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1. Introduction

The problems of the dynamic analysis of multibody systems (MBSs), arising as a result
of the increase in the working speeds of these systems, the forces that require them, and the
variety of conditions in which they must work, have determine the results of numerous
works related to these problems and the definition of a new field of research, namely, the
study of MBS systems. The elasticity of the elements proved to significantly influence the
behavior of these systems and their existence cannot be neglected in most MBSs that have
elastic elements in their compositions. Additionally, since the finite element method (FEM)
is at a very advanced stage in its development, the results and experience achieved in
the application of this method can prove to be of major importance in the study of MBSs
with elastic elements. The application of the method in the particular framework of MBS
presents particularities that must be taken into account in the case of FEM applications.
The main step in the case of the MBS study using FEMs is the writing of motion equations,
a stage where new terms appear in the evolution equations corresponding to the effects
produced by the accelerations of elements in a general rigid motion. These new terms
represent the specificity in writing these equations, and the problem that arises in modeling
concerns the selection of the most suitable approximations to obtain equations that describe
reality as faithfully as possible. Analytical mechanics is involved in writing these equations,
which offers alternative methods to obtain these equations [1]. Analytical mechanics is
used because its methods offer maximum generality in approaching any MBS problems.
Additionally, modern systems must be studied considering a multitude of elastic or rigid
elements, characterized by numerous parameters. The studied systems are not at all simple
and involve consistent design and numerical simulation efforts. In these circumstances,
it is obvious that any advantage that a chosen method can offer, for specific applications,
regarding the modeling, number of calculation operations involved, and costs generated
by the necessary simulations, is welcome. We would like to be able to use the methods
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of writing equations of motion allowing us to obtain efficient algorithms and easy-to-
use software. Analytical mechanics allows the use of procedures with a high degree of
generality. In this way, different applications can be treated in a unified way. Obviously, the
number of degrees of freedom of such a system plays a very important role in modeling and
simulations, and therefore the existence of procedures that allow the unitary and general
treatment of any system, provided by Analytical mechanics, is extremely useful in the
study of such problems [2–4].

Analytical mechanics also provides several equivalent formulations for the fundamen-
tal laws of mechanics. The results obtained using any of these forms are identical and, for
this reason, any of these forms can be used in the analysis. The researcher uses one of these
methods, depending on his/her experience and the concrete problem he/she has to study.
In this way, he/she can use the advantages offered by one method or another.

The standard method used by most researchers in the current practice is Lagrange’s
equations. This is due to the fact that this method ensures a sufficient degree of generality for
most problems encountered in engineering practice and uses very simple mechanics notions
familiar to researchers (such as kinetic energy, potential energy, work, or momentum).
Therefore, it can very well describe the constraints to which the system is subjected. In the
specialized literature, there are many practical applications where this method is applied;
we only mention [5–8] for clarification.

Analytical mechanics provides freedom in choosing the method for obtaining the
equations of motion that, for certain engineering applications and in certain circumstances,
can present considerable advantages in dynamic analyses. These advantages have been
noticed and used by some of the researchers, thus making modeling easier and reducing
the analysis time [9–11]. Obviously, the use of equivalent methods also led to the research
of the possibility of using the most suitable numerical analysis software, so as to ensure
an optimal approach to the analysis. Of course, within these methods, the FEM plays a
primary role [12–14].

The equivalent formulas offered by analytical mechanics must be assisted in their
applications by appropriate numerical methods. Such methods that help reduce the costs
related to the numerical analysis are presented in [15]. Symbolic formalism represents an
important tool in reducing the time dedicated to modeling such systems [16].

An MBS has a general rigid movement, over which the deformations of elastic bodies
are superimposed. An attempt at standardization in order to facilitate the writing of
algorithms in MBSs is presented in [17]. Applications of MBS procedures appear in the
most diverse fields [18]. Models for solving MBS problems in different fields are presented
in [19,20]. The studies for such systems and the analysis of some engineering applications
are performed in [21,22].

The practical applications for systems currently used in the industry require the
study of complex systems, and the modeling and simulation of such systems involve the
mobilization of significant resources and the high costs. Reducing the size of such systems
is desirable. The presentation of a way to achieve this outcome is shown in [23], where
reduced order models are used. Different techniques for the symbolic writing of motion
equations and reducing the time required for modeling have been developed in the last
decade. Two methods presenting efficient models for a multibody system with elastic
elements are presented in [24,25]. Classical methods applied in the MBS are described
in [26,27]. A high-precision formulation for a 3D beam element is presented in [28], and the
mathematical methods used to study such problems are studied in [29,30].

