Article

Sobolev Estimates for the $\overline{\bar{\gamma}}$ and the $\bar{\partial}$-Neumann Operator on Pseudoconvex Manifolds

1 Department of Basic Sciences, Deanship of the Preparatory Year, Najran University, P.O. Box 1988, Najran 55461, Saudi Arabia; hdadam@nu.edu.sa (H.D.S.A.); kiaahmed@nu.edu.sa (K.I.A.A.)
2 Department of Mathematics and Statistics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; ssahmed@bu.edu.sa
3 Department of Mathematics, Al-Baha University, Baljurashi 65799, Saudi Arabia
4 Department of Mathematics and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
5 Academy of Romanian Scientists, Ilfov Street, No. 3, 050045 Bucharest, Romania
* Correspondence: m.marin@unitbv.ro
+ These authors contributed equally to this work.

Citation: Adam, H.D.S.; Ahmed, K.I.A.; Saber, S.; Marin, M. Sobolev Estimates for the $\bar{\partial}$ and the $\bar{\partial}$-Neumann Operator on Pseudoconvex Manifolds. Mathematics 2023, 11, 4138 https://doi.org/10.3390/ math11194138

Academic Editor: Jin-Ting Zhang
Received: 30 August 2023
Revised: 22 September 2023
Accepted: 27 September 2023
Published: 30 September 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Let D be a relatively compact domain in an n-dimensional Kähler manifold with a C^{2} smooth boundary that satisfies some "Hartogs-pseudoconvexity" condition. Assume that Ξ is a positive holomorphic line bundle over X whose curvature form Θ satisfies $\Theta \geq C \omega$, where $C>0$. Then, the $\bar{\partial}$-Neumann operator N and the Bergman projection \mathcal{P} are exactly regular in the Sobolev space $W^{\mathrm{m}}(D, \Xi)$ for some m , as well as the operators $\bar{\partial} N, \bar{\partial}^{*} N$.

Keywords: $\bar{\jmath} ; \bar{\partial}$-Neumann operator; Kähler manifold; q-convex domain

MSC: 32W05

1. Introduction

Sobolev estimates are crucial tools in the study of complex analysis on pseudoconvex manifolds. In this paper, we will focus on the Sobolev estimates for the $\bar{\partial}$ operator and the $\bar{\partial}$-Neumann operator on such manifolds. Consider a Hartogs pseudoconvex domain D with a C^{2} boundary in a Kähler manifold X of complex dimension n, and if Ξ is a positive line bundle over X whose curvature form satisfies $\Theta \geq C \omega$ with constant $C>0$, then the operators $N, \bar{\partial} N, \bar{\partial}^{*} N$ and the Bergman projection \mathcal{P} are regular in the Sobolev space $W^{\mathrm{m}}(D, \Xi)$ for some positive m. This result generalizes the well-known results of Berndtsson-Charpentier [1], Boas-Straube [2], Cao-Shaw-Wang [3], Harrington [4] and Saber [5] and others in the case of the Hartogs pseudoconvex domain in a Kähler manifold for forms with values in a holomorphic line bundle. Indeed, in [1], Berndtsson-Charpentier (see also [6]) obtained the Sobolev regularity for \mathcal{P} for a pseudoconvex domain Ω. In [2], Boas-Straube proved that the Bergman projection B maps the Sobolev space $W^{\mathrm{m}}(\Omega)$ to itself for all $\mathrm{m}>0$ on a smooth pseudoconvex domain in \mathbb{C}^{n} that admits a defining function that is plurisubharmonic on the boundary $b \Omega$. In [3], Cao-Shaw-Wang obtained the Sobolev regularity of the operators $N, \bar{\partial} N, \bar{\partial}^{*} N$ and \mathcal{P} on a local Stein domain subset of the complex projective space. In [4], Harrington proved this result on a bounded pseudoconvex domain in \mathbb{C}^{n} with a Lipschitz boundary. In [5], Saber proved that the operators $N, \bar{\partial}^{*} N$ and \mathcal{P} are regular in $W_{r, s}^{m}(D)$ for some m on a smooth weakly q-convex domain in \mathbb{C}^{n}. Similar results can be found in [7-16].

This paper is organized into five sections. The introduction presents an introduction to the subject and contains the history and development of the problem. Section 2 recalls the basic definitions and fundamental results. In Section 3, the basic Bochner-Kodaira-Morrey-Kohn identity is proved on the Kähler manifold. In Section 4, it is proved that
the C^{2} smoothly bounded Hartogs pseudoconvex domains in the Kähler manifold admit bounded plurisubharmonic exhaustion functions. Section 5 deals with the L^{2} estimates of the $\bar{\partial}$ and $\bar{\partial}$-Neumann operator on the C^{2} smoothly bounded Hartogs pseudoconvex domains in the Kähler manifold. Section 6 presents the main results.

2. Preliminaries

Assuming that X is a complex manifold of the complex dimension $n, n \geq 2, T(X)$ (resp. $T_{x}(X)$) is the holomorphic tangent bundle of X (resp. at $x \in X$) and $\pi: \Xi \longrightarrow X$ is a holomorphic line bundle over X. A system of local complex analytic (holomorphic) coordinates on X is a collection $\left\{\gamma_{j}\right\}_{j \in J}$ (for some index set J) of local complex coordinates $\gamma_{j}: \mathscr{U}_{j} \longrightarrow \mathbb{C}^{n}$ such that:
(i) $X=\cup_{j \in J} \mathscr{U}_{j}$, i.e., $\left\{\mathscr{U}_{j}\right\}_{j \in J}$ is an open covering of X by charts with coordinate mappings $w_{j}: \mathscr{U}_{j} \longrightarrow \mathbb{C}^{n}$ satisfies $\pi^{-1}\left(\mathscr{U}_{j}\right)=\mathscr{U}_{j} \times \mathbb{C}$.
(ii) $\left\{f_{i j}\right\}$ is a system of transition functions for Ξ; that is, the maps $f_{j k}=\gamma_{j} \circ \gamma_{k}^{-1}$: $\gamma_{k}(z) \longrightarrow \gamma_{j}(z)$ are biholomorphic for each pair of indices (j, k) with $\mathscr{U}_{j} \cap \mathscr{U}_{k}$ being nonempty (i.e., $f_{j k}$ (resp. $\left.f_{j k}^{-1}=\gamma_{k} \circ \gamma_{j}^{-1}\right)$ are holomorphic maps of $\gamma_{k}\left(\mathscr{U}_{j} \cap U_{k}\right)$ onto $\gamma_{j}\left(\mathscr{U}_{j} \cap \mathscr{U}_{k}\right)\left(\right.$ resp. $\gamma_{j}\left(\mathscr{U}_{j} \cap \mathscr{U}_{k}\right)$ onto $\left.\gamma_{k}\left(\mathscr{U}_{j} \cap \mathscr{U}_{k}\right)\right)$).

Assume that $\left(\mathrm{w}_{j}^{1}, \mathrm{w}_{j}^{2}, \cdots, \mathrm{w}_{j}^{n}\right)$ is the local coordinates on \mathscr{U}_{j}. A system of functions $\hbar=\left\{\hbar_{j}\right\}, j \in J$ is a Hermitian metric along the fibers of Ξ with $\hbar_{j}=\left|f_{i j}\right|^{2} \hbar_{i}$ in $\mathscr{U}_{i} \cap \mathscr{U}_{j}$, and \hbar_{j} is a C^{∞} positive function in \mathscr{U}_{j}. The $(1,0)$ form of the connection associated with the metric \hbar is given as $\theta=\left\{\theta_{j}\right\}, \theta_{j}=\hbar_{j}^{-1} \partial \hbar_{j}$. $\Theta=\left\{\Theta_{j}\right\}$ is the curvature form associated with the connection θ and is given by

$$
\Theta_{j}=\bar{\partial} \theta_{j}=\partial \bar{\partial} \log \hbar_{j}=\sum_{\alpha, \beta=1}^{n} \Theta_{j \alpha \bar{\beta}} d \mathrm{w}_{j}^{\alpha} \wedge d \overline{\mathrm{w}}_{j}^{\beta} .
$$

Definition 1. Ξ is positive at $x \in \mathscr{U}_{j}$ if the Hermitian form

$$
\sum \Theta_{j \alpha \bar{\beta}} \mu^{\alpha} \bar{\mu}^{\beta}
$$

is positive definite on $T_{x}(X), \forall \mu \in \Xi_{x} \backslash\{0\}$.
Along the fibers of $\Xi, \hbar_{0}=\left(\hbar_{j}^{-1}\right), j \in J$ is a Hermitian metric for which Ξ is positive; i.e., $\partial \bar{\partial} \log \hbar_{j}>0$. Then, \hbar_{0} defines a Kähler metric \mathcal{G} on X,

$$
\mathcal{G}=\sum_{\alpha, \beta=1}^{n} \mathrm{~g}_{j \alpha \bar{\beta}} d \mathrm{w}_{j}^{\alpha} d \overline{\mathrm{w}}_{j}^{\beta}, \quad \mathrm{g}_{j \alpha \bar{\beta}}=\partial^{2} \log \hbar_{j} / \partial \mathrm{w}_{j}^{\alpha} \partial \overline{\mathrm{w}}_{j}^{\beta} .
$$

Let $\mathcal{C}_{r, s}^{\infty}(X, \Xi)$ (resp. $\mathcal{D}_{r, s}^{\infty}(X, \Xi)$) be the space of $C^{\infty}(r, s)$ differential forms (resp. with compact support) on X with values in Ξ. A form $\psi=\left(\psi_{j}\right) \in \mathcal{C}_{r, s}^{\infty}(X, \Xi)$ is expressed on \mathscr{U}_{j} as follows:

$$
\psi_{j}(z)=\sum_{A_{r}, B_{s}} \psi_{j A_{r} B_{s}}(z) d \mathrm{w}_{j}^{A_{r}} \wedge d \overline{\mathrm{w}}_{j}^{B_{s}} \otimes s_{j}
$$

where $A_{r}=\left(a_{1}, \ldots, a_{r}\right)$ and $B_{s}=\left(b_{1}, \ldots, b_{s}\right)$ are multi-indices and s_{j} is a section of $\Xi \mid \mathscr{U}_{j}$. Define the inner product

$$
(\psi, \psi)=\hbar_{j} \sum_{A_{r}, B_{s}} \psi_{j A_{r} \bar{B}_{s}} \overline{\psi_{j}^{\bar{A}_{r} B_{s}}}
$$

where $\psi_{j}^{\bar{A}_{r} B_{s}}=\sum_{C_{r}, D_{s}} \mathrm{~g}_{j}^{c_{1} \bar{a}_{1}} \cdots \mathrm{~g}_{j}^{c_{r} \bar{a}_{r}} \mathrm{~g}_{j}^{b_{1} \bar{d}_{1}} \cdots \mathrm{~g}_{j}^{b_{s} \bar{d}_{s}} \psi_{j c_{1} \cdots c_{r} \bar{d}_{1} \cdots \bar{d}_{s}}$. Let

$$
\mathcal{C}_{r, s}^{\infty}(\bar{\Omega}, \Xi)=\left\{\left.\psi\right|_{\bar{\Omega}} ; \psi \in \mathcal{C}_{r, s}^{\infty}(X, \Xi)\right\} .
$$

Let $*: \mathcal{C}_{r, s}^{\infty}(X, \Xi) \longrightarrow \mathcal{C}_{(n-s, n-r)}^{\infty}(X, \Xi)$ be the Hodge star operator, which is a real operator and satisfies

$$
\because * \psi=(-1)^{r+s} \psi,
$$

For the proof, see Morrow and Kodaira [17]. Set the volume element with respect to \mathcal{G} as $d v$. The inner product $\langle\psi, \psi\rangle$ and the norm $\|\psi\|$ are defined by

$$
<\psi, \psi>=\int_{\Omega}(\psi, \psi) d v=\int_{\Omega}{ }^{t} \psi \wedge * \bar{\hbar} \bar{\psi} \text {, and }\|\psi\|^{2}=<\psi, \psi>.
$$

The formal adjoint operator ψ of $\bar{\partial}: \mathcal{C}_{r, s-1}^{\infty}(\Omega, \Xi) \longrightarrow \mathcal{C}_{r, s}^{\infty}(\Omega, \Xi)$ is defined by

$$
<\psi \psi, \psi>=<\psi, \bar{\partial} \psi>
$$

$\psi \in \mathcal{C}_{r, s}^{\infty}(\Omega, \Xi)$ and $\psi \in \mathcal{D}_{r, s-1}^{\infty}(\Omega, \Xi)$. Let $\#: \mathcal{C}_{r, s}^{\infty}(X, \Xi) \longrightarrow \mathcal{C}_{s, r}^{\infty}\left(X, E^{*}\right)$ be defined locally as $(\# \psi)_{j}=\overline{\hbar_{j} \psi_{j}}$; the inner product $\langle\psi, \psi\rangle$ is given by

$$
<\psi, \psi>=\int_{\Omega}{ }^{t} \psi \wedge * \# \psi
$$

From Stokes' theorem, $\psi \in \mathcal{C}_{r, s}^{\infty}(\bar{\Omega}, \Xi), \psi \in \mathcal{C}_{r, s-1}^{\infty}(\bar{\Omega}, \Xi)$, one obtains

$$
<\bar{\partial} \psi, \psi>=<\psi, \bar{\partial}^{*} \psi>+\int_{\partial \Omega}{ }^{t} \psi \wedge * \# \psi .
$$

Put

$$
\mathscr{B}_{r, S}(\bar{\Omega}, \Xi)=\left\{\psi \in \mathcal{C}_{r, s}^{\infty}(\bar{\Omega}, \Xi) ;\left.* \# \psi\right|_{\partial \Omega}=0\right\} .
$$

As a result,

$$
<\bar{\partial} \psi, \psi>=<\psi, \bar{\partial}^{*} \psi>
$$

for $\psi \in \mathscr{B}_{r, S}(\bar{\Omega}, \Xi)$.
$L_{r, s}^{2}(\Omega, \Xi)$ is the Hilbert space of the measurable E-valued (r, s) forms ψ, which are square integrable in the sense that $\|\psi\|^{2}<\infty$. Let $\bar{\partial}: L_{r, S}^{2}(\Omega, \Xi) \longrightarrow L_{r, s+1}^{2}(\Omega, \Xi)$ and $\bar{\partial}^{*}: L_{r, s+1}^{2}(\Omega, \Xi) \longrightarrow L_{r, s}^{2}(\Omega, \Xi)$. In $L_{r, s}^{2}(\Omega, \Xi)$, the spaces $\operatorname{ker}(\bar{\partial}, \Xi), \operatorname{Dom}_{r, s}(\bar{\partial}, \Xi)$ and $\operatorname{Rang}(\bar{\partial}, \Xi)$ are the kernel, the domain and the range of $\bar{\partial}$, respectively. A Bergman projection operator $\mathcal{P}: L_{r, s}^{2}(D, \Xi) \longrightarrow L_{r, s}^{2}(D, \Xi) \cap \operatorname{ker}_{r, s}(E)$. Let $\square=\square_{r, s}=\bar{\partial} \bar{\partial}^{*}+\bar{\partial}^{*} \bar{\partial}$ be the unbounded Laplace-Beltrami operator from $L_{r, s}^{2}(\Omega, \Xi)$ to $L_{r, s}^{2}(\Omega, \Xi)$ with $\operatorname{Dom}\left(\square_{r, s}, \Xi\right)=$ $\left\{\psi \in L_{r, s}^{2}(\Omega, E) \mid \psi \in \operatorname{Dom}(\bar{\partial}, \Xi) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right) ; \bar{\partial} \psi \in \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)\right.$ and $\left.\bar{\partial}^{*} \psi \in \operatorname{Dom}(\bar{\partial}, \Xi)\right\}$. Let $N_{r, s}$ be the $\bar{\partial}$-Neumann operator on (r, s) forms, solving $N_{r, s} \square_{r, s} \psi=\psi$ for any (r, s) form ψ in $L_{r, s}^{2}(\Omega, \Xi)$. Denote by \mathcal{P} the Bergman operator, mapping a (r, s) form in $L_{r, s}^{2}(\Omega, \Xi)$ to its orthogonal projection in the closed subspace of $\bar{\partial}$-closed forms.

