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Abstract: Let D be a relatively compact domain in an n-dimensional Kéhler manifold with a C2
smooth boundary that satisfies some “Hartogs-pseudoconvexity” condition. Assume that E is a
positive holomorphic line bundle over X whose curvature form © satisfies ® > Cw, where C > 0.
Then, the d-Neumann operator N and the Bergman projection P are exactly regular in the Sobolev
space W™(D, E) for some m, as well as the operators ON, 9°N.
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1. Introduction

Sobolev estimates are crucial tools in the study of complex analysis on pseudoconvex
manifolds. In this paper, we will focus on the Sobolev estimates for the d operator and
the 0-Neumann operator on such manifolds. Consider a Hartogs pseudoconvex domain
D with a C? boundary in a Kdhler manifold X of complex dimension n, and if X is a
positive line bundle over X whose curvature form satisfies ® > Cw with constant C > 0,

then the operators N, ON, 9" N and the Bergman projection P are regular in the Sobolev
space W"(D, E) for some positive m. This result generalizes the well-known results of
Berndtsson—Charpentier [1], Boas-Straube [2], Cao-Shaw—Wang [3], Harrington [4] and
Saber [5] and others in the case of the Hartogs pseudoconvex domain in a K&hler manifold
for forms with values in a holomorphic line bundle. Indeed, in [1], Berndtsson—-Charpentier
(see also [6]) obtained the Sobolev regularity for P for a pseudoconvex domain Q). In [2],
Boas-Straube proved that the Bergman projection B maps the Sobolev space W™(Q) to itself
for allm > 0 on a smooth pseudoconvex domain in C" that admits a defining function that
is plurisubharmonic on the boundary bQ). In [3], Cao-Shaw—-Wang obtained the Sobolev

regularity of the operators N, dN, 9" N and P on a local Stein domain subset of the complex
projective space. In [4], Harrington proved this result on a bounded pseudoconvex domain

in C" with a Lipschitz boundary. In [5], Saber proved that the operators N, 9" N and P are
regular in W} (D) for some m on a smooth weakly g-convex domain in C". Similar results
can be found in [7-16].

This paper is organized into five sections. The introduction presents an introduction
to the subject and contains the history and development of the problem. Section 2 recalls
the basic definitions and fundamental results. In Section 3, the basic Bochner-Kodaira—
Morrey—Kohn identity is proved on the Kdhler manifold. In Section 4, it is proved that
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the C? smoothly bounded Hartogs pseudoconvex domains in the Kéhler manifold admit
bounded plurisubharmonic exhaustion functions. Section 5 deals with the L? estimates
of the d and 9-Neumann operator on the C? smoothly bounded Hartogs pseudoconvex
domains in the Kahler manifold. Section 6 presents the main results.

2. Preliminaries

Assuming that X is a complex manifold of the complex dimension n, n > 2, T(X)
(resp. Tx(X)) is the holomorphic tangent bundle of X (resp. atx € X)and 7 : & — X
is a holomorphic line bundle over X. A system of local complex analytic (holomorphic)
coordinates on X is a collection {'yj} jeJ (for some index set ) of local complex coordinates
7vj : #; — C" such that:

(i) X = Ujej%, ie., {#%;}jc; is an open covering of X by charts with coordinate
mappings wj : % — C" satisfies 1~ (%) = % x C.

(ii) {fij} is a system of transition functions for Z; that is, the maps fx = ¥jo 7, !
Yk(z) — 7j(z) are biholomorphic for each pair of indices (j, k) with %; N % being
nonempty (i.e., fjr (resp. f];l = Yo 7;1) are holomorphic maps of 7,(%; N Uy) onto
V(% N ) (vesp. (% N U) onto (% N U))).

Assume that (wjl-,w]z, e ,w?) is the local coordinates on %] A system of functions
h = {h;}, j € ] is a Hermitian metric along the fibers of Z with 1; =| fj; |* h; in % N %,
and 71 is a C* positive function in %;. The (1,0) form of the connection associated with the
metric 1 is given as 6 = {6;}, 0; = i,/ 18?1 @ = {©;} is the curvature form associated with
the connection 6 and is given by

_ _ n
=90 = ddlogh; = ,32 ©, gl N d.

a,p=1

Definition 1. Z is positive at x € %; if the Hermitian form

Z®ja3 ‘ua ﬁﬁ’
is positive definite on T (X),V u € Ey \ {0}.

Along the fibers of &, fig = (h;l), j € ] is a Hermitian metric for which = is positive;
ie., 09 log h]- > 0. Then, h defines a Kdhler metric G on X,

n
— = _3 =P
= 2 g]aﬁ dw giup = 0 logh]-/aw}’-‘awj.

Let C7%(X, &) (resp. D% (X, E)) be the space of C* (r,s) differential forms (resp. with
compact support) on X with values in E. A form ¢ = (¢;) € C;3(X, E) is expressed on %;
as follows:
2 Pja, Bs /\dﬁBq X s,
Ar,Bs
where A, = (a4,...,4,) and Bs = (by, ..., bs) are multi-indices and sj is a section of E|o)/]
Define the inner product

() =1 Y 90590,

Ar,Bs

Z BS _ Clal Crll bldl bgdg
where Y =Ye,n, 8 g g Vi) oocydy oy L€

Cre(QE) ={¥ [q; ¢ € (X E)}



Mathematics 2023, 11, 4138

30f26

Let % : Ci3(X,E) — C72

(n—sn—r) (X, E) be the Hodge star operator, which is a real operator

and satisfies

xxy= (-1,
For the proof, see Morrow and Kodaira [17]. Set the volume element with respect to G as
dv. The inner product < 1,1 > and the norm || ¢ || are defined by

<y >= [ @w)do= [ prshgand ||y P=<pp>.

The formal adjoint operator i of 9 : C%_;(Q, &) — C2(Q, E) is defined by

r,s—1

< PP, P >=< 1,09 >,

€ CR(Q,E)and ¢ € D, 1 (Q,E). Let# : C3(X, E) — Cg3(X, E¥) be defined locally
as (#p); = h] ;j; the inner product < ¢, > is given by

<P >= /Qtl/)/\%#(p.

From Stokes’ theorem, i € C3(Q, E), ¢ € e 1(©, £), one obtains

<P, P >=< 1,0 P > —|—/80tl/1/\§6#l/).

