0, Y0) =
n

n− 1

[
S̈0(X0, Y0)−

r̈0

n
g(X0, Y0)

]
. (76)

Taking a complete lift by mathematical operators on (76), we have

P̈c
0(Xc

0, Yc
0) =

n
n− 1

[
S̈c

0(Xc
0, Yc

0)−
r̈c

0
n

gc(Xc
0, Yc

0)
]
. (77)

Using (60) and (61) in (77), we have

P̈c
0(Xc

0, Yc
0) =

n
n− 1

[
Sc

0(Xc
0, Yc

0)− γcgc
(
(φ0X0)

c, Yc
0

)
+
(

1− ac
0(ξ

c
0)
)

gc(Xc
0, Yc

0) +
(

n− ac
0(ξ

c
0)
)(

ηc
0(Xc

0)η
v
0(Y

c
0)

+ ηv
0(Xc

0)η
c
0(Y

c
0)
)
+ dac

0

(
(φ0Y0)

c, Xc
0

)
− 1

n

(
rc

0 − (n− 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Xc
0, Yc

0)
]
.

(78)
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Similarly, we have

P̈c
0(Y

c
0 , Xc

0) =
n

n− 1

[
Sc

0(Y
c
0 , Xc

0)− γcgc
(
(φ0Y0)

c, Xc
0

)
+
(

1− ac
0(ξ

c
0)
)

gc(Yc
0 , Xc

0) +
(

n− ac
0(ξ

c
0)
)(

ηc
0(Xc

0)η
v
0(Y

c
0)

+ ηv
0(Xc

0)η
c
0(Y

c
0)
)
+ dac

0

(
(φ0X0)

c, Yc
0

)
− 1

n

(
rc

0 − (n− 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Yc
0 , Xc

0)
]
.

(79)

From (78) and (79), we have

P̈c
0(Xc

0, Yc
0) + P̈c

0(Y
c
0 , Xc

0)

=
n

n− 1

[
2Sc

0(Xc
0, Yc

0)− 2γcgc
(
(φ0X0)

c, Yc
0

)
+ 2
(

1− ac
0(ξ

c
0)
)

gc(Xc
0, Yc

0) + 2
(

n− ac
0(ξ

c
0)
)

(
ηc

0(Xc
0)η

v
0(Y

c
0) + ηv

0(Xc
0)η

c
0(Y

c
0)
)

− 2
n

(
rc

0 − (n− 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Xc
0, Yc

0)

+ dac
0

(
(φ0X0)

c, Yc
0

)
+ dac

0

(
(φ0Y0)

c, Xc
0

)]
.

(80)

If P̈c
0(Xc

0, Yc
0) is skew-symmetric, then the left-hand side of (80) vanishes and we have

Sc
0(Xc

0, Yc
0) =

[
γcgc

(
(φ0X0)

c, Yc
0

)
−
(

1− ac
0(ξ

c
0)
)

gc(Xc
0, Yc

0)

−
(

n− ac
0(ξ

c
0)
)(

ηc
0(Xc

0)η
v
0(Y

c
0) + ηv

0(Xc
0)η

c
0(Y

c
0)
)

+
1
n

(
rc

0 − (n− 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Xc
0, Yc

0)

− 1
2

(
dac

0

(
(φ0X0)

c, Yc
0

)
+ dac

0

(
(φ0Y0)

c, Xc
0

))]
.

(81)

Moreover, if Sc
0(Xc

0, Yc
0) is given by (81), then from (80) we obtain

P̈c
0(Xc

0, Yc
0) + P̈c

0(Y
c
0 , Xc

0) = 0 s.t P̈c
0(Xc

0, Yc
0) = −P̈c

0(Y
c
0 , Xc

0). (82)

which gives a skew-symmetric condition of the projective Ricci tensor of ∇̈c.

Theorem 7. The necessary and sufficient condition for the projective Ricci tensor of ∇̈c in an
LP-Sasakian manifold (Mn, g) endowed with QSNMC ∇̈c in the tangent bundle T0Mn to be
skew-symmetric is that the Ricci tensor of the Levi-Civita connection ∇̈c is given by (81).

9. Lifts of Einstein Manifold Endowed with QSNMC ∇̈c in an LP-Sasakian Manifold
to the Tangent Bundle

A Riemannian manifold (Mn, g) is called an Einstein manifold with respect to Rieman-
nian connection if

Sc
0(Xc

0, Yc
0) =

rc
0

n
gc(Xc

0, Yc
0). (83)

Then, the Einstein manifold with respect to QSNMC ∇̈c is given by

S̈c
0(Xc

0, Yc
0) =

r̈c
0

n
gc(Xc

0, Yc
0). (84)



Mathematics 2023, 11, 4163 12 of 15

Using (60) and (61) in (84), we have

S̈c
0(Xc

0, Yc
0)−

r̈c
0

n
gc(Xc

0, Yc
0)

= Sc
0(Xc

0, Yc
0)−

rc
0

n
gc(Xc

0, Yc
0)− γcgc

(
(φ0X0)

c, Yc
0

)
+ dac

0

(
(φ0Y0)

c, Xc
0

)
+

1
n

[
n + γc2 − λc

0 − ac
0(ξ

c
0)
]

gc(Xc
0, Yc

0)

+
(

n− ac
0(ξ

c
0)
)[

ηc
0(Xc

0)η
v
0(Y

c
0) + ηv

0(Xc
0)η

c
0(Y

c
0)
]
.