Let

$$
\mathscr{H}_{r, s}(E)=\operatorname{ker}\left(\square_{r, s}, \Xi\right)=\left\{\psi \in \operatorname{Dom}(\bar{\partial}, \Xi) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right) ; \bar{\partial} \psi=0 \text { and } \bar{\partial}^{*} \psi=0\right\} .
$$

Let $W_{r, S}^{\mathrm{m}}(\Omega, \Xi)$ be the Sobolev space with $-\frac{1}{2}<\mathrm{m}<\frac{1}{2}$ and let $\left\|\|_{W_{r, S}^{\mathrm{m}}(\Omega, \Xi)}\right.$ denote its norm. $\forall \psi \in \operatorname{Dom}(\bar{\partial}, \Xi) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$, one obtains $\psi \in W_{r, s}^{1}(\Omega$, loc $)$. Thus, ψ is an elliptic and $\psi \in W_{r, s}^{m}(\Omega, \Xi)$ for $-\frac{1}{2}<m<\frac{1}{2}$ if and only if

$$
\|\psi\|_{W_{T, s}^{\mathrm{m}}(\Omega, \Xi)}^{2}=\int_{\Omega} \zeta^{-2 \mathrm{~m}}|\psi|^{2}<\infty
$$

For the proof, see Theorems 4.1 and 4.2 in Jersion and Kenig [18], Lemma 2 in Charpentier [19] and also Theorem C. 4 in the Appendix in Chen and Shaw [20].

Proposition 1 ([21-23]). (i) If $\psi \in \operatorname{Dom}(\psi, \Xi) \subset L_{r, s}^{2}(\Omega, \Xi)$ satisfies supp. $\psi \subseteq \bar{\Omega}$ and supp. $\psi \psi \subseteq \bar{\Omega}$, then $\left.\psi\right|_{\Omega} \in \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right) \subset L_{r, S}^{2}(\Omega, \Xi)$; i.e., $\left.\psi \psi\right|_{\Omega}=\left.\bar{\partial}^{*} \psi\right|_{\Omega}$ in $L_{r, S-1}^{2}(\Omega, \Xi)$. (ii) $\mathcal{C}_{r, s}^{\infty}(\bar{\Omega}, \Xi)$ is dense in $\operatorname{Dom}(\bar{\partial}, \Xi)$ in the sense of $\left(\|\psi\|^{2}+\|\bar{\partial} \psi\|^{2}\right)^{1 / 2}$. (iii) $\mathscr{B}_{r, s}(\bar{\Omega}, \Xi)$ is dense in $\operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)\left(\right.$ resp. $\left.\operatorname{Dom}(\bar{\partial}, \Xi) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)\right)$ in the sense of the norm $\left(\|\psi\|^{2}+\|\right.$ $\left.\bar{\partial}^{*} \psi \|^{2}\right)^{1 / 2}\left(\operatorname{resp} .\left(\|\psi\|^{2}+\|\bar{\partial} \psi\|^{2}+\left\|\bar{\partial}^{*} \psi\right\|^{2}\right)^{1 / 2}\right)$.
(iv) $\bar{\partial}^{*}=\psi$ on $\mathscr{B}_{r, s}(\bar{\Omega}, \Xi)$.

3. The Kähler Identity

As in Takeuchi A. [24-26], one can prove the following Kähler identity: Fix the following notation: C^{∞} sections of $\mathcal{A}(T(\mathbb{X})), \mathcal{A}\left(T^{*}(\mathbb{X})\right), \mathcal{A}(\bar{T}(\mathbb{X}))$ and $\mathcal{A}\left(\bar{T}^{*}(\mathbb{X})\right)$ written as $\sum_{\alpha=1}^{n} \zeta^{\alpha} \frac{\partial}{\partial z^{\alpha}}, \sum_{\alpha=1}^{n} \psi_{\alpha} d z^{\alpha}, \sum_{\alpha=1}^{n} \eta^{\bar{\alpha}} \frac{\partial}{\partial z^{\bar{\alpha}}}$ and $\sum_{\alpha=1}^{n} \psi_{\bar{\alpha}} d z^{\bar{\alpha}}$, respectively. Use the notation $\partial_{\beta}=$ $\frac{\partial}{\partial z^{\beta}}, \bar{\partial}_{\alpha}=\frac{\partial}{\partial \bar{z}^{\alpha}}$. For $\eta=\sum_{\alpha=1}^{n} \eta^{\bar{\alpha}} \frac{\partial}{\partial z^{\bar{\alpha}}} \in \mathcal{A}(\bar{T}(\mathbb{X})), \psi=\sum_{\alpha=1}^{n} \psi_{\bar{\alpha}} d z^{\bar{\alpha}} \in \mathcal{A}\left(\bar{T}^{*}(\mathbb{X})\right)$, define

$$
\nabla_{\beta} \eta^{\bar{\alpha}}=\partial_{\beta} \eta^{\bar{\alpha}} \text { and } \nabla_{\beta} \psi_{\bar{\alpha}}=\partial_{\beta} \psi_{\bar{\alpha}}
$$

A connection ω for $T(X)$ is defined as

$$
\omega=\left(\omega_{\alpha}^{\beta}\right), \omega_{\alpha}^{\beta}=\sum_{\gamma=1}^{n} \Gamma_{\gamma \alpha}^{\beta} d z^{\gamma}, \text { with } \Gamma_{\gamma \alpha}^{\beta}=\sum_{\sigma=1}^{n} g^{\bar{\sigma} \beta} \partial_{\gamma} \mathrm{g}_{\alpha \bar{\sigma},}
$$

and its Riemann curvature tensor

$$
\begin{equation*}
\mathcal{R}_{\bar{\alpha} \beta \bar{v} \tau}=\sum_{\mu=1}^{n} \mathrm{~g}_{\mu \bar{\alpha}} \mathcal{R}_{\beta \bar{v} \tau}^{\mu}, \quad \mathcal{R}_{\beta \bar{v} \tau}^{\alpha}=\partial_{\bar{v}} \Gamma_{\tau \beta}^{\alpha} . \tag{1}
\end{equation*}
$$

One obtains

$$
\begin{equation*}
\Gamma_{\bar{\beta} \bar{\gamma}}^{\bar{\alpha}}=\overline{\Gamma_{\beta \gamma^{\prime}}^{\alpha}} \quad \mathcal{R}_{\bar{\beta} v \bar{\tau}}^{\bar{\alpha}}=\overline{\mathcal{R}_{\beta \bar{v} \tau}^{\alpha}}, \text { and } \mathcal{R}_{\alpha \bar{\beta} v \bar{\tau}}=\overline{\mathcal{R}_{\bar{\alpha} \beta \bar{v} \tau}} . \tag{2}
\end{equation*}
$$

The Ricci curvature is defined by

$$
\begin{equation*}
\mathcal{R}_{\bar{v} \tau}=\sum_{\beta=1}^{n} \mathcal{R}_{\beta \bar{v} \tau}^{\beta} . \tag{3}
\end{equation*}
$$

Following Morrow and Kodaira [13], if \mathcal{G} is a Kähler metric,

$$
\begin{align*}
\Gamma_{\beta \gamma}^{\alpha} & =\Gamma_{\gamma \beta}^{\alpha} \tag{4}\\
\mathcal{R}_{\bar{\alpha} \beta \bar{v} \tau}=\mathcal{R}_{\bar{\alpha} \tau \bar{v} \beta} & =\mathcal{R}_{\bar{v} \beta \bar{\alpha} \tau}=\mathcal{R}_{\bar{v} \tau \bar{\alpha} \beta}
\end{align*}
$$

where

$$
\sum_{\tau=1}^{n} \Gamma_{\tau \alpha}^{\tau}=\partial_{\alpha} \log g \text {, and } \mathcal{R}_{\bar{v} \tau}=\partial_{\bar{v}} \partial_{\tau} \log g, \text { where } g=\operatorname{det}\left(\mathrm{g}_{\alpha \bar{\beta}}\right)
$$

For $\zeta=\sum_{\alpha=1}^{n} \zeta^{\alpha} \frac{\partial}{\partial z^{\alpha}} \in \mathcal{A}(T(\mathbb{X})), \psi=\sum_{\alpha=1}^{n} \psi_{\alpha} d z^{\alpha} \in \mathcal{A}\left(\bar{T}^{*}(\mathbb{X})\right)$, one defines

$$
\begin{align*}
& \nabla_{\beta} \zeta^{\alpha}=\partial_{\beta} \zeta^{\alpha}+\sum_{\gamma=1}^{n} \Gamma_{\beta \gamma}^{\alpha} \zeta^{\gamma}, \\
& \nabla_{\beta} \psi_{\alpha}=\partial_{\beta} \psi_{\alpha}-\sum_{\gamma=1}^{n} \Gamma_{\beta \alpha}^{\gamma} \psi_{\gamma}, \\
& \nabla_{\bar{\beta}} \zeta^{\alpha}=\partial_{\bar{\beta}} \zeta^{\alpha} \\
& \nabla_{\bar{\beta}} \eta^{\bar{\alpha}}=\partial_{\bar{\beta}} \eta^{\bar{\alpha}}+\sum_{\gamma=1}^{n} \overline{\Gamma_{\beta \gamma}^{\alpha}} \eta^{\bar{\gamma}} \tag{5}\\
& \nabla_{\bar{\beta}} \psi_{\alpha}=\partial_{\bar{\beta}} \psi_{\alpha} \\
& \nabla_{\bar{\beta}} \psi_{\bar{\alpha}}=\partial_{\bar{\beta}} \psi_{\bar{\alpha}}-\sum_{\gamma=1}^{n} \overline{\Gamma_{\beta \alpha}^{\gamma}} \psi_{\bar{\gamma}} .
\end{align*}
$$

For $\psi \in \mathcal{C}_{r, s}^{\infty}(X, \Xi)$, one defines

$$
\begin{align*}
\nabla_{\alpha} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}} & =\partial_{\alpha} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}}-\sum_{j=1}^{r} \sum_{\tau} \Gamma_{\alpha \alpha_{j}}^{\tau} \psi_{\alpha_{1} \ldots \alpha_{j-1} \tau \alpha_{j+1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}^{\prime}} \\
\nabla_{\alpha}^{(\hbar)} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}} & =\nabla_{\alpha} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}}-\partial_{\alpha} \log \hbar \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}^{\prime}} \\
\nabla_{\bar{\beta}} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}} & =\partial_{\bar{\beta}} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{s}}-\sum_{j=1}^{s} \sum_{\tau} \overline{\Gamma_{\beta \beta_{j}}^{\tau}} \psi_{\alpha_{1} \ldots \alpha_{r} \bar{\beta}_{1} \ldots \bar{\beta}_{j-1} \bar{\tau} \bar{\beta}_{j+1} \ldots \bar{\beta}_{s}} \tag{6}\\
\nabla_{\bar{\beta}} \psi^{\bar{\beta}_{1} \ldots \bar{\beta}_{s} \alpha_{1} \ldots \alpha_{r}} & =\partial_{\bar{\beta}} \psi^{\bar{\beta}_{1} \ldots \bar{\beta}_{s} \alpha_{1} \ldots \alpha_{r}}+\sum_{j=1}^{s} \sum_{\tau} \overline{\Gamma_{\beta \tau}^{\beta_{j}}} \psi^{\bar{\beta}_{1} \ldots \bar{\beta}_{j-1} \bar{\tau} \bar{\beta}_{j+1} \ldots \bar{\beta}_{s} \alpha_{1} \ldots \alpha_{r}},
\end{align*}
$$

For the proof, see Choquet-Bruhat [27], p. 235.
Following Morrow and Kodaira [17], the operators $\bar{\partial}, \psi$ are defined as

$$
\begin{align*}
\bar{\partial} \psi & =\sum_{A_{r}, B_{s}} \sum_{\mu} \nabla_{\bar{\mu}} \psi_{A_{r} \bar{B}_{s}} d z^{\bar{\mu}^{\prime}} \wedge d z^{\alpha_{1}} \wedge \ldots \wedge d z^{\alpha_{r}} \wedge d z^{\bar{\beta}_{1}} \wedge \ldots \wedge d z^{\bar{\beta}_{s}} \\
\left(\bar{\partial}^{*} \psi\right)_{A_{r} \bar{B}_{s-1}} & =(-1)^{r-1} \sum_{\alpha, \beta=1}^{n} g^{\bar{\beta} \alpha} \nabla_{\alpha}^{(\hbar)} \psi_{\bar{\beta} A_{r} \bar{B}_{s-1}} \tag{7}
\end{align*}
$$

for $\psi \in \mathcal{C}_{r, S}^{\infty}(X, \Xi)$.
For a C^{∞} function λ and for a $\psi \in \mathcal{C}_{r, S}^{\infty}(X, \Xi)$ at any point of X, one defines

$$
\begin{aligned}
\operatorname{grad} \lambda & =\left(\frac{\partial \lambda}{\partial z^{1}}, \ldots, \frac{\partial \lambda}{\partial z^{n}}, \frac{\partial \lambda}{\partial z^{1}}, \ldots, \overline{\partial \lambda}\right. \\
|\operatorname{grad} \lambda|^{2} & =(\operatorname{grad} \lambda) \overline{(\operatorname{grad} \lambda)}=\sum_{\alpha=1}^{n}\left|\frac{\partial \lambda}{\partial z^{\alpha}}\right|^{2}+\sum_{\beta=1}^{n}\left|\overline{\frac{\partial \lambda}{\partial z^{\beta}}}\right|^{2}, \\
(\mathscr{L}(\lambda) \psi, \psi) & =\sum_{B_{s-1}} \sum_{\beta, \gamma=1}^{n} \frac{\partial^{2} \lambda}{\partial z^{\beta} \partial z^{\gamma}} \overline{\bar{\gamma}} \psi_{\overline{B_{s-1}}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} .
\end{aligned}
$$