Put B o
Prs(QE) = {9 € C75(Q, B); ¢ #¢ 0= 0}
As a result,
= =%
<oP, P >=< 1,0 ¢ >,
forp € %,5(Q, E).
L2,(Q, &) is the Hilbert space of the measurable E-valued (r,s) forms , which are

square integrable in the sense that [|§||*> < co. Letd : L2,(Q,8) — L2 _,(Q,E) and

r,5+1
9" Lsz(Q,:) — L2,(Q,E). In L2,(Q), E), the spaces ker(d,E), Doms(d, E) and

Rang(9, E) are the kernel, the domain and the range of 9, respectively. A Bergman pro]ectlon
operator P : L2(D,E) — L?(D,Z)N kerrs( ). Let 0 = O,y = 00 +0 0 be the
unbounded Laplace-Beltrami operator from L2,(Q,E) to L%S (), E) with Dom(O, 5, &) =
{y € 12,(Q, E)|¢ € Dom(d,E)N Dom(3",E);0¢ € Dom(d",Z) and 9" ¢ € Dom(, E)}.
Let Ny 5 be the 9-Neumann operator on (r,s) forms, solving N, s[(J, s = ¢ for any (r,s)

-

form ¢ in L2 (Q), E). Denote by P the Bergman operator, mapping a (7, s) form in L2 (Q), &)
to its orthogonal projection in the closed subspace of d-closed forms.
Let

A, s(E) =ker(O,5,E) = {yp € Dom(9, E) ﬂDom(ﬁ*,E); 51/; =0and 5*1/1 = 0}.

Let WP (Q), E) be the Sobolev space with —} <m < J and let | lwz, () denote its norm.

V¢ € Dom(d,E) N Dom(a ,Z), one obtains ¢ € W} (), loc). Thus, ¢ is an elliptic and
¥ € WA (Q,E) for —3 <m < 1 ifand only if

19, 0z = [ &= 19 < oo,

For the proof, see Theorems 4.1 and 4.2 in Jersion and Kenig [18], Lemma 2 in Charpen-
tier [19] and also Theorem C.4 in the Appendix in Chen and Shaw [20].
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Proposition 1 ([21-23]). (i) Iftp € Dom(y,B) C L2,(Q), B) satisfies supp.p € Q and supp.
pp C Q, then Yo € Dom(d,E) C L2(Q,E); ie, pplo = 9 plo in L2,_;(Q,E).
(ii) C2%(Q, &) is dense in Dom(9, £) in the sense of(| ¥ |12 + || oy ||2)V/2. (iii) B, s(Q,E) is
dense in Dom (3", &) (resp. Dom(d,E) N Dom(a ,B)) in the sense of the norm (|| ¢ ||*> + ||
Iy I 212 (resp. (Il g I + 13y |2+ | 97y [12)/2).

(i0)d" =1pon B s(Q,5).

3. The Kihler Identity

As in Takeuchi A. [24-26], one can prove the following Kahler identity: Fix the
following notation: C® sections of A(T (X)), A(T*(X)), A(T(X)) and A(T" (X)) written
as Yy, (%2 aza S e dZ® YR aaa and Y "', ¢z dz®, respectively. Use the notation dg =

325 0n = 3% i1 17 5% € AT(X)), 9 = Tiy ¢ d2" € A(T" (X)), define

V" = 0gn*and Vg Yz = 9p Y.

A connection w for T(X) is defined as

w = (wf), wb = Z Fﬁ dz", with I’g,x = Z $7Pd g4z,
f)/_l o=1

and its Riemann curvature tensor

"‘5“’ - 2 gl‘“szT’ gvr =dy rrﬁ @
One obtains - -
.B’Y - F%’Y’ Rgvr - ng and szﬁy? = Rﬁﬁm’- (2)

The Ricci curvature is defined by

n
Ror= Y Rh . 3)
p=1

Following Morrow and Kodaira [13], if G is a K&hler metric,

=T%,,
ﬁv 1B @)

RE‘BVT = R&TV‘B = Rﬂﬁﬁr = RVTEﬁ/

where ;
Y T%, =0qlog g and Ry = 90 log g, where g = det (845)-

=1
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For{ =Y" ;% % € A(T(X)), ¢ = X', ¢a dz* € A(T" (X)), one defines
n
Vpe" =0pC" + ) T, 7
y=1
n
Vﬁwa = aﬁlplx - erg‘xq)ry,
")/:
vigoc — aigtx,
B . p S )
V" = ogn" + Zl e,
¥=
Vgllﬂa = aﬁwm
no__
Ve = 0% — ) T s
y=1
For ¢ € C73(X, E), one defines
Valy,  aby b, = ¥ur By B, ~ ; ;F wa;Way.j v By B
(7 —
Va lplxl...arﬁl...ﬁs - v"‘lpal..‘mﬁl..ﬁs — Jdalogh lpoq...oc,ﬁl..ﬁs’
S (6)
VEVuraByBy = OVarBy B, ; LTk, Vv by BB B
vﬁlpﬁl---ﬁsal--ﬂr =0 l/)‘Bl Bty ..y _|_]Zl ;rﬁl lpﬁl 5/ T;B]+1 Bty “r
For the proof, see Choquet-Bruhat [27], p. 235. B
Following Morrow and Kodaira [17], the operators 9, ¢ are defined as
W= Y Y Vap, 5d2" AdzM AL NdZ NdZPLA LN AP,
Ar,Bs
- R @)
g _ r— «
(0 l,/J)Arﬁsf1 =(-1) Z 8 V l/’LA, Be_1’

a,B=1

for p € C2(X, E).
For a C* function A and for a ¢ € C7%(X, E) at any point of X, one defines

v [ w
& o\ 9zl 9z 9zl 9z )

n
rad A2 = rad A)( rad)\ =
g g )(g
a=1

|

az“ |

azP

(£ -y ¥

slﬁ'yl

By
825827 lpB P

Since dA # 0 on U, then grad A # 0 on U also. Also, set

(V. V) =n" 1ZZV & VIS,
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For ¢ € C(‘)’j’s (X, E), s > 1, we construct from ¥ the two tangent vector fields ¢ and # to X as
follows:

E= (= 1 Zh H(Vaug )T @ =o),

By y=
1={1"=0, wzzh (VEe5, ) e,
Bs 1 .B
where B,y =1,2,...,n
Proposition 2 ([24]).
Vg =0 Viggz=0 andVygh =0.

Proof. Since g,z is a C* section of T*(X) ® T*(X), then Equation (3) gives

Vi 8up = V 8up — Z r}m &8
O 8ap — Z 8" (Opewy) &
=0y 8uB — Z 5;3 Opu8uy)
7

=0y 8up — Iy €up
=0.