The main step in the FEM analysis of an MBS system is the writing of motion equations
for a single finite element, taking into account the chosen shape functions and general rigid
motion in which the system is trained. This problem has been studies for a long time and
various results have been obtained [31]. Classical procedures used to solve these problems
are presented in [32,33], using different solutions for different applications [34,35]. The use
of a composite material for MBS fabrication is analyzed in [36]. Usually, the application



Mathematics 2023, 11, 4149 3 of 15

studies beam elements [37–39]. A known method of analytical mechanics is used in [40] to
model the system.

Two-dimensional elements are frequently used in practical applications, many engi-
neering systems being planar, or moving in a plane or being modeled as planar elements.
An example where two-dimensional thin plates are used in engineering applications is pre-
sented in [41]. In the mentioned work, the natural frequencies of the system were studied
in order to optimize it. The method used for modeling was the transfer matrix method for
the multibody system. The theoretical bases for the use of this method were also presented;
some concrete examples were presented that justified the presented study. An example
of a two-dimensional finite element analysis of the wing skin of an aircraft is presented
in [42]. The studied plane had six-degrees of freedom regarding its rigid movement over
which vibrations, due to the elasticity of the wings, were superimposed. The effect of
the elasticity of the plane’s elements on the overall movement was studied. The study
allowed for decisions to be made during the design stage of the plane. A shell element
with geometrical features of rotating blades was developed in [43]. The proposed model
was validated by comparing its predictions with the problems studied in the reference
works. A linear dynamic model using an FEM for large structures was proposed in [44].
The advantages of the presented model were highlighted in an application for the synthesis
of the dynamic model of a spacecraft. The ship was equipped with two mobile and flexible
solar arrays. The paper analyzed the use of an FEM in the case of the study of an MBS
using two-dimensional shell finite elements. An innovative finite element with a thin
hyper-elastic shell was presented in [45]. The proposal was based on the Kirchhoff–Love
theory. With the help of this finite element, the influence of the use of different constitutive
models in obtaining equations for static and dynamic analyses was studied. An interesting
absolute nodal coordinate formulation was proposed for the study of belt-drive systems
using the FEM [46]. The proposed method allowed a significant reduction in the degrees of
freedom of the system. The application of the Gibbs–Appell method to two-dimensional
finite elements was presented in [47,48]. Other interesting results can be found in [49,50].

Planar problems or problems that can be modeled in this way are numerous in the
engineering field and, as such, a detailed study of this type of problems is required. This
paper highlights the particularities of using two-dimensional finite elements in the analysis,
methodically analyzing the main methods offered by analytical mechanics for the study
of the problem. Obviously, the method of Lagrange’s equations remains the most used
method; however, equivalent formulas can prove their usefulness in the case of common
applications. The most used methods are Gibbs–Appell (GA) formalism, Maggi’s equations,
Kane’s equations, and Hamilton’s equations, which is why they are analyzed in this work.

2. Basic Notion and Notations
2.1. Basic Kinematics and Dynamics Notions and Notations

For the ease of explanation, some notions and notations were introduced, most of
them widely used and accepted by researchers. These notations were used uniformly to
present alternative methods of the analysis and writing of motion equations [51]. In all
these methods, a single finite element was analyzed, relative to a local reference system,
which participated in the rigid movement together with the considered finite element,
having, at the same time, an elastic deformation. The movement of the entire system was
related to a global reference system. The speed and acceleration of the local reference
system O, vo(vO1i + vO2 j) and ao(aO1i + aO2 j), respectively, were considered as known. We
examined a planar motion, with the elastic deformations in the same plane. As a result, the
mobile reference system had angular velocity and angular acceleration values, which were
denoted by ω = ωk and ε = εk, respectively.

The indexes L (from local) and G (from global) indicate whether a quantity is expressed
relative to the local or global reference systems, respectively. In the case of the planar motion,
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angle θ of the rotation of the local reference system in relation to the global fixed reference
system is defined by rotation matrix R, which in our case is:

[R] =
[

cos θ − sin θ
sin θ cos θ

]
. (1)

An arbitrary vector is transformed according to the following relations:

a1,G = a1,L cos θ − a2,L sin θ ; a2,G = a1,L sin θ + a2,L cos θ. (2)

Then, we used rO to denote the position vector of the origin of the mobile reference
frame related to the global fixed reference system with the origin in O1. Its components in
the global reference frame were (XO,1, XO,2) and (xO,1, xO,2) in the local reference frame.
Similarly rM, the position vector of the point M before deformation, related to the global
fixed reference system, had the components (XM,1, XM,2) in the global reference frame
and (xM,1, xM,2) in the local reference frame, and rM′ represented the position vector of
point M after deformation, when transformed into M’, with the components (XM′,1, XM′,2),
respectively (xM′,1, xM′,2). The position vector of point M with respect to origin O was r,
with the components (X1, X2), respectively (x1, x2), in the two reference frames, global and
local, and the displacement vector of point M when became M’, u, included the components
(u, v).