Since $d \lambda \neq 0$ on U, then $\operatorname{grad} \lambda \neq 0$ on U also. Also, set

$$
(\bar{\nabla}, \bar{\nabla})=\hbar^{-1} \sum_{C_{s}} \sum_{\mu} \nabla_{\bar{\mu}} \psi_{\bar{C}_{s}} \overline{\nabla^{\mu} \psi^{C_{s}}}
$$

For $\psi \in \mathcal{C}_{0, s}^{\infty}(X, \Xi), s \geq 1$, we construct from ψ the two tangent vector fields ξ and η to X as follows:

$$
\begin{aligned}
& \xi=\left\{\xi^{\beta}=\sum_{B_{s-1}} \sum_{\gamma=1}^{n} \hbar^{-1}\left(\nabla \bar{\gamma} \psi_{\bar{B}_{s-1}}^{\beta}\right) \overline{\psi^{\gamma B_{s-1}}}, \quad \xi^{\bar{\beta}}=0\right\}, \\
& \eta=\left\{\eta^{\gamma}=0, \quad \eta^{\bar{\gamma}}=\sum_{B_{s-1}} \sum_{\beta=1}^{n} \hbar^{-1}\left(\nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta}\right) \overline{\psi^{\gamma B_{s-1}}}\right\},
\end{aligned}
$$

where $\beta, \gamma=1,2, \ldots, n$.

Proposition 2 ([24]).

$$
\nabla_{\mu} \mathrm{g}_{\alpha \bar{\beta}}=0, \quad \nabla_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}}=0, \quad \text { and } \nabla_{\bar{\mu}} g^{\bar{\beta} \alpha}=0
$$

Proof. Since $g_{\alpha \bar{\beta}}$ is a C^{∞} section of $T^{*}(X) \otimes \bar{T}^{*}(X)$, then Equation (3) gives

$$
\begin{aligned}
\nabla_{\mu} \mathrm{g}_{\alpha \bar{\beta}} & =\partial_{\mu} \mathrm{g}_{\alpha \bar{\beta}}-\sum_{\tau} \Gamma_{\mu \alpha}^{\tau} \mathrm{g}_{\tau \bar{\beta}} \\
& =\partial_{\mu} \mathrm{g}_{\alpha \bar{\beta}}-\sum_{\gamma, \tau} g^{\bar{\gamma} \tau}\left(\partial_{\mu} \mathrm{g}_{\alpha \bar{\gamma}}\right) \mathrm{g}_{\tau \bar{\beta}} \\
& =\partial_{\mu} \mathrm{g}_{\alpha \bar{\beta}}-\sum_{\gamma} \zeta_{\beta}^{\gamma}\left(\partial_{\mu} \mathrm{g}_{\alpha \bar{\gamma}}\right) \\
& =\partial_{\mu} \mathrm{g}_{\alpha \bar{\beta}}-\partial_{\mu} \mathrm{g}_{\alpha \bar{\beta}} \\
& =0 . \\
\nabla_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}} & =\partial_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}}-\sum_{\tau} \overline{\Gamma_{\mu \bar{\beta}}^{\tau}} \mathrm{g}_{\alpha \bar{\tau}} \\
& =\partial_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}}-\sum_{\gamma, \tau} g^{\bar{\tau} \gamma}\left(\partial_{\bar{\mu}} \mathrm{g}_{\gamma \bar{\beta}}\right) \mathrm{g}_{\alpha \bar{\tau}} \\
& =\partial_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}}-\sum_{\gamma} \zeta_{\alpha}^{\gamma}\left(\partial_{\bar{\mu}} \mathrm{g}_{\gamma \bar{\beta}}\right) \\
& =\partial_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}}-\partial_{\bar{\mu}} \mathrm{g}_{\alpha \bar{\beta}} \\
& =0 . \\
\nabla_{\bar{\mu}} g^{\bar{\beta} \alpha} & =\partial_{\bar{\mu}} g^{\bar{\beta} \alpha}+\sum_{\tau} \overline{\Gamma_{\mu \tau}^{\beta}} g^{\bar{\tau} \alpha} \\
& =\partial_{\bar{\mu}} g^{\bar{\beta} \alpha}+\sum_{\gamma, \tau} g^{\bar{\beta} \gamma}\left(\partial_{\bar{\mu}} \mathrm{g}_{\gamma \bar{\tau}}\right) g^{\bar{\tau} \alpha} \\
& =\partial_{\bar{\mu}} g^{\bar{\beta} \alpha}-\sum_{\tau, \gamma} \mathrm{g}_{\bar{\prime} \bar{\tau}}\left(\partial_{\bar{\mu}} \overline{g^{\bar{\beta} \gamma}}\right) g^{\bar{\tau} \alpha} \\
& =\partial_{\bar{\mu}} g^{\bar{\beta} \alpha}-\sum_{\gamma} \zeta_{\gamma}^{\alpha}\left(\partial_{\bar{\mu}} g^{\bar{\beta} \gamma}\right) \\
& =\partial_{\bar{\mu}} g^{\bar{\beta} \alpha}-\partial_{\bar{\mu}} g^{\bar{\beta} \alpha} \\
& =0 .
\end{aligned}
$$

Proposition 3 ([24]).

$$
\operatorname{div} \xi-\operatorname{div} \eta=\sum_{\beta=1}^{n} \nabla_{\beta} \xi^{\beta}-\sum_{\gamma=1}^{n} \nabla_{\bar{\gamma}} \eta^{\bar{\gamma}}
$$

Proof. The divergence of the vector ξ,

$$
\operatorname{div} \xi=\sum_{\beta=1}^{n} \nabla_{\beta} \xi^{\beta}-\sum_{\beta, \gamma=1}^{n}\left(\Gamma_{\beta \gamma}^{\beta}-\Gamma_{\gamma \beta}^{\beta}\right) \xi^{\gamma}
$$

Since the metric \mathcal{G} is Kähler, then from Equation (4), $\left(\Gamma_{\beta \gamma}^{\beta}-\Gamma_{\gamma \beta}^{\beta}\right)=0$. Therefore,

$$
\operatorname{div} \xi=\sum_{\beta=1}^{n} \nabla_{\beta} \xi^{\beta}, \quad \operatorname{div} \eta=\sum_{\gamma=1}^{n} \nabla_{\bar{\gamma}} \eta^{\bar{\gamma}}
$$

Then, the proof is complete.
Proposition 4 ([24]). For a C^{∞} function λ and for $\psi \in \mathscr{B}_{0, s}(\bar{\Omega}, \Xi), s \geq 1$,

$$
\|\bar{\partial} \psi\|^{2}+\left\|\bar{\partial}^{*} \psi\right\|^{2}=\|\bar{\nabla} \psi\|^{2}+(\hbar|\operatorname{grad} \lambda|)^{-1} \int_{\partial \Omega}(\mathscr{L}(\lambda) \psi, \psi) d s+<(\Theta-\mathcal{R}) \psi, \psi>
$$ where $\Theta=\left(\Theta_{\alpha \bar{\beta}}\right)$ and $\mathcal{R}=\left(\mathcal{R}_{\alpha \bar{\beta}}\right)$.

Proof. Since

$$
\nabla_{\beta} \xi^{\beta}=\nabla_{\beta}\left(\sum_{B_{s-1}} \sum_{\gamma=1}^{n} \hbar^{-1} \nabla_{\bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}\right)
$$

Since $\nabla_{\beta}^{(\hbar)}=\left(\nabla_{\beta}-\partial_{\beta} \log \hbar\right)$, from Equation (6), then

$$
\begin{aligned}
\sum_{\beta=1}^{n} \nabla_{\beta} \tilde{\xi}^{\beta} & =\sum_{\beta, \gamma=1}^{n} \nabla_{\beta}\left(\hbar^{-1} \sum_{B_{s-1}} \nabla_{\bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}\right) \\
& =\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}}\left(\nabla_{\beta}-\partial_{\beta} \log \hbar\right) \nabla_{\bar{\gamma}} \psi_{\overline{B_{s-1}}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}+\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\nabla_{\bar{\beta}} \psi^{\gamma B_{s-1}}} \\
& =\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\bar{\gamma}} \nabla_{\beta}^{(\hbar)} \psi_{\overline{B_{s-1}}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}+\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\bar{\gamma}} \psi_{\overline{B_{s-1}}}^{\beta} \overline{\nabla_{\bar{\beta}} \psi^{\gamma B_{s-1}}} \\
& +\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}}\left[\nabla_{\beta}^{(\hbar)}, \nabla{ }_{\bar{\gamma}}\right] \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} .
\end{aligned}
$$

Then, one obtains the commutator

$$
\left[\nabla_{\beta}^{(\hbar)}, \nabla_{\bar{\gamma}}\right] \psi_{\bar{B}_{s}}=\left[\nabla_{\beta}, \nabla_{\bar{\gamma}}\right] \psi_{\bar{B}_{s}}+\Theta_{\beta \bar{\gamma}} \psi_{\bar{B}_{s}} .
$$

Using Equation (6), one obtains

$$
\begin{aligned}
& \nabla_{\bar{\gamma}} \nabla_{\beta} \psi_{\bar{B}_{s}}=\partial_{\bar{\gamma}} \partial_{\beta} \psi_{\bar{B}_{s}}-\sum_{\mu=1}^{s} \sum_{\tau=1}^{n} \Gamma_{\bar{\gamma} \bar{\beta}_{\mu}}^{\bar{\tau}} \partial_{\beta} \psi_{\bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1}} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s}{ }^{\prime} \\
& \nabla_{\beta} \nabla \bar{\gamma}_{\bar{\gamma}} \psi_{\bar{B}_{s}}=\partial_{\beta} \partial_{\bar{\gamma}} \psi_{\bar{B}_{s}}-\sum_{\mu=1}^{s} \sum_{\tau=1}^{n} \partial_{\beta} \Gamma_{\bar{\gamma} \bar{\gamma}_{\mu}}^{\bar{\tau}} \psi_{\bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1}} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s} \\
& -\sum_{\mu=1}^{s} \sum_{\tau=1}^{n} \Gamma_{\bar{\gamma} \bar{\beta}_{\mu}}^{\bar{\tau}} \partial_{\beta} \psi_{\bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\tau} \bar{\beta}_{\mu+1} \ldots . \bar{\beta}_{s}} .
\end{aligned}
$$

Hence, by using Equation (1), one obtains

$$
\left[\nabla_{\beta}, \nabla_{\bar{\gamma}}\right] \psi_{\bar{B}_{s}}=-\sum_{\mu=1}^{s} \sum_{\tau=1}^{n} \mathcal{R}_{\bar{\beta}_{\mu} \beta \bar{\gamma}}^{\bar{\tau}} \psi_{\bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s}}
$$

Therefore, one obtains

$$
\left[\nabla_{\beta}^{(\hbar)}, \nabla_{\bar{\gamma}}\right] \psi_{\bar{B}_{s}}=-\sum_{B_{s}} \sum_{\mu=1}^{s} \sum_{\tau=1}^{n} \mathcal{R}_{\bar{\beta}_{\mu} \beta \bar{\gamma}}^{\bar{\gamma}} \psi_{\bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s}}+\Theta_{\beta \bar{\gamma}} \psi_{\bar{B}_{s}} .
$$

So,

$$
\begin{align*}
& \hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}}\left[\nabla_{\beta}^{(\hbar)}, \nabla_{\bar{\gamma}}\right] \psi_{\overline{\bar{B}}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}=\hbar^{-1} \sum_{\alpha, \beta, \gamma} g^{\bar{\alpha} \beta}\left[\nabla_{\beta}^{(\hbar)}, \nabla \bar{\gamma}\right] \psi_{\bar{\alpha} \bar{B}_{s-1}} \overline{\psi^{\gamma B_{s-1}}} \\
& \quad=-\hbar^{-1} \sum_{\alpha, \beta, \gamma} g^{\bar{\alpha} \beta}\left(\sum_{\mu=1}^{s-1} \sum_{\tau=1}^{n} \mathcal{R}_{\bar{\beta}_{\mu} \beta \bar{\gamma}}^{\bar{\tau}} \psi_{\bar{\alpha} \bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1}} \bar{\tau}_{\bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s-1}}\right) \overline{\psi^{\gamma B_{s-1}}} \\
& \quad+\hbar^{-1} \sum_{\alpha, \beta, \gamma} g^{\bar{\alpha} \beta} \Theta_{\beta \bar{\gamma}} \psi_{\bar{\alpha} \bar{B}_{s-1}} \overline{\psi^{\gamma B_{s-1}}} \tag{8}\\
& \quad=-\hbar^{-1} \sum_{\alpha, \bar{\beta}_{, \gamma, \tau}} g^{\bar{\alpha} \beta} \mathcal{R}_{\bar{\alpha}}^{\bar{\alpha}} \bar{\gamma} \bar{\gamma} \psi_{\bar{\tau} \bar{B}_{s-1}} \overline{\psi^{\gamma B_{s-1}}}-\hbar^{-1} \sum_{\alpha, \beta_{, \gamma, \tau}} g^{\bar{\alpha} \beta} \mathcal{R}_{\bar{\beta}_{\mu} \beta \bar{\gamma}}^{\bar{\tau}} \psi_{A_{r} \bar{\alpha} \bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s-1}} \overline{\psi^{\gamma B_{s-1}}} \\
& \quad+\hbar^{-1} \sum_{\alpha, \gamma} \Theta_{\beta \bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} .
\end{align*}
$$