Vg, = %u8up — ZTTT,ﬁguﬁ
y €up — Z g ,ugArﬁ 8aT
= g5 — Z Za( g, )
v

= On 85 — O 8up
—0.

Vi gﬁ"‘—a gﬁ"‘ + ZFP,Tgf

= o g + ) &P (Opgye) ™
v7,T

= g™ — Y gyr (9ugP") g™
T”Y

= 9P — ) 35 (0pgP")
v

=3 P — o gh*

=0.

O
Proposition 3 ([24]).

n n o
div ¢ —divn =Y Vg — Y Vyyl
B=1 =1
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Proof. The divergence of the vector ¢,

dive— Y vyeh— Y (1P )&
v (: Z ﬁé’( Z By YB C:'( .
p=1 B =1

Since the metric G is Kéhler, then from Equation (4), ( P Fi 8

) = 0. Therefore,
n n -
dive= Y vgeh, divyp=Y VyyT
p=1 =1

Then, the proof is complete. [

Proposition 4 ([24]). For a C* function A and for ¢ € %ys(Q, &), s > 1,

3¢l + 137 911> = [Vl + (rlgrad A]) " /30(3()\)1/},1/1) ds+ < (@ -R)P, ¢ >,

where ® = (O, 3) and R = (szﬁ)'

«p
Proof. Since

Voeh - vﬁ(z v, )

Bbl’Y

Since Vgl) = (Vg — dglogh), from Equation (6), then

Ever- 1 w(rr ¥ Vst g )

Br=1 B4
=nht Z Z Vﬁ a/g logh)V,yglJB 110735 14k~ 1 Z Z VWIPB Vﬁlpos,l
By Bs—1 By Bs—1
=0 L Y VeV ¢ D Y Ve Vi
By Bs—1 B,v Bs_1
_ B —_—
+n 5232 [V,(s ), VﬂngSfleH-
/Y bs—1

Then, one obtains the commutator

VS, V3 95, = [V, V4] 5, + Oy ..

Using Equation (6), one obtains

VVVﬁlpgs = avaﬁlpB Z Z re [3 .Bll'kl ,By 1TAB‘1,4+1 B’

}4_ =
VeVi¥s, = 9pd7Pp, E TZ OB 8, V1 By BBy ; Z T8, 085, By BB

Hence, by using Equation (1), one obtains

S n
[V,B’ IPB - ;;Rﬁﬂﬁ'y Igl ﬁy ]Tﬁ;4+l ﬁs
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Therefore, one obtains

(h) 2 _ S n ? g B - - 3
V' Vol ¥ = =L L LR 55,5, 7B B Orr¥E

s u=11=1
So,
DN AC TR R Sy A L

By Bo by

51 af WYBs—1
=—h" Z 8 (Z ZRﬁ mt/’aﬁl Bu1TBus1-Ps- )l/ﬂ '

a,B,y u=lt=
1Y PO 7 ®
wB,y

31 aBpT hYBs_1 1 PrB1
=—h agrg Rapy¥es, Y71 —h Z g" Rﬁm%aﬁl BusByrBoa P

+n71)_ Oy 4’%_11#735*1‘
o,y ”
From the Kéhler property of G, Equation (2) gives

Ta _ XPpPT _ PRT
R %g Rg.p7 = R, 7

Moreover, we remark that Va8, B, Byi1Bor
BBy

term of the right-hand side of Equation (8) is zero, i.e.,

~¥2,. BBy ot Hence, the second

-1 ap Bsf =
f M;Tg R/s 7P 4,78, B, By B P =0

As a result, Equation (8) becomes

UL Ll T = (SR o, 9

By Bs—1 7,7 \a,B )
+171Y Oy lﬁgs_lllﬂBS*l-
a”)/

On the other hand,

n o [

L 8 Ry = L 88" Rowpy = 18" L8P Ry, = ng ZSMRM

a,B=1 «,B,A A B

Hence,

WL LV Vel 9T = =Dt Y Y (@ - Rp) g, 975

By Bs—1 Bs_ya,y=1

We compute the second term of Equation (9). From Equations (1) and (5), one obtains

@y, 0p) =171 Y Vape VTgDs EL L,

Cs,Ds
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where Sst =O0unless 4 ¢ C;, T ¢ Ds and {u} UCs = {7} U Ds, in which case SVD is

the sign of the permutation (; CsT D;). Consider the terms with y = 7. If Sf p. # 0, then
we must have C; = Ds and p ¢ Cs, and hence the sum of these terms is

nL Y Ve VIS

Cs chs

Next, we consider the terms with y # 7. If £ # C:‘ 7é 0, T € Cs, u € Ds with deletion T from
Cs or u from Dg has the same multi-index B,_q:

VCS VCS }‘TBS 1 TH Bs 1 __ C yBsfl
5"( gyTB 1 STyB 1 5TD5 - STSB 1 gDs ’

The sum of the terms in question is

S Ve, T

Bs_1 V#T

Therefore, one obtains

(99,99) =1 'L X Vi VIYS 17t Y Y Ve VB

Gs Hng Bs_1 H#T
=n 1ZZVM[’C VIS —n! Z Y. Vitss, (Zng )WBS 1 (10)
Bs_1 p#T
= h*l szﬁlpthpCs —h™ 1 Z Z ZgT’Yvﬁl/J?RFl 71*/]}13571'
G # Bs_yu#ET Y

Since V= gﬁ"‘ = 0, then by using Proposition 2, one obtains

(5¢,5¢) = (V, V) —n" 1zzvy¢3 | VB,

> 1 WY

Then, one obtains

o 2 Evﬁlﬁﬂ V%’JﬂBg L= (s-1! [(vrﬁ) - (5‘/’/5110)]

Bs—1 I3 Y
Therefore,
Y VP = VeVl ARt (s— 1 { (@ - R)p, )+ (V,V) — (3p.dy) }. (1)
p=1
Using Equation (7),

Zj T =h! Z Y (Vo — 0y 1ogh)v(h)¢ﬁ l/ﬂBSl

'YlB‘:l
+h Y Y VE Vg (12)
By Bs—1
1 vBe1 1 v " 7Bs-
=n" ZZVV 1/’3 Bt 1 ZZV l[JBl V1B,
By Bs—1 By Bs—1

Hence, by using Equation (11), one obtains

i VanT = (s —1)! (a $,0° ¢)+h122vv 1/;5 szBH (13)

,BWBs 1
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Subtracting Equation (13) from Equation (12) and from Proposition 2, one obtains

1 i 3 v va N . K K
oy E-divy) = (V,9) - (3p,99) - (39,37 ¢) + (@ R)p, ).
By integrating this identity over (2 and by applying the divergence theorem, one obtains

1 kv 3 =X
G o € s = [Pl — [y — 79I+ < @~ R)py>, (9

with the outer unit normal vector n to d(), which is given at each point x € 9Q) by
_ grad A
~ |grad A]Y

compute 77 . grad A. Since

and the projection of the vector (¢ — ) on the vector n is (¢ — 1) . n. Now, we

7. gradA—Zn"B A=h" 122v ¢B B (ZZwlea A)

B=1Bs_1

at any point of X, then for i € %y, (Q),E), s > 1, one obtains
n.grad A = 0 on 0Q).