An arbitrary point M of the finite element became, following deformation, point M’.
Its coordinates are (in the global reference frame):

XM′,1 = XO,1 + (x1 + u) cos θ − (x2 + v) sin θ ;
XM′,2 = XO,2 + (x1 + u) sin θ + (x2 + v) cos θ .

. (3)

The relation between independent generalized coordinates and the displacement of a
current point was approximated in the FEM through the shape functions N1j, N2j , j = 1, p,
by the following relation:

u = N1jδj ; j = 1, p
v = N2jδj ; j = 1, p

(4)

where:

{δ}L =



δ1
δ2
...

δp


(5)

is the vector of the independent generalized coordinates. δ1, δ2, . . .., δp are the independent
coordinates and p is the number of these coordinates. The displacements are approximated
using different shape functions defined by the type of finite element used. Considering
Equation (4), Equation (3) becomes:

X1,M′ = X1,O +
(
x1 + N1jδj

)
cos θ −

(
x2 + N2jδj

)
sin θ ;

X2,M′ = X2,O +
(
x1 + N1jδj

)
sin θ +

(
x2 + N2jδj

)
cos θ ; j = 1, p.

. (6)

By differentiation, the components of the velocity vector of M’ can be obtained:

.
XM′,1 =

.
XO,1 −ω

(
x1 + N1jδj

)
sin θ +

(
x1 + N1j

.
δj

)
cos θ −ω

(
x2 + N2jδj

)
cos θ −

(
x2 + N2j

.
δj

)
sin θ ;

.
XM′,2 =

.
XO,2 + ω

(
x1 + N1jδj

)
cos θ +

(
x1 + N1j

.
δj

)
sin θ −ω

(
x2 + N2jδj

)
sin θ +

(
x2 + N2j

.
δj

)
cos θ ; j = 1, p.

. (7)

and the acceleration:
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..
XM′,1 =

..
XO,1 − ε

(
x1 + N1jδj

)
sin θ −ω2(x1 + N1jδj

)
cos θ − 2ω

(
x1 + N1j

.
δj

)
sin θ +

(
x1 + N1j

..
δj

)
cos θ−

−ε
(

x2 + N2jδj
)

cos θ + ω2(x2 + N2jδj
)

sin θ − 2ω
(

x2 + N2j
.
δj

)
cos θ −

(
x2 + N2j

...
δj

)
sin θ ;

..
XM′,2 =

..
YO,2 + ε

(
x1 + N1jδj

)
cos θ −ω2(x1 + N1jδj

)
sin θ + 2ω

(
x1 + N1j

.
δj

)
cos θ +

(
x1 + N1j

..
δj

)
sin θ−

−ε
(

x2 + N2jδj
)

sin θ −ω2(x2 + N2jδj
)

cos θ − 2ω
(

x2 + N2j
.
δj

)
sin θ +

(
x2 + N2j

..
δj

)
cos θ ; j = 1, p.

(8)

In the local coordinate system, we have, successively:

xM′,1 = xO,1 + x1 + N1jδj ;
xM′,2 = xO,2 + x2 + N2jδj ; j = 1, p.

(9)

.
xM′,1 =

.
xO,1 −ω x2 −ω N2rδr + N1r

.
δr ;

.
xM′,2 =

.
xO,2 + ω x1 + ω N1rδr + N2r

.
δr ; r = 1, p.