From the Kähler property of \mathcal{G}, Equation (2) gives

$$
\mathcal{R}_{\bar{\beta}_{\mu} \bar{\gamma}}^{\bar{\gamma}}=\sum_{\beta} g^{\bar{\alpha} \beta} \mathcal{R}_{\bar{\beta}_{\mu} \beta \bar{\gamma}}^{\bar{\tau}}=\mathcal{R}_{\bar{\beta}_{\mu} \bar{\tau} \bar{\gamma}}^{\bar{\alpha}} .
$$

Moreover, we remark that $\psi_{\bar{\alpha} \bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s-1}}=-\psi_{\bar{\tau} \bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\alpha}_{\mu+1} \ldots \bar{\beta}_{s-1}}$. Hence, the second term of the right-hand side of Equation (8) is zero, i.e.,

$$
\hbar^{-1} \sum_{\alpha, \beta, \gamma, \tau} g^{\bar{\alpha} \beta} \mathcal{R}_{\bar{\beta}_{\mu} \beta \bar{\gamma}}^{\bar{\tau}} \psi_{A_{r} \bar{\alpha} \bar{\beta}_{1} \ldots \bar{\beta}_{\mu-1} \bar{\tau} \bar{\beta}_{\mu+1} \ldots \bar{\beta}_{s-1}} \overline{\psi^{\gamma B_{s-1}}}=0
$$

As a result, Equation (8) becomes

$$
\begin{align*}
\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}}\left[\nabla_{\beta}^{(\hbar)}, \nabla_{\bar{\gamma}}\right] \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} & =-\hbar^{-1} \sum_{\gamma, \tau}\left(\sum_{\alpha, \beta} g^{\bar{\alpha} \beta} R_{\bar{\alpha} \beta \bar{\gamma}}^{\bar{\tau}}\right) \psi_{\bar{\tau} \bar{B}_{s-1}} \overline{\psi^{\gamma B_{s-1}}} \tag{9}\\
& +\hbar^{-1} \sum_{\alpha, \gamma} \Theta_{\beta \bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} .
\end{align*}
$$

On the other hand,

$$
\sum_{\alpha, \beta=1}^{n} g^{\bar{\alpha} \beta} \mathcal{R}_{\overline{\bar{\alpha}} \beta \bar{\gamma}}^{\bar{\tau}}=\sum_{\alpha, \beta, \lambda} g^{\bar{\alpha} \beta} g^{\bar{\tau} \lambda} \mathcal{R}_{\lambda \bar{\alpha} \beta \bar{\gamma}}=\sum_{\alpha, \lambda} g^{\bar{\tau} \lambda} \overline{\sum_{\beta} g^{\bar{\beta} \alpha} \mathcal{R}_{\bar{\beta} \alpha \bar{\lambda} \gamma}}=\sum_{\alpha, \lambda} g^{\bar{\tau} \lambda} \overline{\mathcal{R}_{\alpha}^{\alpha} \bar{\lambda} \gamma}=\sum_{\lambda} g^{\bar{\tau} \lambda} \mathcal{R}_{\bar{\gamma} \lambda} .
$$

Hence,

$$
\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}}\left[\nabla_{\beta}^{(\hbar)}, \nabla_{\bar{\gamma}}\right] \psi_{\overline{B_{s-1}}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}=(s-1)!\hbar^{-1} \sum_{B_{s-1}} \sum_{\alpha, \gamma=1}^{n}\left(\Theta_{\beta \bar{\gamma}}-\mathcal{R}_{\beta \bar{\gamma}}\right) \psi_{\overline{B_{s-1}}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} .
$$

We compute the second term of Equation (9). From Equations (1) and (5), one obtains

$$
(\bar{\partial} \psi, \bar{\partial} \psi)=\hbar^{-1} \sum_{C_{s}, D_{s}} \nabla_{\bar{\mu}} \psi_{\bar{C}_{s}} \overline{\nabla^{\tau} \psi^{D_{s}}} \mathcal{E}_{\tau D_{s^{\prime}}^{\prime}}^{\mu C_{s}}
$$

where $\mathcal{E}_{\tau D_{s}}^{\mu C_{s}}=0$ unless $\mu \notin C_{s}, \tau \notin D_{s}$ and $\{\mu\} \cup C_{s}=\{\tau\} \cup D_{s}$, in which case $\mathcal{E}_{\tau D_{s}}^{\mu C_{s}}$ is the sign of the permutation $\left(\mu C_{s} \tau D_{s}\right)$. Consider the terms with $\mu=\tau$. If $\mathcal{E}_{\tau D_{s}}^{\mu} \neq 0$, then we must have $C_{s}=D_{s}$ and $\mu \notin C_{s}$, and hence the sum of these terms is

$$
\hbar^{-1} \sum_{C_{s}} \sum_{\mu \notin C_{s}} \nabla_{\bar{\mu}} \psi_{\bar{C}_{s}} \overline{\nabla^{\mu} \psi^{C_{s}}}
$$

Next, we consider the terms with $\mu \neq \tau$. If $\mathcal{E}_{\tau D_{s}}^{\mu C_{s}} \neq 0, \tau \in C_{s}, \mu \in D_{s}$ with deletion τ from C_{s} or μ from D_{s} has the same multi-index B_{s-1} :

$$
\mathcal{E}_{\tau D_{s}}^{\mu C_{s}}=\mathcal{E}_{\mu \tau B_{s-1}}^{\mu C_{s}} \mathcal{E}_{\tau \mu B_{s-1}}^{\mu \tau B_{s-1}} \mathcal{E}_{\tau D_{s}}^{\tau \mu B_{s-1}}=-\mathcal{E}_{\tau B_{s-1}}^{C_{s}} \mathcal{E}_{D_{s}}^{\mu B_{s-1}},
$$

The sum of the terms in question is

$$
-\hbar^{-1} \sum_{B_{s-1}} \sum_{\mu \neq \tau} \nabla_{\bar{\mu}} \psi_{\bar{\tau} \bar{B}_{s-1}} \overline{\nabla^{\tau} \psi^{\mu B_{s-1}}} .
$$

Therefore, one obtains

$$
\begin{align*}
(\bar{\partial} \psi, \bar{\partial} \psi) & =\hbar^{-1} \sum_{C_{s}} \sum_{\mu \notin C_{s}} \nabla_{\bar{\mu}} \psi_{\bar{C}_{s}} \overline{\nabla^{\mu} \psi^{C_{s}}}-\hbar^{-1} \sum_{B_{s-1}} \sum_{\mu \neq \tau} \nabla_{\bar{\mu}} \psi_{\bar{\tau} \bar{B}_{s-1}} \overline{\nabla^{\tau} \psi^{\mu B_{s-1}}} \\
& =\hbar^{-1} \sum_{C_{s}} \sum_{\mu} \nabla_{\bar{\mu}} \psi_{\bar{C}_{s}} \overline{\nabla^{\mu} \psi^{C_{s}}}-\hbar^{-1} \sum_{B_{s-1}} \sum_{\mu \neq \tau} \nabla_{\bar{\mu}} \psi_{\bar{\tau} \bar{B}_{s-1}} \overline{\left(\sum_{\gamma} g^{\bar{\gamma} \tau} \nabla_{\bar{\gamma}}\right) \psi^{\mu B_{s-1}}} \tag{10}\\
& =\hbar^{-1} \sum_{C_{s}} \sum_{\mu} \nabla_{\bar{\mu}} \psi_{\bar{C}_{s}} \overline{\nabla^{\mu} \psi^{C_{s}}}-\hbar^{-1} \sum_{B_{s-1}} \sum_{\mu \neq \tau} \sum_{\gamma} g^{\bar{\tau} \gamma} \nabla_{\bar{\mu}} \psi_{\tau} \overline{B_{s-1}} \overline{\nabla \bar{\gamma} \psi^{\mu B_{s-1}}} .
\end{align*}
$$

Since $\nabla_{\bar{\tau}} g^{\bar{\beta} \alpha}=0$, then by using Proposition 2 , one obtains

$$
(\bar{\partial} \psi, \bar{\partial} \psi)=(\bar{\nabla}, \bar{\nabla})-\hbar^{-1} \sum_{B_{s-1}} \sum_{\mu, \gamma} \nabla_{\bar{\mu}} \psi_{\overline{B_{s-1}}}^{\gamma} \overline{\nabla_{\bar{\gamma}} \psi^{\mu B_{s-1}}} .
$$

Then, one obtains

$$
\hbar^{-1} \sum_{B_{s-1}} \sum_{\beta, \gamma} \nabla_{\bar{\beta}} \psi_{\bar{B}_{s-1}}^{\gamma} \overline{\nabla_{\bar{\gamma}} \psi^{\beta B_{s-1}}}=(s-1)![(\bar{\nabla}, \bar{\nabla})-(\bar{\partial} \psi, \bar{\partial} \psi)] .
$$

Therefore,

$$
\begin{equation*}
\sum_{\beta=1}^{n} \nabla_{\beta} \xi^{\beta}=\hbar^{-1} \sum \nabla_{\bar{\gamma}} \nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\bar{A}_{r} \gamma B_{s-1}}}+(s-1)!\{((\Theta-\mathcal{R}) \psi, \psi)+(\bar{\nabla}, \bar{\nabla})-(\bar{\partial} \psi, \bar{\partial} \psi)\} . \tag{11}
\end{equation*}
$$

Using Equation (7),

$$
\begin{align*}
\sum_{\gamma=1}^{n} \nabla_{\bar{\gamma}} \eta^{\bar{\gamma}} & =\hbar^{-1} \sum_{\beta, \gamma=1}^{n} \sum_{B_{s-1}}\left(\nabla_{\bar{\gamma}}-\partial_{\bar{\gamma}} \log \hbar\right) \nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} \\
& +\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\beta}^{(\hbar)} \psi_{\overline{B_{s-1}}}^{\beta} \overline{\nabla_{\gamma} \psi^{\gamma B_{s-1}}} \tag{12}\\
& =\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\bar{\gamma}} \nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}}+\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\nabla_{\gamma}^{(\hbar)} \psi^{\gamma B_{s-1}}}
\end{align*}
$$

Hence, by using Equation (11), one obtains

$$
\begin{equation*}
\sum_{\gamma=1}^{n} \nabla_{\bar{\gamma}} \eta^{\bar{\gamma}}=(s-1)!\left(\bar{\partial}^{*} \psi, \bar{\partial}^{*} \psi\right)+\hbar^{-1} \sum_{\beta, \gamma} \sum_{B_{s-1}} \nabla_{\bar{\gamma}} \nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} \tag{13}
\end{equation*}
$$

Subtracting Equation (13) from Equation (12) and from Proposition 2, one obtains

$$
\frac{1}{(s-1)!}(\operatorname{div} \xi-\operatorname{div} \eta)=(\bar{\nabla}, \bar{\nabla})-(\bar{\partial} \psi, \bar{\partial} \psi)-\left(\bar{\partial}^{*} \psi, \bar{\partial}^{*} \psi\right)+((\Theta-\mathcal{R}) \psi, \psi)
$$

By integrating this identity over Ω and by applying the divergence theorem, one obtains

$$
\begin{equation*}
\frac{1}{(s-1)!} \int_{\partial \Omega}(\xi-\eta) \cdot \mathrm{nds}=\|\bar{\nabla} \psi\|^{2}-\|\bar{\partial} \psi\|^{2}-\left\|\bar{\partial}^{*} \psi\right\|^{2}+\langle(\Theta-\mathcal{R}) \psi, \psi\rangle \tag{14}
\end{equation*}
$$

with the outer unit normal vector n to $\partial \Omega$, which is given at each point $x \in \partial \Omega$ by $n=\frac{\operatorname{grad} \lambda}{\operatorname{grad} \lambda}$, and the projection of the vector $(\xi-\eta)$ on the vector n is $(\xi-\eta) \cdot n$. Now, we compute η. grad λ. Since

$$
\eta \cdot \operatorname{grad} \lambda=\sum_{\gamma=1}^{n} \eta^{\bar{\gamma}} \partial_{\bar{\gamma}} \lambda=\hbar^{-1} \sum_{\beta=1}^{n} \sum_{B_{s-1}} \nabla_{\beta}^{(\hbar)} \psi_{\bar{B}_{s-1}}^{\beta} \overline{\left(\sum_{\gamma=1}^{n} \psi^{\gamma B_{s-1}} \partial_{\gamma} \lambda\right)}
$$

at any point of X, then for $\psi \in \mathscr{B}_{0, s}(\bar{\Omega}, \Xi), s \geq 1$, one obtains

$$
\eta \cdot \operatorname{grad} \lambda=0 \text { on } \partial \Omega .
$$

Hence,

$$
\begin{equation*}
\eta \cdot n=0, \text { on } \partial \Omega . \tag{15}
\end{equation*}
$$

Now we compute ξ. n. from Equation (5); one obtains

$$
\begin{align*}
\xi \cdot n & =\frac{1}{|\operatorname{grad} \lambda|}(\xi \cdot \operatorname{grad} \lambda)=\frac{1}{|\operatorname{grad} \lambda|} \sum_{\beta=1}^{n} \xi^{\beta} \partial_{\beta} \lambda \\
& =\frac{1}{\hbar|\operatorname{grad} \lambda|} \sum_{\gamma=1}^{n} \sum_{B_{s-1}}\left(\sum_{\beta=1}^{n} \nabla_{\bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \partial_{\beta} \lambda\right) \overline{\psi^{\gamma B_{s-1}}} \tag{16}
\end{align*}
$$

Again, for $\psi \in \mathscr{B}_{0, s}(\bar{\Omega}, \Xi), s \geq 1$, one obtains

$$
\sum_{\beta=1}^{n} \psi_{\bar{B}_{s-1}}^{\beta} \partial_{\beta} \lambda=0 \text { on } \partial \Omega
$$

Since $\lambda \equiv 0$ on $\partial \Omega$, then we can write

$$
\sum_{\beta=1}^{n} \psi_{\bar{B}_{s-1}}^{\beta} \partial_{\beta} \lambda=\lambda \phi_{\bar{B}_{s-1}}
$$

on the neighborhood U of $\partial \Omega$, where $\phi_{\bar{B}_{s-1}}$ is a C^{∞} section of $\bigwedge^{s-1} \bar{T}^{*}(X) \otimes \Xi$. So,

$$
\sum_{\beta=1}^{n} \nabla_{\bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \partial_{\beta} \lambda+\sum_{\beta=1}^{n} \psi_{\bar{B}_{s-1}}^{\beta} \partial_{\beta} \partial_{\bar{\gamma}} \lambda=\phi_{\bar{B}_{s-1}} \partial_{\bar{\gamma}} \lambda+\lambda \nabla_{\bar{\gamma}} \phi_{\bar{B}_{s-1}} \text { on } U .
$$

Then, we multiply this equation by $\hbar^{-1} \overline{\psi^{\gamma B_{s-1}}}$ and sum it with respect to γ. Since $\psi \in$ $\mathscr{B}_{0, s}(\bar{\Omega}, \Xi)$, one obtains

$$
\begin{aligned}
& \hbar^{-1} \sum_{B_{s-1}} \sum_{\beta, \gamma=1}^{n} \nabla_{\bar{\gamma}} \psi_{\bar{B}_{s-1}}^{\beta} \partial_{\beta} \lambda \overline{\psi^{\gamma B_{s-1}}}+\hbar^{-1} \sum_{B_{s-1}} \sum_{\beta, \gamma=1}^{n} \partial_{\beta} \partial_{\bar{\gamma}} \lambda \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} \\
& \quad=\hbar^{-1} \sum_{B_{s-1}} \sum_{\gamma=1}^{n} \phi_{\bar{B}_{s-1}} \partial_{\bar{\gamma}} \lambda \overline{\psi^{\gamma B_{s-1}}}+\hbar^{-1} \sum_{B_{s-1}} \sum_{\gamma=1}^{n} \lambda \nabla_{\bar{\gamma}} \phi_{\bar{B}_{s-1}} \overline{\psi^{\gamma B_{s-1}}} \\
& \quad=0
\end{aligned}
$$

on $\partial \Omega$. Therefore, by dividing by $|\operatorname{grad} \lambda|$, (16) becomes

$$
\xi \cdot n=-\frac{1}{\hbar|\operatorname{grad} \lambda|} \sum_{B_{s-1}} \sum_{\beta, \gamma=1}^{n} \partial_{\beta} \partial_{\bar{\gamma}} \lambda \psi_{\bar{B}_{s-1}}^{\beta} \overline{\psi^{\gamma B_{s-1}}} \text { on } \partial \Omega .
$$

Then,

$$
\begin{equation*}
\xi \cdot n=-\frac{1}{\hbar|\operatorname{grad} \lambda|}(\mathscr{L}(\lambda) \psi, \psi) \tag{17}
\end{equation*}
$$

on $\partial \Omega$. Thus, the proposition is proved by substituting Equations (15) and (17) in Equation (14).