Hence,
n.n = 0, on o). (15)

Now we compute ¢ . n. from Equation (5); one obtains

1 1

(16)
h\grad /\| ’)’21321 (Z v7¢B aﬁ /\) llJ’YBs 1,

Again, for ¢ € %s(Q, &), s > 1, one obtains
B
Y %5  9pA=00n0Q
p=1
Since A = 0 on 0Q), then we can write

=~ B
Z lpgs—laﬁ )\ = A¢§571/

on the neighborhood U of 0Q), where ¢ is a C* section of AT (X) @ . So,

n n
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Then, we multiply this equation by n 1Bt and sum it with respect to . Since ¢ €
HB,s(Q), E), one obtains

Ry 2 Vol dpAgrEn Y 2 dpdpAylh  yTP1

bl,B'y 1 5113')/ 1
n
=ty 2%, OgA YTt 1T YT YL AV gy 97
Bb 17= Bs,l’}’:l
=0,

on dQ). Therefore, by dividing by |grad A|, (16) becomes

Eon=— 350-A vP P7Bi on 9O
h|grad Al leﬁ;1 FoT l’b l'b

Then, )
g.n= _W (Z M), y), (17)

on dQ). Thus, the proposition is proved by substituting Equations (15) and (17) in
Equation (14). O

4. Bounded P.S.H. Functions and Hartogs Pseudoconvexity in Kdhler Manifolds

Definition 2 ([28]). Q) is the smooth local Stein domain if ¥ point z € 9Q), and 3 is a neighborhood
U if z satisfies U N Q), which is Stein.

Definition 3 ([29]). We say that Q) is Hartogs pseudoconvex if there exists a smooth bounded
function h on Q) such that B
i0d(—logd+h) > Cw in Q, (18)

for some C > 0, where w is the Kihler form associated with the Kithler metric.
In particular, every Hartogs pseudoconvex domain admits a strictly plurisubharmonic

exhaustion function and is thus a Stein manifold.
Next, we will examine several examples of Hartogs pseudoconvex domains.

Example 1. Suppose X is a complex manifold with a continuous strongly plurisubharmonic
function and Q) € X is a Stein domain. According to [30], there exists a Kihler metric on X such

that ) is Hartogs pseudoconvex.

Example 2 ([29]). All the local Stein-domain subsets of a Stein manifold are in the Hartogs
pseudoconvex domain.

Example 3 ([29]). Every C? pseudoconvex domain in the C" subset of a Stein manifold is a Hartogs
pseudoconvex domain.

Example 4 ([30]). Any local Stein domain subset of a Kithler manifold with positive holomorphic
bisectional curvature satisfies Equation (18) on U N Q).

Example 5 ([30]). If Q) is a local Stein domain of the complex projective space P", then () satisfies
Equation (18).

The canonical line bundle K of X is defined by transition functions (k;;)
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N..112 el 2 — UNT 112 1
199 02) + 192 ¥z 021 = IVt 02) * a7 fop £ Phadlst < Out >

with
g = |kij’gj on U;NU;.

Hence, g = {g;} determines a metric of K. Let i = {h;} be a Hermitian metric of Z and
dd log h its curvature tensor. So, {l = g.h} determines a Hermitian metric of 2 ® K and

ddlogh = ddlogh + ddlog g.

Then, from Proposition 4,

2 1512 — (15512 1
[0~ + [0~ ¢l” = IVl <O > A L (ENgp)ds, (19)

for ¢ € Bys(D,E®K),s > 1. Using h = hy = (™h, one obtains
Op = ©® —mdd(—log ).

With respect to the G and Iy, , and for ¢, € C;%(D, E), we define the global inner product
< ¥, >n and the norm ||¢ ||z, (p =) by

%

<9 >a= [ (@ 9)ado and (9l 0z =< 0¥ >a.

Then, (19) becomes

n,s

(20)
+ <mdd(—1log Q)Y ¢ >n .

As Theorem 1.1 in [31], one obtains

Theorem 1. Suppose X is an n-dimensional complex manifold and D € X is a Hartogs pseu-
doconvex. {(z) = dist(z,dD) = —p(z), where { is the Kihler metric w on X. If m > 0, then

i00(—¢") > cn 0" w, (21)
for some constant cy > 0.
Proof. Using Equation (18) and if p = —(,
—piddp +idp Adp > Cpw. (22)

Let (e;) be an orthonormal basis for T(dD) near p. In this case, near p € 9D, choose local
coordinates that satisfy x2, = p, e;(p) =0,i =1,2,...,n — 1. The Hermitian form for iddp
is denoted by (a;j). The inequality (22) gives the coordinates

n n
—0 Y ani; + (30 Pl = Co* Y I (23)
ij=1 j=1
Ify, =0,
n—1 n—1 )
Y. amiif; > Clol ) |ml*
ij=1 j=1

Expanding (23), one obtains

n—1 n—1 n—1
—p Y aijniT; + 2Re (=p) Y. auk Ty — 0 amn [in|* + 001 7> = Clp? Y Injl*.

ij=1 k=1 j=1
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for j < n —1, replacing v by 1;/(—p),
(4 2 20, |2 (S
)3 ( ) 1i7;+ 2Re ( Z Qe T i — 0 @nn |11 |* + 1001 [y |* > C" ) [pjl%. (24)
iji=1 k= j=1
The inequality’s left side can be expressed as follows:
Q(z,1) + |9pl* [ *.