. (10)

2.2. Kinetic Energy

For a single finite element, the kinetic energy is:

EC = 1
2

∫
V

ρ
[( .

xM′,1
)2

+
( .
xM′,2

)2
]
dV =

1
2

∫
V

ρ

[( .
xO,1 −ω x2 −ω N2rδr + N1r

.
δr

)2
+
( .

xO,1 + ω x1 + ω N1rδr + N2r
.
δr

)2
]

dV

= 1
2

( .
x2

O,1 +
.
x2

O,2

)∫
V

ρdV + 1
2 ω2

∫
V

ρ
(
x2

1 + x2
2
)
dV + 1

2 ω2δtδr
∫
V

ρ( N2r N2t + N1r N1t)dV + 1
2

.
δr

.
δt
∫
V

ρ(N1r N1t + N2r N2t)dV+

−ω

(
.
xO,1

∫
V

ρ x1 dV −ω
.
xO,2

∫
V

ρ x2 dV

)
−ωδr

(
.
xO,1

∫
V

ρ N2rdV +
.
xO,2

∫
V

ρ N1rdV

)
+

(
.
xO,1

∫
V

ρ N1rdV + y
.
xO,2

.
δr
∫
V

ρ N2rdV

)
.
δr+

+ω2δr

(∫
V

ρN2rx2 dV +
∫
V

ρN1rx1 dV

)
−ω

.
δr

(∫
V

ρx2N1rdV −
∫
V

ρ x1N2rdV

)
−ωδr

.
δt

(∫
V

ρN2r N1tdV −
∫
V

ρN1r N2tdV

)
(11)

With the notations:

m =
∫
V

ρdV ; JO =
∫
V

ρ
(

x2
1 + x2

2

)
dV ; mrt =

∫
V

ρNkr NktdV, (12)

mij,rt =
∫
V

ρNir NjtdV ; S1 =
∫
V

ρx1dV ; S2 =
∫
V

ρx2dV ;

mI
O,kr =

∫
V

ρNkrdV ; m1,mr =
∫
V

ρ x1NmrdV ; m2,mr =
∫
V

ρ x2NmrdV ;
, (13)

It exists the relation:
αijαjk = δik (14)

where δik is the Kronecker delta.
The kinetic energy has the following expression:

Ec =
1
2 m
( .

x2
O,1 +

.
x2

O,1

)
+ 1

2 ω2 JO + 1
2 ω2δtδrmrt +

1
2

.
δr

.
δtmrt+

−ω
( .

xO,1S2 −
.
xO,2S2

)
−ωδr

( .
xO,1mI

O,2r +
.
xO,2mI

O,1r

)
+
( .

xO,1mI
O,1r +

.
xO,2

.
δrmI

O,2r

) .
δr+

+ω2δr(m2,2r + m1,1r)−ω
.
δr(m2,1r −m1,2r)−ωδr

.
δt(m12,rt −m21,rt)

, (15)

2.3. Potential Energy

The potential energy of the finite element is:

Ep =
1
2

∫
V
(σ11ε11 + 2σ12ε12 + σ22ε22)dV, (16)
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In this relation, εij is the plane strain tensor and σij the plane stress tensor. The
generalized Hooke law has the well -known formulation:

σij = Hijklεkl (17)

In the case of the plane strain’s state for an isotropic material, Equation (17) becomes:

σ11 =
E

1− 2µ
ε11 ; σ22 =

E
1− 2µ

ε22 ; σ12 =
E

2(1− µ)
ε12 (18)

The strains in the plane state of deformation are:

ε11 =
∂u
∂x1

; ε22 =
∂v
∂x2

; ε12 =
1
2

(
∂u
∂x2

+
∂v
∂x1

)
(19)

ε11 =
∂u
∂x1

=
∂N1r
∂x1

δr ; ε22 =
∂v
∂x2

=
∂N2r

∂x2
δr ; ε12 =

1
2

(
∂N1r
∂x2

+
∂N2r

∂x1

)
δr (20)

σ11 =
E

1− 2µ

∂N1r
∂x1

δr ; σ22 =
E

1− 2µ

∂N2r

∂x2
δr ; σ12 =

E
4(1− µ)

(
∂N1r
∂x2

+
∂N2r

∂x1

)
δr (21)

Using Equations (17) and (18), we obtained:

Ep = 1
2

∫
V σijεijdV

= 1
2

∫
V

[
E

1−2µ
∂N1r
∂x1

∂N1t
∂x1

+ E
1−2µ

∂N2r
∂x2

∂N2t
∂x2

+ E
8(1−µ)

(
∂N1r
∂x2

+ ∂N2r
∂x1

)(
∂N1t
∂x2

+ ∂N2t
∂x1

)]
dVδrδt =

1
2 mrtδrδt

(22)

where the notation:

mrt =
1
2

∫
V

[
E

1− 2µ

∂N1r
∂x1

∂N1t
∂x1

+
E

1− 2µ

∂N2r

∂x2

∂N2t

∂x2
+

E
8(1− µ)

(
∂N1r
∂x2

+
∂N2r

∂x1

)(
∂N1t
∂x2

+
∂N2t

∂x1

)]
. (23)

is performed.