4. Bounded P.S.H. Functions and Hartogs Pseudoconvexity in Kähler Manifolds

Definition 2 ([28]). Ω is the smooth local Stein domain if \forall point $z \in \partial \Omega$, and \exists is a neighborhood U if z satisfies $U \cap \Omega$, which is Stein.

Definition 3 ([29]). We say that Ω is Hartogs pseudoconvex if there exists a smooth bounded function h on Ω such that

$$
\begin{equation*}
i \partial \bar{\partial}(-\log \delta+h) \geq C \omega \text { in } \Omega \tag{18}
\end{equation*}
$$

for some $C>0$, where ω is the Kähler form associated with the Kähler metric.
In particular, every Hartogs pseudoconvex domain admits a strictly plurisubharmonic exhaustion function and is thus a Stein manifold.

Next, we will examine several examples of Hartogs pseudoconvex domains.
Example 1. Suppose X is a complex manifold with a continuous strongly plurisubharmonic function and $\Omega \Subset \mathbb{X}$ is a Stein domain. According to [30], there exists a Kähler metric on X such that Ω is Hartogs pseudoconvex.

Example 2 ([29]). All the local Stein-domain subsets of a Stein manifold are in the Hartogs p seudoconvex domain.

Example 3 ([29]). Every C^{2} pseudoconvex domain in the \mathcal{C}^{n} subset of a Stein manifold is a Hartogs pseudoconvex domain.

Example 4 ([30]). Any local Stein domain subset of a Kähler manifold with positive holomorphic bisectional curvature satiffies Equation (18) on $U \cap \Omega$.

Example 5 ([30]). If Ω is a local Stein domain of the complex projective space \mathcal{P}^{n}, then Ω satisfies Equation (18).

The canonical line bundle K of X is defined by transition functions $\left(k_{i j}\right)$

$$
k_{i j}=\frac{\partial\left(\mathrm{w}_{j}^{1}, \mathrm{w}_{j}^{2}, \ldots, \mathrm{w}_{j}^{n}\right)}{\partial\left(\mathrm{w}_{i}^{1}, \mathrm{w}_{i}^{2}, \ldots, \mathrm{w}_{i}^{n}\right)} \text { on } U_{i} \cap U_{j}
$$

with

$$
\mathrm{g}_{i}=\left|k_{i j}\right|^{2} \mathrm{~g}_{j} \text { on } U_{i} \cap U_{j} .
$$

Hence, $g=\left\{\mathrm{g}_{i}\right\}$ determines a metric of K. Let $h=\left\{h_{i}\right\}$ be a Hermitian metric of Ξ and $\partial \bar{\partial} \log h$ its curvature tensor. So, $\{\hbar=g . h\}$ determines a Hermitian metric of $\Xi \otimes K$ and

$$
\partial \bar{\partial} \log \hbar=\partial \bar{\partial} \log h+\partial \bar{\partial} \log g .
$$

Then, from Proposition 4,

$$
\begin{equation*}
\|\bar{\partial} \psi\|^{2}+\left\|\bar{\partial}^{*} \psi\right\|^{2}=\|\bar{\nabla} \psi\|^{2}+<\Theta \psi, \psi>+\frac{1}{\hbar|\operatorname{grad} \lambda|} \int_{\partial D}(\mathscr{L}(\lambda) \psi, \psi) d s \tag{19}
\end{equation*}
$$

for $\psi \in \mathscr{B}_{0, s}(\bar{D}, \Xi \otimes K), s \geq 1$. Using $h=h_{\mathrm{m}}=\zeta^{\mathrm{m}} h$, one obtains

$$
\Theta_{\mathrm{m}}=\Theta-\mathrm{m} \partial \bar{\partial}(-\log \zeta)
$$

With respect to the \mathcal{G} and h_{m}, and for $\psi, \psi \in \mathcal{C}_{n, S}^{\infty}(\bar{D}, \Xi)$, we define the global inner product $<\psi, \psi>_{\mathrm{m}}$ and the norm $\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}$ by

$$
<\psi, \psi>_{\mathrm{m}}=\int_{D}(\psi, \psi)_{\mathrm{m}} d v \text { and }\|\psi\|_{W_{n, s}^{\mathrm{m}}(D, \Xi)}^{2}=\left\langle\psi, \psi>_{\mathrm{m}}\right.
$$

Then, (19) becomes

$$
\begin{align*}
\|\bar{\partial} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\left\|\bar{\partial}_{\mathrm{m}}^{*} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2} & =\|\bar{\nabla} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\frac{1}{\hbar|\operatorname{grad} \lambda|} \int_{\partial D}(\mathscr{L}(\lambda) \psi, \psi)_{\mathrm{m}} d s+<\Theta_{\mathrm{m}} \psi, \psi>_{\mathrm{m}} \tag{20}\\
& +<\mathrm{m} \partial \bar{\partial}(-\log \zeta) \psi, \psi>_{\mathrm{m}}
\end{align*}
$$

As Theorem 1.1 in [31], one obtains
Theorem 1. Suppose X is an n-dimensional complex manifold and $D \Subset X$ is a Hartogs pseudoconvex. $\zeta(z)=\operatorname{dist}(z, \partial D)=-\rho(z)$, where ζ is the Kähler metric ω on X. If $\mathrm{m}>0$, then

$$
\begin{equation*}
i \partial \bar{\partial}\left(-\zeta^{\mathrm{m}}\right) \geq c_{\mathrm{m}}\left|\zeta^{\mathrm{m}}\right| \omega \tag{21}
\end{equation*}
$$

for some constant $c_{\mathrm{m}}>0$.
Proof. Using Equation (18) and if $\rho=-\zeta$,

$$
\begin{equation*}
-\rho i \partial \bar{\partial} \rho+i \partial \rho \wedge \bar{\partial} \rho \geq C \rho^{2} \omega \tag{22}
\end{equation*}
$$

Let $\left(e_{i}\right)$ be an orthonormal basis for $T(\partial D)$ near p. In this case, near $p \in \partial D$, choose local coordinates that satisfy $x_{2 n}=\rho, e_{i}(p)=0, i=1,2, \ldots, n-1$. The Hermitian form for $i \partial \bar{\partial} \rho$ is denoted by $\left(a_{i j}\right)$. The inequality (22) gives the coordinates

$$
\begin{equation*}
-\rho \sum_{i, j=1}^{n} a_{i j} \eta_{i} \bar{\eta}_{j}+|\partial \rho|^{2}\left|\eta_{n}\right|^{2} \geq C \rho^{2} \sum_{j=1}^{n}\left|\eta_{j}\right|^{2} \tag{23}
\end{equation*}
$$

If $\eta_{n}=0$,

$$
\sum_{i, j=1}^{n-1} a_{i j} \eta_{i} \bar{\eta}_{j} \geq C|\rho| \sum_{j=1}^{n-1}\left|\eta_{j}\right|^{2}
$$

Expanding (23), one obtains

$$
-\rho \sum_{i, j=1}^{n-1} a_{i j} \eta_{i} \bar{\eta}_{j}+2 \operatorname{Re}(-\rho) \sum_{k=1}^{n-1} a_{n k} \eta_{n} \bar{\eta}_{k}-\rho a_{n n}\left|\eta_{n}\right|^{2}+|\partial \rho|^{2}\left|\eta_{n}\right|^{2} \geq C|\rho|^{2} \sum_{j=1}^{n-1}\left|\eta_{j}\right|^{2}
$$

for $j \leq n-1$, replacing v by $\eta_{j} /(-\rho)$,

$$
\begin{equation*}
\sum_{i, j=1}^{n-1}\left(\frac{a_{i j}}{-\rho}\right) \eta_{i} \bar{\eta}_{j}+2 \operatorname{Re}(-\rho) \sum_{k=1}^{n-1} a_{n k} \eta_{n} \bar{\eta}_{k}-\rho a_{n n}\left|\eta_{n}\right|^{2}+|\partial \rho|^{2}\left|\eta_{n}\right|^{2} \geq C^{\prime} \sum_{j=1}^{n-1}\left|\eta_{j}\right|^{2} \tag{24}
\end{equation*}
$$

The inequality's left side can be expressed as follows:

$$
Q(z, \eta)+|\partial \rho|^{2}\left|\eta_{\eta}\right|^{2} .
$$

For $z \in D$, we assume that

$$
\widetilde{Q}(\varsigma, \eta)=\liminf _{z \rightarrow \varsigma} Q(z, \eta)=\lim _{t \rightarrow 0} \inf _{|z-\zeta|<t} Q(z, \eta)
$$

From Equation (24), one obtains

$$
\begin{equation*}
\widetilde{Q}(\varsigma, \eta)+|\partial \rho|^{2}(\varsigma)\left|\eta_{n}\right|^{2} \geq C^{\prime} \sum_{j=1}^{n-1}\left|\eta_{j}\right|^{2} \tag{25}
\end{equation*}
$$

Take a look at $\widetilde{Q}\left(p,\left(0, \eta_{n}\right) \geq 0\right.$; for a small enough C^{\prime},

$$
\widetilde{Q}(\varsigma, v)+|\partial \rho|^{2}(\varsigma)\left|\eta_{n}\right|^{2} \geq C^{\prime}\left|\eta_{n}\right|^{2},
$$

in a neighborhood of p. On the sphere $|\eta|=1$, inequality (25) still holds for $\left|\eta^{\prime}\right| \leq \sigma$ in a neighborhood of $\eta^{\prime}=0$, where $\eta=\left(\eta^{\prime}, \eta_{n}\right)$. This gives us

$$
Q(z, \eta)+|\partial \rho|^{2}(z)\left|\eta_{n}\right|^{2} \geq \frac{C^{\prime}}{2}\left|\eta_{n}\right|^{2}
$$

for $\zeta(z)<\sigma^{\prime},\left|\eta^{\prime}\right| \leq \sigma$. But, when $\left|\eta^{\prime}\right|>\sigma$ and $|\eta|=1$, one obtains $\left|\eta^{\prime}\right|^{2} \geq \sigma_{0}\left|\eta_{n}\right|^{2}$, where $\sigma_{0}=\sigma^{2}\left(1-\sigma^{2}\right)^{-1}$. So, by using (25),

$$
Q(z, \eta)+|\partial \rho|^{2}\left|\eta_{n}\right|^{2} \geq \sigma^{* *}\left|\eta_{n}\right|^{2} \text { for some } \sigma^{* *}>0
$$

and for $\zeta(z)<\sigma^{*}$,

$$
Q(z, \eta)+|\partial \rho|^{2}\left|\eta_{n}\right|^{2} \geq \frac{\sigma^{* *}}{2}\left|\eta_{n}\right|^{2}+\frac{C^{\prime}}{2} \sum_{j=1}^{n-1}\left|\eta_{j}\right|^{2}
$$

Recalling this one yields

$$
-\rho \sum_{i, j=1}^{n} a_{i j} \eta_{i} \bar{\eta}_{j}+|\partial \rho|^{2}\left|\eta_{n}\right|^{2} \geq \frac{\sigma}{2}\left|\eta_{\eta}\right|^{2}+\frac{C^{\prime}}{2} \sum_{j=1}^{n-1}\left|\eta_{j}\right|^{2}
$$

Which means

$$
\begin{aligned}
-i \partial \bar{\partial}(-\rho)^{\mathrm{m}} & =i \mathrm{~m}(-\rho)^{\mathrm{m}}\left(\frac{\partial \bar{\partial} \rho}{-\rho}+(1-\mathrm{m}) \frac{\partial \rho \wedge \bar{\partial} \rho}{\rho^{2}}\right) \\
& \geq \frac{C^{\prime}}{2} \mathrm{~m}|\rho|^{\mathrm{m}} \omega .
\end{aligned}
$$

Lemma 1. Let $D \Subset X$ be a C^{2} Hartogs pseudoconvex in an n-dimensional complex manifold X. Suppose $\mathrm{m}_{0}=\mathrm{m}_{0}(D)>0$ is the order of plurisubharmonicity for $\zeta(z)=d(z, \partial D)$:

$$
\mathrm{m}_{0}(D)=\sup \left\{0<\varepsilon \leq 1 \mid i \partial \bar{\partial}\left(-\zeta^{\varepsilon}\right) \geq \text { on } D\right\} .
$$