For z € D, we assume that

Qlgn) = liminf Q(z,y) = lim inf Q(z7).

t=0 |z—¢|<t
From Equation (24), one obtains
o 2 2 2
!/
Q(gm) + [9pl* (&) Inal* = C" ) Iyl (25)
j=1
Take a look at Q(p, (0,7n) > 0; for a small enough C/,
Qg ) + [9p (&) al* = C'lpul?,
in a neighborhood of p. On the sphere || = 1, inequality (25) still holds for |'| < cina
neighborhood of 7’ = 0, where 7 = (1, 17,). This gives us
2 2o €
Q(z,1) + 190l () 1n|” = = li1u]",

for {(z) < |17 | < 0. But, when |/| > o and |57| = 1, one obtains |’ |> > 0y|1, |2, where

0p = 0?(1 — 0?)~1. So, by using (25),
Q(z,n) + |0p* [yn* > o**|yu|* for some o** > 0
and for {(z) < 0¥,

C/n

+*Z|’71

(4
Qlz, 1) + 190 [yal?* =

Recalling this one yields

n B 2 2 0. CI n—
= Y ainifly + [BpPlnl* > Slal* + 5 Z Il
ij=1
Which means

—i09(—p)" = im(—p)" <a—a£ + (1—-m) appAZap>

!
> Cnlofw

O

Lemma 1. Let D € X be a C?> Hartogs pseudoconvex in an n-dimensional complex manifold X.
Suppose mg = my(D) > 0 is the order of plurisubharmonicity for {(z) = d(z,dD):

my(D) = sup{0 < e < 1] idd(—°) > on D}.
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Then, V0 <m < mg and ¢ = —mlog; there exists
itddp > i0¢ A 0¢, (26)

with0 <t = mﬂo < 1. Also, there exists Cp > 0, which satisfies

i00(—™) > Cp O™ (ia“ % + w). (27)

72
Proof. By Equation (21), 3 my > 0 satisfies idd(—{™) > 0 on D. Since

i09(—¢™) = —id(mg¢™ ~'9g) = —img(mp — 1)g™ 20 A 9 — imol™ ' 99g

9 o(— 28
= my™ <(1—m0)agé\zag+iaa(€ C>) (28)

Then ‘ _ _
(1—mo) laggﬁ %, iaa%‘ 0o, 29)

Also, by using Equation (18), one obtains

i09(—log{) = io¢ /2\ o + ;90 > w. (30)
4 4
Therefore, from Equations (29) and (30), one obtains
= i0g N 0,
i00(—log {) > my ggz g. (31)
Since d¢p = fma—g and 9¢ = fm%g, then
i0p Ao = m? lagg@ % (32)
Then, from Equations (31) and (32), one obtains
- 0 A O¢p
idd(—log () > my o

Then, Equation (26) is proved.
To prove Equation (27), choose 0 < k¥ < min{1,
one obtains

mp—m
mo

}, and by using Equation (28),

i99(—¢™) = —im(m — 1){™ 207 A 9 — im{™ 199 = m¢™ <(1 —m) &N 9, i99(=¢) )

g2 ¢

=mnl" ((mo —m— Kmo)@ +(1- K)ia(?n(ogrimo) + xidd(— log @))
> Cmm€m<ia§€/2\ gg +CU>.

Then, Equation (27) is proved. [

5. The L? Estimates of 0
As in [21-23,32,33], one proves the following results:
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Theorem 2. Let D €@ X be a C?> Hartogs pseudoconvex in an n-dimensional complex manifold
X. Let B be a positive line bundle over X whose curvature form © satisfies @ > Cw, where
C>0. Lety € L2 ((D,{® E), 1 < s < n, ao-closed form. Then, for 0 < m < my, there exists
p e L2 (D,I"E), which satisfies 0 = ¢ and

n,s—1
" pl2 27
| w0 <c [ |yPeedo. 3)

Proof. The boundary term in Equation (20) vanishes sincem > 0. For u € %, (D,8),s >1,
and since the curvature form © of & satisfies

® >Cp w on D with Cp > 0.
then by using Equation (18), one obtains
<OuP,p>n > Co <P, P >n. (34)

Also, from the assumption of pseudoconvex on D, one obtains
32 2% 12 2
loullg, (p,2) + 9w tllwg,(.z) = Callullng, )

forall u € %,5(D,E). Let u € D (D,E), with u = uy +up, uy € ker(0,Z) and up €

=%

ker(d,E)* = Im (5: ,E) C ker(d,,E). Then, for every (#,s) form u with compact support,
one obtains

|<M,l/2>m|:|<u1+uz,lp>m|
=[<up, P >nl+]<uz 9 >n
= [ <up, ¢ >u| < |willwe, 02 1¢llwa, 0,z

1 =x
< — am u m =) m ol
NG 9 u1llwe,(0,z) [¥llwe, (D,z)

_ k 185 llwe (D,2) 191l g (0,2
Using the Riesz representation theorem, the linear form
5: U—<u,P >p,
is continuous on Rang@* ,E) in the L2 norm and has norm < C, with
1¢llwe,(p,z) = C.

Following Hahn-Banach theorem, 3 is an element that is E valued (n,s — 1) from u on D
(with a smooth boundary) perpendicular to ker(d, E) with [|¢[|yz p=z) < C,

< Op i, P >u=< 1,1 >n,
for all L2u with both ou and 5?: u and also L2. Hence,
W =1,

and
[9llwz,p,z) < ClYllwa,(p,z)-
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Exhaust a general pseudoconvex domain D by a sequence D, of C* pseudoconvex do-

mains:
T
D= Uy:l D,

with Dy, C Dy, 41 C D for each p. Oneach D, Ja ¢y, € 12 (Dy, G, E) satisfies

n,s—1
Iy = ¢ in Dy,

and

2 2 27m
Jo, oo <C [ lyPenao < [yt

Choose a subsequent ¢, of ¢, satistying

Yy — ¢,

in L%:,s—l (D, ™, E) weakly. Moreover,

AWMTW§mMMCAW¥?w§cAWM?M.
O

Theorem 3. Let X, D and E be the same as Theorem 2. Let ¢ € L%,S(D, 8),1<s < n, with
o =0. Thus, 3¢ € L2 __ (D, E) satisfies 0y = 1 and

n,s—1
gl < [lpll-

Proof. Since 1

hlgrad A| Jao

and from Equation (18), one obtains

M), d>C/ 2 gs,
(FQu)ds > C [ fuftds

19ul* + [[pul[*> > Cpllu?,
YV u € %Bys(D,E). This completes the proof of Theorem 3. [J

Following Theorem 3, as in [34,35], one can prove the following:

Theorem 4. Let X, D and E be the same as Theorem 2. Then, [] has a closed range and
ker, s(0,E) = {0}. Foreach 1 < s < n, there exists a bounded linear operator

Nys: L2 (D,E) — L2 (D, E),

which satisfies
(i) Rang(Ny,s,E) C Dom(O,s,8) and O, s Nyps = Nps Oys = I on Dom(O6, E).
(i)Y ¢ € L2 (D,E), p =39 Nystp +3 ONysy.
(iii) For € L2 ((D, &), one obtains
[INwswl| < coll9ll,
[ONn,sp || < collwll,

18" Nus| < coll-

(iv) o B
N(n,m)a =0dN,sonDom(d,E), 1 <s<n-—1,

§¥Nn,s = Nn,571§¥ on Dom (5*,1:"), 2<s<n.
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() Ifp € L2 ((D,E) and 0y = 0, then ¢ = 90 Nyspandu =0 Nysi.