2.4. Work

Considering the generalized concentrated forces qi i = 1, p, they produce the following
equation:

Wc = qiδi ; i = 1, p. (24)

The generalized volume forces q∗i i = 1, p, similarly present the following equation:

Wd = q∗i δi ; i = 1, p, (25)

Therefore, the total work becomes:

W =
(

Wc + Wd
)
= (qi + q∗i )δi ; i = 1, p, (26)

2.5. Lagrangian

The classical form of the Lagrangian formula for one finite element is [51]:

L = Ec − Ep + W, (27)

Using Equations (15) and (21)–(23), these expressions are:
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L = 1
2 m
( .

x2
O,1 +

.
x2

O,2

)
+ 1

2 ω2 JO + 1
2 ω2δtδrmrt +

1
2

.
δr

.
δtmrt+

−ω
( .

xO,1S2 −
.
xO,2S1

)
−ωδr

( .
xOmI

O,2r +
.
xO,2mI

O,1r

)
+
( .

xO,1mI
O,1r +

.
xO,2

.
δrmI

O,2r

) .
δr+

+ω2δr(m2,2r + m1,1r)−ω
.
δr(m2,1r −m1,2r)−ωδr

.
δt(m12,rt −m21,rt)

−krtδrδt + qrδr + q∗r δr ; r, t = 1, p

,

2.6. Momentum

The momentum vector has following components:

pr,L =
∂L

∂
.
δr

. (28)

It obtains:

pr,L =
∂L

∂
.
δr

= mrt
.
δt +

( .
xOmI

O,1r +
.
yO mI

O,2r

)
−ω

(
my,1r −mx,2r

)
−ω

(
mxy,rt −myx,rt

)
δr ; r, t = 1, p. (29)

The inverse matrix m∗ur is chosen so that:

m∗urmrt = δut ; u, r, t = 1, p (30)

where δut is the Kronecker delta, and premultiplying Equation (28) with m∗ur produces:
.
δu = m∗ur pr,L −m∗ur

( .
xOmI

O,1r +
.
yO mI

O,2r

)
+ ωm∗ur

(
my,1r −mx,2r

)
+ ωm∗ur

(
mxy,rt −myx,rt

)
δr ;

u, r, t = 1, p
(31)

2.7. Hamiltonian

The classical Hamiltonian form is the following:

H =
∂L

∂
.
δr

.
δr − L. (32)

In Equation (32), we integrated Equation (27) for the Lagrangian calculation.

2.8. Energy of Accelerations

An important method offered by analytical mechanics as an alternative form to La-
grange’s equations is the Gibbs–Appell equation. This method also implies the energy of
acceleration. This is defined as:

Ea =
1
2

∫
V

ρa2dV. (33)

Thus, differentiating Equation (7):

..
XM′,1 =

..
XO,1 − ε

(
x1 + N1jδj

)
sin θ −ω2(x1 + N1jδj

)
cos θ − 2ω

(
x1 + N1j

.
δj

)
sin θ +

(
x1 + N1j

..
δj

)
cos θ−

ε
(

x2 + N2jδj
)

cos θ + ω2(x2 + N2jδj
)

sin θ − 2ω
(

x2 + N2j
.
δj

)
cos θ −

(
x2 + N2j

...
δj

)
sin θ ;

..
XM′,2 =

..
XO,2 + ε

(
x1 + N1jδj

)
cos θ −ω2(x1 + N1jδj

)
sin θ + 2ω

(
x1 + N1j

.
δj

)
cos θ +

(
x1 + N1j

..
δj

)
sin θ

−ε
(

x2 + N2jδj
)

sin θ −ω2(x2 + N2jδj
)

cos θ − 2ω
(

x2 + N2j
.
δj

)
sin θ +

(
x2 + N2j

..
δj

)
cos θ ; j = 1, p.

. (34)

In the local coordinate system:
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..
xM′,1 =

..
XM′,1 cos θ +

..
XM′,2 sin θ =

..
XO,1 cos θ +

..
XO,2 sin θ −ω2(x1 + N1jδj

)
+(

x1 + N1j
..
δj

)
cos θ − ε

(
x2 + N2jδj

)
− 2ω

(
x2 + N2j

.
δj

)
=

..
xO,1 +

(
x1 + N1j

..
δj

)
−ω2(x1 + N1jδj

)
− ε
(
x2 + N2jδj

)
− 2ω

(
x2 + N2j

.
δj

)
.