Then, $\forall 0<\mathrm{m}<\mathrm{m}_{0}$ and $\phi=-\mathrm{m} \log \zeta$; there exists

$$
\begin{equation*}
i t \partial \bar{\partial} \phi \geq i \partial \phi \wedge \bar{\partial} \phi, \tag{26}
\end{equation*}
$$

with $0<t=\frac{\mathrm{m}}{\mathrm{m}_{0}}<1$. Also, there exists $C_{m}>0$, which satisfies

$$
\begin{equation*}
i \partial \bar{\partial}\left(-\zeta^{\mathrm{m}}\right) \geq C_{\mathrm{m}} \zeta^{\mathrm{m}}\left(\frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+\omega\right) \tag{27}
\end{equation*}
$$

Proof. By Equation (21), $\exists \mathrm{m}_{0}>0$ satisfies $i \partial \bar{\partial}\left(-\zeta^{\mathrm{m}_{0}}\right) \geq 0$ on D. Since

$$
\begin{align*}
i \partial \bar{\partial}\left(-\zeta^{\mathrm{m}_{0}}\right) & =-i \partial\left(\mathrm{~m}_{0} \zeta^{\mathrm{m}_{0}-1} \bar{\partial} \zeta\right)=-i \mathrm{~m}_{0}\left(\mathrm{~m}_{0}-1\right) \zeta^{\mathrm{m}_{0}-2} \partial \zeta \wedge \bar{\partial} \zeta-i \mathrm{~m}_{0} \zeta^{\mathrm{m}_{0}-1} \partial \bar{\partial} \zeta \\
& =\mathrm{m}_{0} \zeta^{\mathrm{m}_{0}}\left(\left(1-\mathrm{m}_{0}\right) \frac{\partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+i \frac{\partial \bar{\partial}(-\zeta)}{\zeta}\right) . \tag{28}
\end{align*}
$$

Then

$$
\begin{equation*}
\left(1-\mathrm{m}_{0}\right) \frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+i \frac{\partial \bar{\partial}(-\zeta)}{\zeta} \geq 0 \tag{29}
\end{equation*}
$$

Also, by using Equation (18), one obtains

$$
\begin{equation*}
i \partial \bar{\partial}(-\log \zeta)=\frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+i \frac{\partial \bar{\partial}(-\zeta)}{\zeta} \geq \omega \tag{30}
\end{equation*}
$$

Therefore, from Equations (29) and (30), one obtains

$$
\begin{equation*}
i \partial \bar{\partial}(-\log \zeta) \geq \mathrm{m}_{0} \frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}} \tag{31}
\end{equation*}
$$

Since $\partial \phi=-\mathrm{m} \frac{\partial \bar{\zeta}}{\zeta}$ and $\bar{\partial} \phi=-\mathrm{m} \frac{\bar{\partial} \zeta}{\zeta}$, then

$$
\begin{equation*}
i \partial \phi \wedge \bar{\partial} \phi=\mathrm{m}^{2} \frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}} \tag{32}
\end{equation*}
$$

Then, from Equations (31) and (32), one obtains

$$
i \partial \bar{\partial}(-\log \zeta) \geq \mathrm{m}_{0} \frac{i \partial \phi \wedge \bar{\partial} \phi}{\mathrm{~m}^{2}}
$$

Then, Equation (26) is proved.
To prove Equation (27), choose $0<\kappa<\min \left\{1, \frac{m_{0}-m}{m_{0}}\right\}$, and by using Equation (28), one obtains

$$
\begin{aligned}
i \partial \bar{\partial}\left(-\zeta^{\mathrm{m}}\right) & =-i \mathrm{~m}(\mathrm{~m}-1) \zeta^{\mathrm{m}-2} \partial \zeta \wedge \bar{\partial} \zeta-i \mathrm{~m} \zeta^{\mathrm{m}-1} \partial \bar{\partial} \zeta=\mathrm{m} \zeta^{\mathrm{m}}\left((1-\mathrm{m}) \frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+\frac{i \partial \bar{\partial}(-\zeta)}{\zeta}\right) \\
& =\mathrm{m} \zeta^{\mathrm{m}}\left(\left(\mathrm{~m}_{0}-\mathrm{m}-\kappa \mathrm{m}_{0}\right) \frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+(1-\kappa) \frac{i \partial \bar{\partial}\left(-\zeta^{\mathrm{m}_{0}}\right)}{\mathrm{m}_{0} \zeta^{\mathrm{m}_{0}}}+\kappa i \partial \bar{\partial}(-\log \zeta)\right) \\
& \geq C_{\mathrm{m}} \mathrm{~m} \zeta^{\mathrm{m}}\left(\frac{i \partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}+\omega\right)
\end{aligned}
$$

Then, Equation (27) is proved.

5. The L^{2} Estimates of $\bar{\partial}$

As in [21-23,32,33], one proves the following results:

Theorem 2. Let $D \Subset X$ be a C^{2} Hartogs pseudoconvex in an n-dimensional complex manifold X. Let Ξ be a positive line bundle over X whose curvature form Θ satisfies $\Theta \geq C \omega$, where $C>0$. Let $\psi \in L_{n, s}^{2}\left(D, \zeta^{m}, \Xi\right), 1 \leq s \leq n$, a $\bar{\partial}$-closed form. Then, for $0<m<m_{0}$, there exists $\psi \in L_{n, s-1}^{2}\left(D, \zeta^{\mathrm{m}}, \Xi\right)$, which satisfies $\bar{\partial} \psi=\psi$ and

$$
\begin{equation*}
\int_{\Omega}|\psi|^{2} \zeta^{\mathrm{m}} d v \leq C \int_{\Omega}|\psi|^{2} \zeta^{\mathrm{m}} d v \tag{33}
\end{equation*}
$$

Proof. The boundary term in Equation (20) vanishes since $m>0$. For $u \in \mathscr{B}_{n, s}(\bar{D}, \Xi), s \geq 1$, and since the curvature form Θ of Ξ satisfies

$$
\Theta \geq C_{D} \omega \text { on } D \text { with } C_{D}>0
$$

then by using Equation (18), one obtains

$$
\begin{equation*}
<\Theta_{\mathrm{m}} \psi, \psi>_{\mathrm{m}} \geq C_{\mathrm{m}}<\psi, \psi>_{\mathrm{m}} \tag{34}
\end{equation*}
$$

Also, from the assumption of pseudoconvex on D, one obtains

$$
\|\bar{\partial} u\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\left\|\bar{\partial}_{\mathrm{m}}^{*} u\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2} \geq C_{\Omega}\|u\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)^{\prime}}^{2}
$$

for all $u \in \mathscr{B}_{n, s}(D, \Xi)$. Let $u \in \mathcal{D}_{n, s}^{\infty}(D, E)$, with $u=u_{1}+u_{2}, u_{1} \in \operatorname{ker}(\bar{\partial}, \Xi)$ and $u_{2} \in$ $\operatorname{ker}(\bar{\partial}, E)^{\perp}=\overline{\operatorname{Im}\left(\bar{\partial}_{m}^{*}, E\right)} \subset \operatorname{ker}\left(\bar{\partial}_{m}^{*}, \Xi\right)$. Then, for every (n, s) form u with compact support, one obtains

$$
\begin{aligned}
\left|<u, \psi>_{\mathrm{m}}\right| & =\left|<u_{1}+u_{2,}, \psi>_{\mathrm{m}}\right| \\
& =\left|<u_{1}, \psi>_{\mathrm{m}}\right|+\left|<u_{2}, \psi>_{\mathrm{m}}\right| \\
& =\left|<u_{1}, \psi>_{\mathrm{m}}\right| \leq\left\|u_{1}\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \\
& \leq \frac{1}{\sqrt{C}}\left\|\bar{\partial}_{\mathrm{m}}^{*} u_{1}\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \\
& =\frac{1}{\sqrt{C}}\left\|\bar{\partial}_{\mathrm{m}}^{*} u\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} .
\end{aligned}
$$

Using the Riesz representation theorem, the linear form

$$
\bar{\partial}_{\mathrm{m}}^{*} u \longmapsto<u, \psi>_{\mathrm{m}}
$$

is continuous on $\operatorname{Rang}\left(\bar{\partial}^{*}, \Xi\right)$ in the L^{2} norm and has norm $\leq C$, with

$$
\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}=C .
$$

Following Hahn-Banach theorem, \exists is an element that is E valued $(n, s-1)$ from u on D (with a smooth boundary) perpendicular to $\operatorname{ker}(\bar{\partial}, E)$ with $\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C$,

$$
<\bar{\partial}_{\mathrm{m}}^{*} u, \psi>_{\mathrm{m}}=<u, \psi>_{\mathrm{m}}
$$

for all $L^{2} u$ with both $\bar{\partial} u$ and $\bar{\partial}_{\mathrm{m}}^{*} u$ and also L^{2}. Hence,

$$
\bar{\partial} \psi=\psi,
$$

and

$$
\|\psi\|_{W_{n, s}^{m}(D, \Xi)} \leq C\|\psi\|_{W_{n, s}^{m}(D, \Xi)} .
$$

Exhaust a general pseudoconvex domain D by a sequence D_{μ} of C^{∞} pseudoconvex domains:

$$
D=\cup_{\mu=1}^{\infty} D
$$

with $D_{\mu} \subset D_{\mu+1} \subset D$ for each μ. On each $D_{\mu}, \exists \mathrm{a} \psi_{\mu} \in L_{n, S-1}^{2}\left(D_{\mu}, \zeta^{\mathrm{m}}, \Xi\right)$ satisfies

$$
\bar{\partial} \psi_{\mu}=\psi \text { in } D_{\mu}
$$

and

$$
\int_{D_{\mu}}\left|\psi_{\mu}\right|^{2} \zeta^{\mathrm{m}} d v \leq C \int_{D_{\mu}}|\psi|^{2} \zeta^{\mathrm{m}} d v \leq c \int_{D}|\psi|^{2} \zeta^{\mathrm{m}} d v .
$$

Choose a subsequent ψ_{μ} of ψ_{μ}, satisfying

$$
\psi_{\mu} \longrightarrow \psi
$$

in $L_{n, s-1}^{2}\left(D, \zeta^{\mathrm{m}}, \Xi\right)$ weakly. Moreover,

$$
\int_{D}|\psi|^{2} \zeta^{\mathrm{m}} d v \leq \liminf C \int_{D}|\psi|^{2} \zeta^{\mathrm{m}} d v \leq c \int_{D}|\psi|^{2} \zeta^{\mathrm{m}} d v
$$

Theorem 3. Let X, D and Ξ be the same as Theorem 2. Let $\psi \in L_{n, s}^{2}(D, \Xi), 1 \leq s \leq n$, with $\bar{\partial} \psi=0$. Thus, $\exists \psi \in L_{n, s-1}^{2}(D, \Xi)$ satisfies $\bar{\partial} \psi=\psi$ and

$$
\|\psi\| \leq\|\psi\| .
$$

Proof. Since

$$
\frac{1}{\hbar|\operatorname{grad} \lambda|} \int_{\partial \Omega}(\mathscr{L}(\lambda) u, u) d s \geq C \int_{\partial \Omega}|u|^{2} d s
$$

and from Equation (18), one obtains

$$
\|\bar{\partial} u\|^{2}+\|\psi u\|^{2} \geq C_{D}\|u\|^{2}
$$

$\forall u \in \mathscr{B}_{n, s}(D, \Xi)$. This completes the proof of Theorem 3.
Following Theorem 3, as in [34,35], one can prove the following:
Theorem 4. Let X, D and Ξ be the same as Theorem 2. Then,has a closed range and $\operatorname{ker}_{n, s}(\square$ \square $E)=\{0\}$. For each $1 \leq s \leq n$, there exists a bounded linear operator

$$
N_{n, s}: L_{n, s}^{2}(D, \Xi) \longrightarrow L_{n, s}^{2}(D, \Xi),
$$

which satisfies
(i) $\operatorname{Rang}\left(N_{n, s}, \boldsymbol{\Xi}\right) \subset \operatorname{Dom}\left(\square_{n, s}, \boldsymbol{\Xi}\right)$ and $\square_{n, s} N_{n, s}=N_{n, s} \square_{n, s}=I$ on $\operatorname{Dom}\left(\square_{n, s}, \boldsymbol{\Xi}\right)$.
(ii) $\forall \psi \in L_{n, s}^{2}(D, \Xi), \psi=\overline{\partial \partial}^{*} N_{n, s} \psi+\bar{\partial}^{*} \bar{\partial} N_{n, s} \psi$.
(iii) For $\psi \in L_{n, s}^{2}(D, \Xi)$, one obtains

$$
\begin{aligned}
\left\|N_{n, s} \psi\right\| & \leq c_{0}\|\psi\|, \\
\left\|\bar{\partial} N_{n, s} \psi\right\| & \leq c_{0}\|\psi\|, \\
\left\|\bar{\partial}^{*} N_{n, s} \psi\right\| & \leq c_{0}\|\psi\| .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
N_{(n, s+1)} \bar{\partial} & =\bar{\partial} N_{n, s} \text { on } \operatorname{Dom}(\bar{\partial}, \Xi), 1 \leq s \leq n-1 \\
\bar{\partial}^{*} N_{n, s} & =N_{n, s-1} \bar{\partial}^{*} \operatorname{on} \operatorname{Dom}\left(\bar{\partial}^{*}, E\right), 2 \leq s \leq n .
\end{aligned}
$$

(v) If $\psi \in L_{n, s}^{2}(D, \Xi)$ and $\bar{\partial} \psi=0$, then $\psi=\overline{\partial \partial}^{*} N_{n, s} \psi$ and $u=\bar{\partial}^{*} N_{n, s} \psi$.