Proof.
L2,(D,E) = Rang(Tys, E) @ ker(Oys, ).

We need to show that

ker(O,s, E) = ker(9,2) Nker(d", Z) = {0}. (35)

To show that B N
ker(d, ) Nker(d",E) = {0}. (36)
We note that if ¢ € L7 (9, E), then by using Theorem 4, 3a ¢ € L2, (O, E) satisfies

=X

¢ = dy. If pisalsoinker(d ,E), one obtains
0=<3d oy, >= |ayp|>

Thus, ¢ = 0 and Equation (35) is proved. We shall show that Rang([J, s, Z) is closed.
Following Theorem 4, V ¢ € Lj((D,E),s > O withop = 0and 3a ¢ € L2, ,(D,Z)
satisfies ¢ = d¢ and

l9l1* < collll®,

where ¢y = ¢o(D) > 0. Thus, Rang(9, E) is closed in every degree. Thus,

1911% < ol ]1” + 1137 ),

=% 5 =%

for € Dom(9,E) NDom (3" ,E) and ¢ | ker(d,Z) N ker(d", E). Thus, from (36),

9l1? < co([[ay]| + 197 p|),
for € Dom(9,E) N Dom(g%,E). Thus, V ¢ € Dom (0,5, E),
)% < co[< I, 0y > + <" 1,3 >]
=co[<d 9P, P >+ <90 P >]
=cy < Dlp,lp >
< col|Tp[fl9]l-

Thus,
9]l < col Bl (37)

i.e., Rang([J, s, &) is closed. Therefore,
L% (D,Z) = Rang((1,E) = 39" Dom(y,5,E) ®9 " 9Dom(y s, Z).

Also, from Equation (37), Oy, is 1-1 and Rang(0y,s, £) is the whole space L2 (D, E). Thus,
there exists a unique inverse

Nus : L2 ((D,E) — L2 (D, E),
which satisfies (ON = N = ] and

N9l < coll9ll-
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Ve L2(D,E). Also, by (ii),

<3 Npsth,d Npsth > + < ONpsth,dNpstp > =< (39" +9 9)Npsth, Nystp >
=< Dn,an,slpr Nn,slp >

< [l Nnstp]
< colly||*
Then
197 Nustp? < collw]1?,
and

9N syl < collg
Now, we show that 5§€an5 = Nn,s?é on Dom(g*, E). Using (ii), U= ?éﬁ*Nn,su. Then,
Nysd 1= Nysd 09 Npstt = Nys(@ 0+39 ) Nystt =9 Nysil.
Similarly, one can prove N, s = Ny, s0 on Dom(d, Z). From (i),
) =99 Nysip+ 99 ONys1p.
Thus, 0y = 0 implies %ﬁéganstp =0and
< 33" ONystp,dNpstp >= |[3" INys9||? = 0.

Since ON,, s € Dom(g*). Thus, p = %%Nn,slp andu=209" Ny is the solution which is

unique and orthogonal to ker(d, &). [

Corollary 1. Let X, D and E be the same as Theorem 2. Then, for all p € L2 (D, Z) that satisfies
oy = 0, the canonical solution u = 9" Ny, s satisfies the estimate

]| < Cll]|>
Proof. From (iv), one obtains d Ny, s ¢ = Niysi1) dy = 0. Since

[INwsll < collgll-

Thus,
[ul? =< 3" Nustp,d" Nyystp >
=< 99" Ny, Nustp >
=< (%* + 5*5) Nys, Nystp >
=<1, Nystp >
< 19l [INnsy
< cllyl

Thus, the proof follows. [
Let O, 0 = 279 on L,ZI,O(D, E). Set
Hp(Q,E) = ker(Dy0,E) = {§ € L (D,Z) 9y = 0}
Since 0y = 0, then %, o(D, E) is a closed subspace of L%,O(D, B). Let

P :L3(D,E) — H#;0(D,E),
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be the Bergman projection operator.
Lemma 2 ([16]). Let X, D and E be the same as Theorem 2. Then,

Npuo : L3 (D, &) — L2 (D, &),
satisfies
(i) Rung(Nnro,E) C Dom(Dnlo, E), Dn,ONn,O = Nnromnl() =] PH,O-
(ii) ¥ € L2 (D, E); one obtains i = 9" 9N, 0 @ Py 0.
(iii) N, 10 = 0Ny, 0 on Dom(9, E), PN Ny1= Nyuod on Dom(d",&).
(i) Nypp = 9 N2, 34 if p € Dom(3, E).
(V¢ elLi(D,E),

INwowll < Cllyll,

IoNwo 9l < VC 9.
Proof. Let ¢y € Dom (0,0, E) N (,0(E))*. Since Rang(d,Z) is closed in every degree,
Rang(g*,E) is closed. Thus, ¢ L ker(d,E) and ¢ € Rang(g*,E). Let ¢y = 0u; then,
P € L%ll(D,E) since u € Dom(O,0,E). Using (v) in Theorem 5, v = 5*Nn,01/1 is the

solution of dv = ¢, which is unique and v L ker(d,&). Thus, v = u. By using Equation
(36), one obtains

[ul® < cllpll* = clloul® = ¢ < Oyou,u >< c[|Dyoul| ul.