(85)

If

γcgc
(
(φ0X0)

c, Yc
0

)
+ dac

0

(
Xc

0, (φ0Y0)
c
)

=
1
n

[
n + γc2 − λc

0 − ac
0(ξ

c
0)
]

gc(Xc
0, Yc

0)

+
(

n− ac
0(ξ

c
0)
)[

ηc
0(Xc

0)η
v
0(Y

c
0) + ηv

0(Xc
0)η

c
0(Y

c
0)
]
,

(86)

then from (85), we have

S̈c
0(Xc

0, Yc
0)−

r̈c
0

n
gc(Xc

0, Yc
0) = Sc

0(Xc
0, Yc

0)−
rc

0
n

gc(Xc
0, Yc

0). (87)

Theorem 8. In an LP-Sasakian manifold (Mn, g) with tangent bundle T0Mn admitting QSNMC
if Equation (86) holds, then the manifold reduces to an Einstein manifold for the Riemannian
connection if and only if it is an Einstein manifold for the connection ∇̈c.

10. Example

Let M be a four-dimensional manifold defined as

M =
{
(x1, x2, x3, x4) ∈ R4; x4 6= 0

}
, (88)

where R is the set of real numbers. Let x1, x2, x3, x4 be given by

e1 =
x1

x4

∂

∂x1
, e2 =

x2

x4

∂

∂x2
, e3 =

x3

x4

∂

∂x3
, e4 = x4

∂

∂x4
,

where {e1, e2, e3, e4} are a linearly independent global frame on M. Let the 1-form η0 be
given by

η0(X0) = g(X0, e4).

The Lorentzian metric g is defined by

g(ei, ej) =


−1, i = j = 4
1, i = j = 1, 2, 3
0, otherwise.

Let φ0 be the tensor field defined by

φ0ei =

{
0, i = 4
ei, i = 1, 2, 3.

Using the linearity of φ0 and g, we acquire η0(e4) = −1, φ2
0X0 = −X0 + η0(X0)e4 and

g(φ0X0, φ0Y0) = g(X0, Y0)+ η0(X0)η0(Y0). Thus, for e4 = ξ0, then the structure (φ, ξ0, η0, g)
is an almost para-contact metric structure on M and M is called an almost para-contact
metric manifold. In addition, M satisfies
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(∇X0 φ0)Y0 = g(X0, Y0)e4 + η0(Y0)X0 + 2η0(X0)η0(Y0)e4.

Here, for e4 = ξ0, M is an LP-Sasakian manifold. In tangent bundle T0M, let the complete
and vertical lifts of e1, e2, e3, e4 be ec

1, ec
2, ec

3, ec
4 and ev

1 , ev
2 , ev

3 , ev
4 on M and let gc be the complete

lift of the Lorentzian metric g on T0M such that

gc(Xv
0 , ec

4) =
(

gc(X0, e4)
)v

=
(

η0(X0)
)v

(89)

gc(Xc
0, ec

4) =
(

gc(X0, e4)
)c

=
(

η0(X0)
)c

(90)

gc(ec
4, ec

4) = −1, gv(Xv
0 , ec

4) = 0, gv(ev
4, ec

4) = 0, (91)

and so on. Let φc
0 and φv

0 be the complete and vertical lifts of the (1, 1) tensor field φ0
defined by

φv
0(e

v
4) = φc

0(e
c
4) = 0, (92)

φv
0(e

v
1) = ev

1, φc
0(e

c
1) = ec

1, (93)

φv
0(e

v
2) = ev

2, φc
0(e

c
2) = ec

2, (94)

φv
0(e

v
3) = ev

3, φc
0(e

c
3) = ec

3. (95)

Using the linearity of φ0 and g, we infer that

(φ2
0X0)

c = Xc
0 + ηc

0(X0)ev
4 + ηv

0(X0)ec
4, (96)

gc
(
(φ0e4)

c, (φ0e3)
c
)
= gc(ec

4, ec
3) + ηc

0(e
c
4)η

v
0(e

c
3) + ηv

0(e
c
4)η

c
0(e

c
3). (97)

Thus, for e4 = ξ0 in (89)–(91) and (96), the structure (φc
0, ξc

0, ηc
0, gc) is an almost para-contact

metric structure on T0M and satisfies the relation

(∇c
ec

4
φc

0)e
c
3 = gc(ec

4, ec
3)ξ

v
0 + gc(ev

4, ec
3)ξ

c
0 + ηc

0(e
c
3)e

v
4 + ηv

0(e
c
3)e

c
4

+ 2
{

ηc
0(e

c
4)η

c
0(e

c
3)ξ

v
0 + ηc

0(e
c
4)η

v
0(e

c
3)ξ

c
0 + ηv

0(e
c
4)η

c
0(e

c
3)ξ

c
0

}
.

Thus, (φc
0, ξc

0, ηc
0, gc, T0M) is an LP-Sasakian manifold.

11. Conclusions

The current work investigates the lifts of a QSNMC and LP-Sasakian manifold to the
tangent bundle. First, the LP-Sasakian manifold lifts to the tangent bundle are presented.
The relationship between the Riemannian connection and the QSNMC from an LP-Sasakian
manifold to the tangent bundle is established. An expression of the curvature tensor
of the lifts of an LP-Sasakian manifold associated with QSNMC to its tangent bundle is
given. The Ricci tensor and the scalar curvature lifts to the tangent bundle are provided.
Some theorems regarding the properties of the lifts of the curvature tensor of an LP-
Sasakian manifold endowed with QSNMC in an LP-Sasakian manifold to the tangent
bundle are given.

Necessary and sufficient conditions for the symmetric and skew-symmetric properties
of the lifts of the Ricci tensor are investigated. Sufficient conditions for the skew-symmetric
property of the lifts of the projective Ricci tensor in the tangent bundle are provided.
The lifts of the Einstein manifold associated with QSNMC on an LP-Sasakian manifold to
the tangent bundle are also established. An example of the lifts of LP-Sasakian manifolds
in the tangent bundle is constructed.
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