Proof.

$$
L_{n, s}^{2}(D, \Xi)=\overline{\operatorname{Rang}\left(\square_{n, s}, \Xi\right)} \oplus \operatorname{ker}\left(\square_{n, s}, \Xi\right) .
$$

We need to show that

$$
\begin{equation*}
\operatorname{ker}\left(\square_{n, s}, \Xi\right)=\operatorname{ker}(\bar{\partial}, \Xi) \cap \operatorname{ker}\left(\bar{\partial}^{*}, \Xi\right)=\{0\} . \tag{35}
\end{equation*}
$$

To show that

$$
\begin{equation*}
\operatorname{ker}(\bar{\partial}, \Xi) \cap \operatorname{ker}\left(\bar{\partial}^{*}, \Xi\right)=\{0\} . \tag{36}
\end{equation*}
$$

We note that if $\psi \in L_{n, s}^{2}(\bar{\partial}, \Xi)$, then by using Theorem $4, \exists$ a $\psi \in L_{n, s-1}^{2}(\Omega, \Xi)$ satisfies $\psi=\bar{\partial} \psi$. If ψ is also in $\operatorname{ker}\left(\bar{\partial}^{*}, \Xi\right)$, one obtains

$$
0=<\bar{\partial}^{*} \bar{\partial} \psi, \psi>=\|\bar{\partial} \psi\|^{2} .
$$

Thus, $\psi=0$ and Equation (35) is proved. We shall show that $\operatorname{Rang}\left(\square_{n, s}, \Xi\right)$ is closed. Following Theorem $4, \forall \psi \in L_{n, s}^{2}(D, \Xi), s>0$ with $\bar{\partial} \psi=0$ and \exists a $\psi \in L_{n, s-1}^{2}(D, \Xi)$ satisfies $\psi=\bar{\partial} \psi$ and

$$
\|\psi\|^{2} \leq c_{0}\|\psi\|^{2}
$$

where $c_{0}=c_{0}(D)>0$. Thus, $\operatorname{Rang}(\bar{\partial}, \Xi)$ is closed in every degree. Thus,

$$
\|\psi\|^{2} \leq c_{0}\left(\|\bar{\partial} \psi\|^{2}+\left\|\bar{\partial}^{*} \psi\right\|^{2}\right)
$$

for $\psi \in \operatorname{Dom}(\bar{\partial}, E) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$ and $\psi \perp \operatorname{ker}(\bar{\partial}, \Xi) \cap \operatorname{ker}\left(\bar{\partial}^{*}, \Xi\right)$. Thus, from (36),

$$
\|\psi\|^{2} \leq c_{0}\left(\|\bar{\partial} \psi\|^{2}+\left\|\bar{\partial}^{*} \psi\right\|^{2}\right)
$$

for $\psi \in \operatorname{Dom}(\bar{\partial}, \Xi) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$. Thus, $\forall \psi \in \operatorname{Dom}\left(\square_{n, s}, \Xi\right)$,

$$
\begin{aligned}
\|\psi\|^{2} & \leq c_{0}\left[<\bar{\partial} \psi, \bar{\partial} \psi>+<\bar{\partial}^{*} \psi, \bar{\partial}^{*} \psi>\right] \\
& =c_{0}\left[<\bar{\partial}^{*} \bar{\partial} \psi, \psi>+<\bar{\partial}^{*} \psi, \psi>\right] \\
& =c_{0}<\square \psi, \psi> \\
& \leq c_{0}\|\square \psi\|\|\psi\| .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\|\psi\| \leq c_{0}\|\square \psi\| \tag{37}
\end{equation*}
$$

i.e., $\operatorname{Rang}\left(\square_{n, s}, \Xi\right)$ is closed. Therefore,

$$
L_{n, s}^{2}(D, \Xi)=\operatorname{Rang}(\square, \Xi)=\overline{\partial \partial}^{*} \operatorname{Dom}\left(\square_{n, s}, E\right) \oplus \bar{\partial}^{*} \bar{\partial} \operatorname{Dom}\left(\square_{n, s}, \Xi\right) .
$$

Also, from Equation (37), $\square_{n, s}$ is 1-1 and $\operatorname{Rang}\left(\square_{n, s}, \Xi\right)$ is the whole space $L_{n, s}^{2}(D, E)$. Thus, there exists a unique inverse

$$
N_{n, s}: L_{n, s}^{2}(D, \Xi) \longrightarrow L_{n, s}^{2}(D, \Xi),
$$

which satisfies $\square N=N \square=I$ and

$$
\left\|N_{n, s} \psi\right\| \leq c_{0}\|\psi\| .
$$

$\forall \psi \in L_{n, s}^{2}(D, \Xi)$. Also, by (ii),

$$
\begin{aligned}
<\bar{\partial}^{*} N_{n, s} \psi, \bar{\partial}^{*} N_{n, s} \psi>+<\bar{\partial} N_{n, s} \psi, \bar{\partial} N_{n, s} \psi> & =<\left(\overline{\partial \partial}^{*}+\bar{\partial}^{*} \bar{\partial}\right) N_{n, s} \psi, N_{n, s} \psi> \\
& =<\square_{n, s} N_{n, s} \psi, N_{n, s} \psi> \\
& \leq\|\psi\|\left\|N_{n, s} \psi\right\| \\
& \leq c_{0}\|\psi\|^{2} .
\end{aligned}
$$

Then

$$
\left\|\bar{\partial}^{*} N_{n, s} \psi\right\|^{2} \leq c_{0}\|\psi\|^{2}
$$

and

$$
\left\|\bar{\partial} N_{n, s} \psi\right\|^{2} \leq c_{0}\|\psi\|^{2} .
$$

Now, we show that $\bar{\partial}^{*} N_{n, s}=N_{n, s} \bar{\partial}^{*}$ on $\operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$. Using (ii), $\bar{\partial}^{*} u=\bar{\partial}^{*} \bar{\partial}^{*} N_{n, s} u$. Then,

$$
N_{n, s} \bar{\partial}^{*} u=N_{n, s} \bar{\partial}^{*} \bar{\partial}^{*} N_{n, s} u=N_{n, s}\left(\bar{\partial}^{*} \bar{\partial}+\overline{\partial \partial}^{*}\right) \bar{\partial}^{*} N_{n, s} u=\bar{\partial}^{*} N_{n, s} u .
$$

Similarly, one can prove $\bar{\partial} N_{n, s}=N_{n, s} \overline{\bar{\partial}}$ on $\operatorname{Dom}(\bar{\partial}, \Xi)$. From (ii),

$$
\psi=\overline{\partial \partial}^{*} N_{n, s} \psi+\overline{\partial \partial}^{*} \bar{\partial} N_{n, s} \psi .
$$

Thus, $\bar{\partial} \psi=0$ implies $\overline{\partial \partial}^{*} \bar{\partial} N_{n, s} \psi=0$ and

$$
<\overline{\partial \partial}^{*} \bar{\partial} N_{n, s} \psi, \bar{\partial} N_{n, s} \psi>=\left\|\bar{\partial}^{*} \bar{\partial} N_{n, s} \psi\right\|^{2}=0 .
$$

Since $\bar{\partial} N_{n, s} \psi \in \operatorname{Dom}\left(\bar{\partial}^{*}\right)$. Thus, $\psi=\overline{\partial \partial}^{*} N_{n, s} \psi$ and $u=\bar{\partial}^{*} N_{n, s} \psi$ is the solution which is unique and orthogonal to $\operatorname{ker}(\bar{\partial}, \Xi)$.

Corollary 1. Let X, D and Ξ be the same as Theorem 2. Then, for all $\psi \in L_{n, s}^{2}(D, \Xi)$ that satisfies $\bar{\partial} \psi=0$, the canonical solution $u=\bar{\partial}^{*} N_{n, s} \psi$ satiffies the estimate

$$
\|u\|^{2} \leq C\|\psi\|^{2} .
$$

Proof. From (iv), one obtains $\bar{\partial} N_{n, s} \psi=N_{(n, s+1)} \bar{\partial} \psi=0$. Since

$$
\left\|N_{n, s} \psi\right\| \leq c_{0}\|\psi\| .
$$

Thus,

$$
\begin{aligned}
\|u\|^{2} & =<\bar{\partial}^{*} N_{n, s} \psi, \bar{\partial}^{*} N_{n, s} \psi> \\
& =<\overline{\partial \partial}^{*} N_{n, s} \psi, N_{n, s} \psi> \\
& =<\left(\overline{\partial \partial}^{*}+\bar{\partial}^{*} \bar{\partial}\right) N_{n, s} \psi, N_{n, s} \psi> \\
& =<\psi, N_{n, s} \psi> \\
& \leq\|\psi\|\left\|N_{n, s} \psi\right\| \\
& \leq c\|\psi\|^{2} .
\end{aligned}
$$

Thus, the proof follows.
Let $\square_{n, 0}=\bar{\partial}^{*} \bar{\partial}$ on $L_{n, 0}^{2}(D, \Xi)$. Set

$$
\mathscr{H}_{n, 0}(\Omega, \Xi)=\operatorname{ker}\left(\square_{n, 0}, E\right)=\left\{\psi \in L_{n, 0}^{2}(D, \Xi) \mid \bar{\partial} \psi=0\right\} .
$$

Since $\bar{\partial} \psi=0$, then $\mathscr{H}_{n, 0}(D, \Xi)$ is a closed subspace of $L_{n, 0}^{2}(D, \Xi)$. Let

$$
\mathcal{P}: L_{n, 0}^{2}(D, \Xi) \longrightarrow \mathscr{H}_{n, 0}(D, \Xi)
$$

be the Bergman projection operator.
Lemma 2 ([16]). Let X, D and Ξ be the same as Theorem 2. Then,

$$
N_{n, 0}: L_{n, 0}^{2}(D, \Xi) \longrightarrow L_{n, 0}^{2}(D, \Xi)
$$

satisfies
(i) $\operatorname{Rang}\left(N_{n, 0}, \Xi\right) \subset \operatorname{Dom}\left(\square_{n, 0}, \Xi\right), \square_{n, 0} N_{n, 0}=N_{n, 0} \square_{n, 0}=I-\mathcal{P}_{n, 0}$.
(ii) $\forall \psi \in L_{n, 0}^{2}(D, \Xi)$; one obtains $\psi=\bar{\partial}^{*} \bar{\partial} N_{n, 0} \psi \oplus \mathcal{P}_{n, 0} \psi$.
(iii) $N_{n, 1} \bar{\partial}=\bar{\partial} N_{n, 0}$ on $\operatorname{Dom}(\bar{\partial}, \Xi), \bar{\partial}^{*} N_{n, 1}=N_{n, 0} \bar{\partial}^{*}$ on $\operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$.
(iv) $N_{n, 0} \psi=\bar{\partial}^{*} N_{n, 1}^{2} \bar{\partial} \psi$ if $\psi \in \operatorname{Dom}(\bar{\partial}, \Xi)$.
(v) $\forall \psi \in L_{n, 0}^{2}(D, \Xi)$,

$$
\begin{aligned}
\left\|N_{n, 0} \psi\right\| & \leq C\|\psi\| \\
\left\|\bar{\partial} N_{n, 0} \psi\right\| & \leq \sqrt{C}\|\psi\| .
\end{aligned}
$$

Proof. Let $\psi \in \operatorname{Dom}\left(\square_{n, 0}, \Xi\right) \cap\left(\mathscr{H}_{n, 0}(E)\right)^{\perp}$. Since Rang $(\bar{\partial}, \Xi)$ is closed in every degree, $\operatorname{Rang}\left(\bar{\partial}^{*}, \Xi\right)$ is closed. Thus, $\psi \perp \operatorname{ker}(\bar{\partial}, \Xi)$ and $\psi \in \operatorname{Rang}\left(\bar{\partial}^{*}, \Xi\right)$. Let $\psi=\bar{\partial} u$; then, $\psi \in L_{n, 1}^{2}(D, E)$ since $u \in \operatorname{Dom}\left(\square_{n, 0}, \Xi\right)$. Using (v) in Theorem 5,v $\equiv \bar{\partial}^{*} N_{n, 0} \psi$ is the solution of $\bar{\partial} v=\psi$, which is unique and $v \perp \operatorname{ker}(\bar{\partial}, \Xi)$. Thus, $v=u$. By using Equation (36), one obtains

$$
\|u\|^{2} \leq c\|\psi\|^{2}=c\|\bar{\partial} u\|^{2}=c<\square_{n, 0} u, u>\leq c\left\|\square_{n, 0} u\right\|\|u\| .
$$

Thus, $\square_{n, 0}$ is bounded below on $\operatorname{Dom}\left(\square_{n, 0}, \Xi\right) \cap\left(\mathscr{H}_{n, 0}(E)\right)^{\perp}$ and $\square_{n, 0}$ has a closed range and (i) and (ii) is proved. Then, from the strong Hodge decomposition,

$$
L_{(n, 0}^{2}(\Omega, \Xi)=\operatorname{Rang}\left(\square_{n, 0}, E\right) \oplus \mathscr{H}_{n, 0}(\Omega, E)=\bar{\partial}^{*} \bar{\partial}\left(\operatorname{Dom}\left(\square_{n, 0}, E\right)\right) \oplus \mathscr{H}_{n, 0}(\Omega, \Xi),
$$

for all $\psi \in \operatorname{Rang}\left(\square_{n, 0}, \Xi\right)$, there is a unique $N_{n, 0} \psi \perp \mathscr{H}_{n, 0}(D, \Xi)$ that satisfies $\square_{n, 0} N_{n, 0} \psi=\psi$. Extending $N_{n, 0}$ to $L_{n, 0}^{2}(D, \Xi)$ by requiring $N_{n, 0} \mathcal{P}_{n, 0}=0, N_{n, 0}$ satisfies (i) and (ii). (iii) is proved as before. If $\psi \in \operatorname{Dom}(\bar{\partial}, \Xi)$,

$$
N_{n, 0} u=\left(I-\mathcal{P}_{n, 0}\right) N_{n, 0} u=N_{n, 0}\left(\bar{\partial}^{*} \bar{\partial}\right) N_{n, 0} u=\bar{\partial}^{*} N_{n, 0}^{2} \bar{\partial} u .
$$

Thus, (iv) holds on $\operatorname{Dom}(\bar{\partial}, \Xi)$. From (iii) in Theorem 5,

$$
\left\|N_{n, 1} \psi\right\| \leq C\|\psi\| .
$$

for all $\psi \in \mathcal{C}_{n, 0}^{\infty}(\bar{\Omega}, E)$,

$$
\begin{align*}
\left\|N_{n, 0} \psi\right\|^{2} & =<\bar{\partial}^{*} N_{n, 1}^{2} \bar{\partial} \psi, N_{n, 1}^{2} \bar{\partial} \psi>=<N_{n, 1} \bar{\partial} \psi, N_{n, 1}^{2} \bar{\partial} \psi>=\left\|N_{n, 1} \bar{\partial} \psi\right\|\left\|N_{n, 1}^{2} \bar{\partial} \psi\right\| \tag{38}\\
& \leq C\left\|N_{n, 1} \bar{\partial} \psi\right\|^{2} .
\end{align*}
$$

On the other hand, one obtains

$$
\begin{equation*}
\left\|N_{n, 1} \bar{\partial} \psi\right\|^{2}=<N_{n, 1} \bar{\partial} \psi, N_{n, 1} \bar{\partial} \psi>=<N_{n, 1}^{2} \bar{\partial} \psi, \bar{\partial} \psi>=<\bar{\partial}^{*} N_{n, 1}^{2} \bar{\partial} \psi, \psi>\leq\left\|N_{n, 0} \psi\right\|\|\psi\| . \tag{39}
\end{equation*}
$$

Combining Equation (38) and Equation (39), one obtains

$$
\left\|N_{n, 0} \psi\right\| \leq C\|\psi\|
$$

and

$$
\begin{aligned}
\left\|\bar{\partial} N_{n, 0} \psi\right\|^{2} & =<\bar{\partial}^{*} \bar{\partial} N_{n, 0} \psi, N_{n, 0}^{2} \psi> \\
& =<\left(I-\mathcal{P}_{n, 0}\right) \psi, N_{n, 0} \psi> \\
& \leq\|\psi\|\left\|N_{n, 0} \psi\right\| \\
& \leq C\|\psi\|^{2} .
\end{aligned}
$$

Then, the proof follows.