Thus, [0, ¢ is bounded below on Dom (0,0, £) N (7, 0(E))* and [, ¢ has a closed range
and (i) and (ii) is proved. Then, from the strong Hodge decomposition,

L2,0(Q,B) = Rang(D0,E) & H5,0(Q, E) = 3" a(Dom(Ty, E)) © H4,0(Q, B),

forall ¢ € Rang(0,, 0, E), thereis a unique N, o¢ L 7, 0(D, E) that satisfies [J,, )Ny, o9 = 9.
Extending N, ¢ to L%,O(D,E) by requiring N, 0P, 0 = 0, N, satisfies (i) and (ii). (iii) is

proved as before. If € Dom(d, E),

Niyott = (I = Pro)Nuott = Nyyo(d 0)Nyou = 9 N2gd .
Thus, (iv) holds on Dom(d, Z). From (iii) in Theorem 5,
INw1 91l < Cllgl
forall p € (O, E),

INyo 9> =< 39" N2,0¢p, N2,y >=< N, 10, N2,9¢p >= |N,,109| | N2 39|

et (39)
< CINy109 [~
On the other hand, one obtains
INw1P|[? =< Ny199p, N1 >=< N2 13,99 >=< 3" Nz 199, >< |[Nyotp|| [ (39)

Combining Equation (38) and Equation (39), one obtains

INno ¢l < Cllll,
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and B e
[ON,,0 ][> =< 9" N0, Nigtp >

=< (I - Pn,O)lPINn,OlP >
[l | Nuol
Cllyl*.

IN A

Then, the proof follows. O

6. Sobolev Estimates
As in Cao-Shaw-Wang [3,35], one prove the following results:

Proposition 5.
= —#1xdx #y,

=0 Pp+mx (ag/\ezel/;)

Proof. In fact, forp € C°_(D,E) and ¢ € C°_,(D, E), one obtains

rs—1 r,s—1

'y A xtp) = "o Axtp + (—1)" fp A9k #y
=Y Ax#p+ 1P Axx0x#y
=19 A st + T A x#(# L %9 x #)y.

Since ' A x#y is of type (n,n — 1), then
(' A x#y) =0,
A"y A xtp) = d('p A xHp).
Then, by Stokes theorem, one obtains
0= [ d(*p A xt# :/Et A x#
[ atynsrp) = [ 30y Axay)

- /Qt5¢ A s+ /Q A (T % 0 x ),

ie.,
/D Y A st = — /D fo A s#(# ko x#)y,
ie.,
ty . _ t o 4
/D alpr#lp_/D YA xH .
Therefore,
PY = —#1x9x #y.
Then, '
0, = —"# %0 x (" #Y

= " ko #yp - "# L x (—mg‘m‘lég A eze#v,b)

=3 p+m# ! x (8@5 A >:e#4)>.
But, _ _ _

anA*#lp: aé,gA%bl[J:bag/\*lp,

(40)
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0112
1991z (p,2)

and _
#(?/\%l/]) :bag/\a:«p:ba;Axtp.
Then, B
afw#Lp :#@A%lp),
ie., _
#1%85/\{6#1P = *(?A*gb)
Then,

oY =0 ¢p+mx <a§/\§élp>,
where g = . O

Theorem 5. Let X, D and & be the same as Theorem 2. Let ¢ € L2 (D, E) N Dom(d, E) N
Dom(3",E),1< s < n. Then,

1359l 2y cm(||a¢ N9 o)+ IV9 B 0z + /D<—h>|¢|2dv), (41)
where Cn, > 0 is an independent constant of .

Proof. As Lemma 1, one obtains

g2 ¢

9L Ndg 29
g2 ¢ )

0oh —mgm<(1 _m)az;/\ég — aag)l

99(—log ™) :m<

Then

{™99(— log {™) = 09h + m? (6@22%) .

=%

Therefore, for ¢ € C} (D, E) NDom(d", E), and by using Equation (18), one obtains

= = = = 9l NI
[EF: »(Dz) T 190 w17 m (D) = IV 9lI7 w0,z T < O, >+ < (901)Y, ¢ > +m’ < < 7 >1P,1P >. (42
Also, by using Equation (40), one obtains
=3 =3 =% %) 0
132 912 = 13" 9l + e < 3" pmx (F ) >a ik (F Ak ),
(43)
= |07 ¢||2+2Re <3 ¢, mx% (agg A *lp) >n —I—m2||a€é A2,
and since for all x > 0,
2Re < 3 1h,m (8@ A {él/)) >n | < E/ (—h)|5*¢|2dv+xm/ (1) |m % (ag Ae:ez,b) 2do, (44)
4 K .JO D 4
and since

< (9m)p,p > > Co (/D(—h)|1/;|2dv+/D(—h)|a§/\9:61/1|2dv>. (45)
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133, o

L

Then, by using Equations (43)—(45), the identity (42) becomes

o 10"V, o) = Ca (199 1 491 2) + 1991, 0 + (-l )

Then the proof follows from the density of Cp (D,E) N Dom(g*,E) in Dom(9, E)N
=3 . = =% 2
Dom (3", E) in the sense of (|||, 1= + 10912 pz) + 107913 pz) - O

Corollary 2. Let X, D and E be the same as Theorem 2. Then,

”aanl/J”Wﬂ‘s(D )<C||l/]”wm tpeker(a ,E), 0<s<n-—1. 6)
15 Mol 0.2 < Cl s, 02y 9 € ker(@,5), 2< 5 < n.

HS H

Proof. Since IN, i € Dom(9, E) N Dom (0 * ,E),0 <s < n— 1. Then, substituting 9N, 51
into Equation (41), for € ker(d", Z), one obtains

;:4

190Nws9[liye. (p,z) + 199Nl fym (p,z) > Cm(HafP/\*aN"rsl/’Hz 2 (0z) T IVONustlfe (p= +/ laanllJ|2dU>

Then, by using the fact that ¢ = (5%5 + ﬁ*) Ny, 00 = 0 and 5%N1[J = Ng%l/J = 0, one
obtains

191, (0 = Ca [ (~)ONYdo.
1

Then, the f1rst equation of Equation (46) is proved by choosing C = . Similarly, for

2<s<mo Ny € Dom(9, E) NDom(3",E). Then, substituting FN N5 into Equation
(41), for i € ker(9, E), one obtains

130" Nl 02+ 199" Nl i2) 2 Ca( 190 758" Nyl 0.2 + V8" Nl o) + [ (~1)I3° Nyl ).