..
xM′,2 = −

..
XM′,1 sin θ +

..
XM′,2 cos θ = −

..
XO,1 sin θ +

..
XO,2 cos θ + ε

(
x1 + N1jδj

)
sin θ+

2ω
(

x1 + N1j
.
δj

)
sin θ −ω2(x2 + N2jδj

)
+
(

x2 + N2j
..
δj

)
=

..
xO,2 +

(
x2 + N2j

..
δj

)
−ω2(x2 + N2jδj

)
+ ε
(
x1 + N1jδj

)
+ 2ω

(
x1 + N1j

.
δj

) .

(35)

and the acceleration can be obtained via the following relation:

a2 =
..
xM′,1 +

..
xM′,2. (36)

3. Evolution Equations for the Finite Element Method
3.1. Lagrange’s Equations

The use of Lagrange’s equations proved to be useful in the case of solving difficult
problems, such as those involved in an MBS. An advantage was the use of scalar quantities
instead of vector ones. To use Lagrange’s equations, the expressions of kinetic energy and
potential energy were used, and the determination of the generalized forces was performed.
Although the method is very old, it has not yet lost its importance. The known form of
Lagrange’s equation is:

d
dt

(
∂L

∂
.
δi

)
− ∂L

∂δi
= 0 ; i = 1, p. (37)

Applying the procedure involved by the Lagrange method, we achieve the following
results:

∂L
∂

.
δr

=
.
δtmrt +

( .
xO,1mI

O,1r +
.
xO,2 mI

O,2r

)
−ω(m2,1r −m1,2r)−ωδr(m12,rt −m21,rt) ; r, t = 1, p

d
dt

∂L
∂

.
δr

=
..
δtmrt +

( ..
xO,1mI

O,1r +
..
xO,2 mI

O,2r

)
− ε(m2,1r −m1,2r)− εδr(m12,rt −m21,rt)−ω

.
δr(m12,rt −m21,rt) ; r, t = 1, p

(38)

∂L
∂δr

= ω2δtmrt −ω
( .

xO,1mI
O,2r +

.
xO,2mI

O,1r

)
+ ω2(m2,2r + m1,1r)−ω

.
δt(m12,rt −m21,rt)

−krtδt + qr + q∗r ; r, t = 1, p
d
dt

∂L
∂

.
δr
− ∂L

∂δr
=

..
δtmrt + 2ω

.
δr(m12,rt −m21,rt) +

[
krt − εδr(m12,rt −m21,rt)−ω2mrt

]
δt +

( ..
xO,1mI

O,1r +
..
xO,2 mI

O,2r

)
− ε(m2,1r −m1,2r)

+ω
( .

xO,1mI
O,2r +

.
xO,2mI

O,1r

)
−ω2(m2,2r + m1,1r)− qrδr − q∗r δr = 0 ; r, t = 1, p

(39)

The evolution equation for the finite element is:

mrt
..
δt + 2ω

.
δr(m12,rt −m21,rt) +

[
krt − ε(m12,rt −m21,rt)−ω2δtmrt

]
δt = −

( ..
xO,1mI

O,1r +
..
xO,2 mI

O,2r

)
+ ε(m2,1r −m1,2r)

−ω
( .

xO,1mI
O,2r +

.
xO,2mI

O,1r

)
+ ω2(m2,2r + m1,1r)− qr − q∗r = 0 ; r, t = 1, p

. (40)

3.2. Hamilton’s Method

With the help of Lagrange’s equations, the motion equations of the MBS were deter-
mined, obtaining a system of second-order differential equations. In order to be able to
solve this system, it must be transformed into a system of differential equations of the
first order by introducing new unknowns, but of a double dimension. In the case of using
the Hamilton formalism, the equations of motion were directly obtained as a system of
differential equations of the first order, of a double dimension. In this case, the unknowns
are the generalized coordinates and the canonical conjugate momenta:

pi,L =
∂L
∂δi

; i = 1, p. (41)
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Therefore, the main difference between Lagrange’s and Hamilton’s methods is the use
of canonical conjugated momenta instead of generalized velocities. The main advantage of
applying these equations was to directly obtain a system of first-order equations. These
could be solved directly; the usual commercial software included moduli dedicated to
solving first-order differential equations. To solve a second-order system, it is necessary to
introduce new functions in order to reduce the order of the system [52–57].