Then, by using the fact that ¢ = (5*5 + ﬁ*) Ny, 970" =0and ON ¢ = Noy = 0, one
obtains

19 1g, 02 2 Ca [ (~=W)I3" Ny o

Then, Equation (48) is proved by choosing C = C—m. O

Theorem 6. Let X, D and & be the same as Theorem 2. Lety € L%,S(D, mE),1<s<mna
d-closed form. Then, for0 <m < mg, 39 = 9, Ny € Ly 1(D, L™, E) satisfies o = o and

27—m 27>—m
[ wPemao <c [ |pgdo. @)

Proof. Let x = pe? = y{ ™, ¢ = —mlog{. Then, x is orthogonal to all d-closed forms of
12

4s-1(D, ¢ E). Equation (33) gives
[ xPerdo < [ faxfeae.
D D

For ¢ = —mlog {, one obtains

Ix=e?ap+efapAyp =70+ 0P AY.
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Then,
[ gm0 = [ xiPrdo < C [ |ax Perde.
D D D

Then,

27—m 3 3 27—m
[ 1wPe a0 <c [ o +dg A pPg a0

1 _
<C 1+f/ iy 4 (14 /8/\2md>,
<c((1+3) [ vl =0+ o) [ [Bg n gl 2o
for every T > 0. Since 3 B
0p A pl* <[ ¢ | 99* < |y,
by choosing T, which satisfies (1 + 7)t> < 1, (i.e, 0 < T < (%0)2 —1),

(141

27-m 27—m
/D\IPIC dvgc[1_<1+r)t2]/D|¢|g do.

It follows that 9y = 1 and

2>—m ~ 2>—m
[ lwPemdo < € [ g2 man.
O

Theorem 7. Let X, D and E be the same as Theorem 2. The Bergman projection P : L%,S (D,B) —
L2 (D, E) Nker(9, &) is bounded from W,’%Z(D, B) to W,T,éz(D, E), where0 <s <n-—1

Proof. From Lemma 2, P =1 — 2 N,,s+15. Then, by using Equation (47), 9" N is bounded

on ker(d, E) with .

18" N[l - < Cllpl| -, (48)
for ¢ € ker(9,E), 1 < s < n — 1. The Bergman projection with respect to the weighted
space L2(D, ", E) is denoted by Py. V ¢, ¢ € L%,O(D, E) with 9y = 0, and one obtains

<P, p>=< ¢, >=<{ "¢, P >p=< Pol @, >n=< "Pul "¢, P >.

This implies that
P =P =PePal ™= (I3 NO)"Pal ™ = {"Paf "—3 N@I"APaL™), (49)
because d P, = 0.V ¢ € L?(D, E),

1 Pa C " pl2m < [P ™ ¢l

n,s

(D,2) < ||§_m1/]|‘2 n (D,E) — HIIJH%m (50)

n,s

With (46), one obtains

" N@Z® A Pal ™) < ClOZ™ A Pul ™92,
< CIg™2Pul ™yl
= ClIPa s " Yl .z (51)
<ClIE™¢lm =) =
CllplI
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With Equations (49) to (51), one obtains
1P ¢l1a < Cll|2s (52)
We note that W*2(D, ) c L?*(D,{™,E). From Equation (52), one obtains
1Paip s < Clll2a < CulYllz 2 (53)
Using Equation (52), one obtains that the Bergman projection satisfies
1P$las2 < Call I3 2 (54)

Then, the Theorem is proved. [

In the following, the Sobolev boundary regularity for N, 9N and 9" N is studied.

Theorem 8. Let X, D and E be the same as Theorem 2. Then, ¥V 0 < m < mg, N is bounded from
W22(D,2) to W2(D,2) and 0 < s < n—1. Also, ¥ ¢ € Wi (D, &), and one obtains the
following estimates:

NGl < 2C20 )
3Nl ) < CIIE ) 55)
13" Nl ez ) < Cl#IR g2 03,

where C depends only on m.

Proof. Since ? = —9 No,thend N Y= a°N Py. Let P! = " N be another projection
operator into ker(d ", Z). Then, P = I — P’. It follows that Ny = aNP’4p. The self-adjoint
property of P and P’ gives

1PYllwz,p,z) + 1P ¢llwe, 0,z) < Call¥llwe, (p,z)-

Thus, by using Equation (54), and for s > 0, one obtains

H§N1PHW,’§"S(D,E) = ||5N7),'1L’||wm pE) < C4||P/¢HW&< pz) < CaGsl[¢llwe, (p,z), (56)

and for s > 2, one obtains

0" N¢llwz,(0,z) = 10" NPYllwe () < CalPYllwz,p,z) < CaCsll¢llwa, (p,z)-

ns

Since for all ¢ € ker (9, E), one obtains
9 Nt = 9, Nutp — Pady, Nutp.

Thus, forall p € Lfl,l (D, E), one obtains

10" N lwe.(pz) = 3" NPYllwa.0z) = 95 NaP — Padp NaPPllwe. (02

(57)
< Gsl|Pyllwz ) < CCsll¢llwa, (p,z)-

._4

Since (ON)* = N9* =9 Nand (5%N )* = No = dN. Use Equations (56) and (57), and by
choosing C = max{C3Cy, C3C5}, the second and third inequality of Equation (55) follows.
Since

N=09 N24+9 9N2=0Na N +9o NoN.
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Equations (56) and (57) give

INYlln/2(p) < 2C2Y12 20

O

Theorem 9. Let X, D and Z be the same as Theorem 2. Then, ¥ 0 < m < mg and N is bounded
from W,T,éz(D,E) to W,T,é2(D,E), where 0 < s < n—1.Also, V¢ € W,T,éz(D,.’E), and one
obtains the following estimates:

||N¢”W,;;“/2(D,E) < C‘WHW,;;H/Z(D,E)'
HéNlP”W’;?/z(D,E) < CH‘/)”WJ,;H/Z(D,E)'

=X
||a NlIJ”Wn_,;"/Z(D,E) S CHIPHWW_,;DQ(D,E)

Proof. With respect to the L2 norm, if S* is the adjoint map of S, one obtains

< Sf,g >L2
SFllnra o = sup —S18Z12
| f“wnéz(D,u) geg Hg”w};‘f(D,E)
= sup S/ot8 2 f,878 > (58)

ger2 I8llw;2205)

< ”S* HW,;;“/Z(D,E) ”gHwﬁléz(D’E)
Then, by using Theorem 9 and Equation (58), the proof follows. [

7. Conclusions

Sobolev estimates for the d and the 9-Neumann operator on pseudoconvex manifolds
are fundamental results in complex analysis. They allow us to understand the behavior
of holomorphic functions and provide important tools for solving the d equation. These
estimates have applications in various areas of mathematics, such as the study of complex
geometry and partial differential equations on pseudoconvex manifolds.
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