The classical and well-known Hamilton’s equations are:

.
δr =

∂H
∂pr,L

;
.
pr,L = −∂H

δr
. (42)

Considering Equations (41) and (42), we achieved:

.
δr = m∗ru pu,L −m∗rumO,iu

.
xO,i −m∗rumk,iuαij

.
αjk −m∗rumik,utαij

.
αjkδt ; u, r, t = 1, p;

.
pr,L = ∂L

∂δr
= ω2δtmrt −ω

( .
xO,2mI

O,2r +
.
xO,2mI

O,1r

)
+ ω2(m2,2r + m1,1r)−ω

.
δt(m12,rt −m21,rt)

−krtδt + qr + q∗r ; r, t = 1, p

(43)

Equation (43) represents a Hamilton equation, a system of 2p first-order equations.

3.3. Gibbs–Appell Equation

The formalism Gibbs–Appell equation is reconsidered at present in the context of
its necessity to analyze an MBS with elastic elements. The main notion used in Gibbs–
Appell equations is the acceleration energy, obtained in Equation (33). The form of the
Gibbs–Appell equation is [58–62]:

∂Ea

∂
..
δr

= Qr r = 1, p. (44)

where Qr = qr + q∗r (see Section 2.4). After performing the calculations in Equation (33),
we identified the following three terms:

• Ea2 is the part of the acceleration energy containing quadratic values:

Ea2 =
1
2

mrt
..
δr

..
δt r, t = 1, p; (45)

• Ea1 represents the part of the accelerations energy containing linear values:

Ea1 =
..
xO,i

..
δrmI

O,ir +
( .

αji
.
αjk + αij

..
αjk

) ..
δrmk,mr +

( .
αji

.
αjk + αij

..
αjk

)
δr

..
δtmkr,mt + 2αji

.
αjk

.
δr

..
δtmkr,mtdV (46)

• Ea0 does not have any terms containing generalized accelerations. This part played no
role in obtaining the Gibbs–Appell equation and was not of any interest to us.

With the three parts, the energy of acceleration is the following:

Ea = Eao + Ea1 + Ea2; (47)

Equation (44) can be written as:

∂(Ea1 + Ea2)

∂
..
δr

= Qr r = 1, p; (48)

The generalized force vector in our description is:

Qr,L = krtδt + qr + q∗r ; r, t = 1, p; (49)



Mathematics 2023, 11, 4149 10 of 15

We obtained:
∂Ea2

∂
..
δr

= mrt
..
δt r, t = 1, p; (50)

∂Ea1

∂
..
δr

= 2ω
.
δr(m12,rt −m21,rt) +

[
−εδr(m12,rt −m21,rt)−ω2mrt

]
δt+( ..

xO,1mI
O,1r +

..
xO,2 mI

O,2r

)
− ε(m2,1r −m1,2r) + ω

( .
xO,1mI

O,2r +
.
xO,2mI

O,1r

)
−

ω2(m2,2r + m1,1r) ; r, t = 1, p

(51)

It is obvious that:
∂Ea0

∂δr
= 0 ; r = 1, p. (52)

Finally, the result is Equation (40).
Since this method required a smaller number of differentials, as in the case of La-

grange’s equations, the number of calculations decreased. Therefore„ the time and cost of
the modeling and simulation processes decreased.

3.4. Maggi’s Equation

The role of Maggi’s equation and its application to related problems are presented
in [63]. The generalized independent coordinates of the system are q1, q2,. . .., qN; between
them, there are m linear relationships:

aij(q1, q2, . . . , qN , t)
.
qj + bi(q1, q2, . . . , qN , t) = 0 , i = 1, m ; j = 1, N. (53)

The classic form of Maggi’s equation is:

akj

[(
d
dt

(
∂Ec

∂
.
qk

)
− ∂Ec

∂qk

)
−Qk

]
= 0 ; j = 1, N −m ; k = 1, N, (54)

The set of p = N-m independent equations represents Maggi’s equations. Using the
previous notation, it was possible to apply these equations to a single finite element to
finally obtain Equation (40). Maggi’s equation represents another form of the Gibbs–Appell
equation.

3.5. Kane’s Equations

Starting with the following equations:(
Fi −miai

)
δri = 0 , i = 1, N, (55)

written for a mechanical system of N material points, described by a number of p general-
ized coordinates, we obtained:

N

∑
i=1

(
Fi −miai

) ∂ri
∂qk

= 0 ; k = 1, p, (56)

The following relation was used [64–66]:

∂ri
∂qk

=
∂vi

∂
.
qk

; k = 1, p, i = 1, N; (57)

Introducing Equations (57) in (56), we achieved:

N

∑
i=1

(
Fi −miai

) ∂vi

∂
.
qk

= 0 ; k = 1, p. (58)

If noted:
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∂vi

∂
.
qk

=
∂vi
∂uk

= v(k)i ; k = 1, p ; i = 1, N, (59)

Equation (58) becomes:

N

∑
i=1

Fi
∂vi
∂uk

=
N

∑
i=1

miai
∂vi
∂uk

; k = 1, p ; i = 1, N (60)

Fi being the external forces acting in the nodes.
Then, for an elastic finite element considered as a solid, Equation (60) becomes:

N

∑
i=1

Fi
∂vi

∂
.
qk

=
∫
V

a
∂v
∂

.
qk

dm (61)

Thus, it was possible to obtain, after some calculations, Equation (40).

4. Conclusions and Discussions

The use of an FEM in the analysis of an MBS with elastic elements is an increasingly
common procedure in the analysis of mechanical systems of high complexity. The FEM has
well-established and proven procedures for numerous applications and is extremely useful
for such problems. The difficulty of obtaining the equations of motion lies in the complexity
and particularities of the system being studied. There are several equivalent formalisms that
allow the equations of motion to be written down, equivalent to each other. The analysis of
an MBS with plane movement is a common objective in engineering applications, which
is why the separate study of these systems is required. The particularities involved in
planar motion help to obtain these equations in a simpler and easier form for the researcher
to use. In this sense, this paper analyzed the method of writing the equations of motion
using alternative methods from analytical mechanics. Among them, we listed the Lagrange,
Gibbs–Appell, Hamilton, Kane, and Maggi equations.

The methods offered by analytical mechanics and previously presented for a two-
dimensional finite element finally provided the equations of motion for a single finite
element. These methods were equivalent from the point of view of the mechanical descrip-
tion, and the problem that a researcher posed was the choice of the most suitable method
for the concrete application studied. The choice was determined by the previous experience
of the researcher and his familiarity with the concepts presented in the paper.

• Lagrange’s equations is the method currently used by most researchers. We presented
the motivation for this choice in the Introduction Section. The main advantages were
familiarizing the researchers with the method and the fundamental notions used, the
high degree of generality, the possibility of easy introduction into an algorithm, and
its simplicity.

• Gibbs–Appell’s equations predicted the advantage of requiring a smaller number of
differentiation operations. It was an economic advantage that, in the case of systems
with a number of degrees of freedom, resulted in to reduced modeling and simulation
costs. The main difficulty was the use of the notion of energy of accelerations, a
concept with which the researchers were not very familiar. The GA method is a little-
used method that has been reconsidered in recent years, due to the need to provide
researchers with methods that ensure efficiency in terms of the time required to design
a complex mechanical system.

• Maggi’s equations are essentially a development of the Lagrangian formalism. The
study of non-holonomic systems lends itself very well to the application of this method.
The multipliers are removed from the motion equations using a projection operator
(orthogonal complement matrix). Knowing the kinetic and potential energy values
and the links that exist between the nodes of the finite element network allows the
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equations of motion to be easily obtained. This formalism also provides a justification
for the multiplier elimination procedures used empirically in FEM software.

• Kane’s equation method is very similar to Maggi’s equation method, from which
it originates. It has recently been used in the automation industry and industrial
robot applications. Kane’s equations represent a successful alternative, having the
advantage of being economical in the study of systems with many degrees of freedom.
The method represents a natural alternative for non-holonomic systems. The need
to approach complex mechanical systems, which must operate at high speeds and in
difficult conditions, encourages the alternative methods of description, among which
Kane’s method is included, to be re-evaluated.

• Hamilton’s equations are starting to be reconsidered by researchers in the technological
context in which we find ourselves. They are highly simple. The Hamiltonian is a
scalar expressed in terms of generalized coordinates and their conjugate moments, and
the degree of generality is very high. Moreover, the second-order equations of motion
that are obtained in all other methods are replaced by first-order differential equations.
It is true that the number of differential equations doubles, but by introducing new
quantities with a physical significance (conjugate momentum).

From this analysis, it can be concluded that alternative methods from analytical
mechanics should be reconsidered, since, for certain types of applications, they can present
advantages in terms of modeling and numerical procedures. This occurs due to the current
technological context, which requires increasingly complex systems and, as a result, even is
more difficult to study and model, involving numerous parameters and long numerical
analysis times.
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