6. Sobolev Estimates

As in Cao-Shaw-Wang [3,35], one prove the following results:

Proposition 5.

$$
\begin{align*}
& \bar{\partial}^{*} \psi=-\#^{-1} * \bar{\partial} * \# \psi, \\
& \bar{\partial}_{\mathrm{m}}^{*} \psi=\bar{\partial}^{*} \psi+\mathrm{m} *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right) . \tag{40}
\end{align*}
$$

Proof. In fact, for $\psi \in \mathcal{C}_{r, s-1}^{\infty}(D, \Xi)$ and $\psi \in \mathcal{C}_{r, s-1}^{\infty}(\bar{D}, \Xi)$, one obtains

$$
\begin{aligned}
\bar{\partial}\left({ }^{t} \psi \wedge * \# \psi\right) & ={ }^{t} \bar{\partial} \psi \wedge * \# \psi+(-1)^{r+s}{ }^{t} \psi \wedge \bar{\partial} * \# \psi \\
& ={ }^{t} \bar{\partial} \psi \wedge * \# \psi+{ }^{t} \psi \wedge * * \bar{\partial} * \# \psi \\
& ={ }^{t} \bar{\partial} \psi \wedge \# \# \psi+{ }^{t} \psi \wedge * \#\left(\#^{-1} * \bar{\partial} * \#\right) \psi .
\end{aligned}
$$

Since ${ }^{t} \psi \wedge * \# \psi$ is of type $(n, n-1)$, then

$$
\begin{aligned}
& \partial\left({ }^{t} \psi \wedge * \# \psi\right)=0 \\
& \bar{\partial}\left({ }^{t} \psi \wedge * \# \psi\right)=d\left({ }^{t} \psi \wedge * \# \psi\right)
\end{aligned}
$$

Then, by Stokes theorem, one obtains

$$
\begin{aligned}
0=\int_{\Omega} d\left({ }^{t} \psi \wedge * \# \psi\right) & =\int_{\Omega} \bar{\partial}\left({ }^{t} \psi \wedge * \# \psi\right) \\
& =\int_{\Omega}{ }^{t} \bar{\partial} \psi \wedge * \# \psi+\int_{\Omega}{ }^{t} \psi \wedge * \#\left(\#^{-1} * \bar{\partial} * \#\right) \psi,
\end{aligned}
$$

i.e.,

$$
\int_{D}{ }^{t} \bar{\partial} \psi \wedge * \# \psi=-\int_{D}{ }^{t} \psi \wedge * \#\left(\#^{-1} * \bar{\partial} * \#\right) \psi
$$

i.e.,

$$
\int_{D}{ }^{t} \bar{\partial} \psi \wedge * \# \psi=\int_{D}{ }^{t} \psi \wedge * \# \bar{\partial}^{*} \psi .
$$

Therefore,

$$
\psi \psi=-\#^{-1} * \bar{\partial} * \# \psi .
$$

Then,

$$
\begin{aligned}
\bar{\partial}_{\mathrm{m}}^{*} \psi & =-\zeta^{\mathrm{m}} \#^{-1} * \bar{\partial} * \zeta^{-\mathrm{m}} \# \psi \\
& =-\zeta^{\mathrm{m}} \zeta^{-\mathrm{m} \#^{-1}} * \bar{\partial} * \# \psi-\zeta^{\mathrm{m}} \#^{-1} *\left(-\mathrm{m} \zeta^{-\mathrm{m}-1} \bar{\partial} \zeta \wedge * \# \psi\right) \\
& =\bar{\partial}^{*} \psi+\mathrm{m} \#^{-1} *\left(\frac{\bar{\partial} \zeta}{\zeta} \wedge * \# \psi\right)
\end{aligned}
$$

But,

$$
\frac{\bar{\partial} \zeta}{\zeta} \wedge * \# \psi=\frac{\bar{\partial} \zeta}{\zeta} \wedge * \bar{b} \bar{\psi}=\bar{b} \frac{\bar{\partial} \zeta}{\zeta} \wedge * \bar{\psi}
$$

and

$$
\#\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)=\bar{b} \frac{\partial \zeta}{\zeta} \wedge * \psi=\bar{b} \frac{\bar{\partial} \zeta}{\zeta} \wedge * \bar{\psi} \text {. }
$$

Then,

$$
\frac{\bar{\partial} \zeta}{\zeta} \wedge * \# \psi=\#\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)
$$

i.e.,

$$
\#^{-1} * \frac{\bar{\partial} \zeta}{\zeta} \wedge * \# \psi=*\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right) .
$$

Then,

$$
\bar{\partial}_{\mathrm{m}}^{*} \psi=\bar{\partial}^{*} \psi+\mathrm{m} *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)
$$

where $\psi_{0}=\psi$.
Theorem 5. Let X, D and Ξ be the same as Theorem 2. Let $\psi \in L_{n, s}^{2}(D, \Xi) \cap \operatorname{Dom}(\bar{\partial}, E) \cap$ $\operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right), 1 \leq s \leq n$. Then,

$$
\begin{equation*}
\|\bar{\partial} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\left\|\bar{\partial}^{*} \psi\right\|_{W_{n, S}^{\mathrm{s}}(D, \Xi)}^{2} \geq C_{\mathrm{m}}\left(\|\partial \phi \wedge * \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\|\bar{\nabla} \psi\|_{W_{n, S}^{m}(D, \Xi)}^{2}+\int_{D}(-\hbar)|\psi|^{2} d v\right), \tag{41}
\end{equation*}
$$

where $C_{m}>0$ is an independent constant of ψ.
Proof. As Lemma 1, one obtains

$$
\begin{aligned}
\partial \bar{\partial} \hbar & =m \zeta^{m}\left((1-m) \frac{\partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}-\frac{\partial \bar{\partial} \zeta}{\zeta}\right) \\
\partial \bar{\partial}\left(-\log \zeta^{m}\right) & =m\left(\frac{\partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}-\frac{\partial \bar{\partial} \zeta}{\zeta}\right) .
\end{aligned}
$$

Then

$$
\zeta^{\mathrm{m}} \partial \bar{\partial}\left(-\log \zeta^{\mathrm{m}}\right)=\partial \bar{\partial} \hbar+\mathrm{m}^{2}\left(\frac{\partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}\right)
$$

Therefore, for $\psi \in \mathcal{C}_{n, s}^{1}(\bar{D}, E) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$, and by using Equation (18), one obtains
$\|\bar{\partial} \psi\|_{W_{n, S}^{m}(D, \Xi)}^{2}+\left\|\bar{\partial}_{\mathrm{m}}^{*} \psi\right\|_{W_{n, S}^{m}(D, \Xi)}^{2}=\|\bar{\nabla} \psi\|_{W_{n, S}^{m}(D, \Xi)}^{2}+<\Theta_{\mathrm{m}} \psi, \psi>_{\mathrm{m}}+<(\partial \bar{\partial} \hbar) \psi, \psi>+\mathrm{m}^{2}<\left(\frac{\partial \zeta \wedge \bar{\partial} \zeta}{\zeta^{2}}\right) \psi, \psi>$.
Also, by using Equation (40), one obtains

$$
\begin{align*}
\left\|\bar{\partial}_{m}^{*} \psi\right\|_{m}^{2} & =\left\|\bar{\partial}^{*} \psi\right\|_{m}^{2}+2 \operatorname{Re}<\bar{\partial}^{*} \psi, m *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)>_{m}+\left\|m *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)\right\|_{m}^{2} \\
& =\left\|\bar{\partial}^{*} \psi\right\|_{m}^{2}+2 \operatorname{Re}<\bar{\partial}^{*} \psi, m *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)>_{m}+m^{2}\left\|\frac{\partial \zeta}{\zeta} \wedge * \psi\right\|_{m}^{2} \tag{43}
\end{align*}
$$

and since for all $\kappa>0$,
$2 \operatorname{Re}<\bar{\partial}^{*} \psi, \mathrm{~m} *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)>\left._{\mathrm{m}}\left|\leq \frac{\mathrm{m}}{\kappa} \int_{\Omega}(-\hbar)\right| \partial^{*} \psi\right|^{2} d v+\kappa \mathrm{m} \int_{D}(-\hbar)\left|\mathrm{m} *\left(\frac{\partial \zeta}{\zeta} \wedge * \psi\right)\right|^{2} d v$,
\quad and since

$$
\begin{equation*}
<(\partial \bar{\partial} \hbar) \psi, \psi>\geq C_{0}\left(\int_{D}(-\hbar)|\psi|^{2} d v+\int_{D}(-\hbar)\left|\frac{\partial \zeta}{\zeta} \wedge * \psi\right|^{2} d v\right) \tag{45}
\end{equation*}
$$

Then, by using Equations (43)-(45), the identity (42) becomes

$$
\|\bar{\partial} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\left\|\bar{\partial}^{*} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2} \geq C_{\mathrm{m}}\left(\|\partial \phi \wedge * \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\|\bar{\nabla} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}+\int_{D}(-\hbar)|\psi|^{2} d v\right)
$$

Then the proof follows from the density of $\mathcal{C}_{n, s}^{1}(\bar{D}, E) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$ in $\operatorname{Dom}(\bar{\partial}, \Xi) \cap$ $\operatorname{Dom}\left(\bar{\partial}^{*}, E\right)$ in the sense of $\left(\|\psi\|_{W_{n, S}^{m}(D, \Xi)}^{2}+\|\bar{\partial} \psi\|_{W_{n, S}^{m}(D, \Xi)}^{2}+\left\|\bar{\partial}^{*} \psi\right\|_{W_{n, S}^{m}(D, \Xi)}^{2}\right)^{2}$.

Corollary 2. Let X, D and Ξ be the same as Theorem 2. Then,

$$
\begin{align*}
&\left\|\bar{\partial} N_{n, s} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}, \psi \in \operatorname{ker}\left(\bar{\partial}^{*}, E\right), 0 \leq s \leq n-1 . \tag{46}\\
&\left\|\bar{\partial}^{*} N_{n, s} \psi\right\|_{W_{n, S}(D, \Xi)} \leq C\|\psi\|_{W_{n, S}^{\mathrm{s}}(D, \Xi)}, \psi \in \operatorname{ker}(\bar{\partial}, \Xi), 2 \leq s \leq n .
\end{align*}
$$

Proof. Since $\bar{\partial} N_{n, s} \psi \in \operatorname{Dom}(\bar{\partial}, E) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right), 0 \leq s \leq n-1$. Then, substituting $\bar{\partial} N_{n, s} \psi$ into Equation (41), for $\psi \in \operatorname{ker}\left(\bar{\partial}^{*}, \Xi\right)$, one obtains
$\left\|\bar{\partial} \bar{\partial} N_{n, s} \psi\right\|_{W_{n, s}^{m}(D, \Xi)}^{2}+\left\|\psi \bar{\partial} N_{n, s} \psi\right\|_{W_{n, s}^{m}(D, \Xi)}^{2} \geq C_{m}\left(\left\|\partial \phi \wedge * \bar{\partial} N_{n, s} \psi\right\|_{W_{n, s}^{m}(D, \Xi)}^{2}+\left\|\bar{\nabla} \bar{\partial} N_{n, s} \psi\right\|_{W_{n, s}^{m}(D, \Xi)}^{2}+\int_{D}(-\hbar)\left|\bar{\partial} N_{n, s} \psi\right|^{2} d v\right)$.
Then, by using the fact that $\psi=\left(\bar{\partial}^{*} \bar{\partial}+\overline{\partial \partial}^{*}\right) N \psi, \bar{\partial} \bar{\partial}=0$ and $\bar{\partial}^{*} N \psi=N \bar{\partial}^{*} \psi=0$, one obtains

$$
\|\psi\|_{W_{n, s}^{\mathrm{m}}(D, \Xi)}^{2} \geq C_{\mathrm{m}} \int_{D}(-\hbar)|\bar{\partial} N \psi|^{2} d v
$$

Then, the first equation of Equation (46) is proved by choosing $C=\frac{1}{C_{m}}$. Similarly, for $2 \leq s \leq n, \bar{\partial}^{*} N \psi \in \operatorname{Dom}(\bar{\partial}, E) \cap \operatorname{Dom}\left(\bar{\partial}^{*}, \Xi\right)$. Then, substituting $\bar{\partial}^{*} N_{n, s} \psi$ into Equation (41), for $\psi \in \operatorname{ker}(\bar{\partial}, \Xi)$, one obtains

$$
\left\|\bar{\partial}^{*} N \psi\right\|_{W_{n, s}^{m}(D, \Xi)}^{2}+\left\|\psi \bar{\partial}^{*} N \psi\right\|_{W_{n, S}^{m}(D, \Xi)}^{2} \geq C_{m}\left(\left\|\partial \phi \wedge * \bar{\partial}^{*} N \psi\right\|_{W_{n, S}^{m}(D, \Xi)}^{2}+\left\|\bar{\nabla} \partial^{*} N \psi\right\|_{W_{n, S}^{m}(D, \Xi)}^{2}+\int_{D}(-\hbar)\left|\bar{\partial}^{*} N \psi\right|^{2} d v\right) .
$$

Then, by using the fact that $\psi=\left(\bar{\partial}^{*} \bar{\partial}+\overline{\partial \partial}^{*}\right) N \psi, \bar{\partial}^{*} \bar{\partial}^{*}=0$ and $\bar{\partial} N \psi=N \bar{\partial} \psi=0$, one obtains

$$
\|\psi\|_{W_{n, S}^{m}(D, \Xi)}^{2} \geq C_{\mathrm{m}} \int_{D}(-\hbar)\left|\bar{\partial}^{*} N \psi\right|^{2} d v .
$$

Then, Equation (48) is proved by choosing $C=\frac{1}{C_{m}}$.
Theorem 6. Let X, D and Ξ be the same as Theorem 2. Let $\psi \in L_{n, s}^{2}\left(D, \zeta^{-m}, \Xi\right), 1 \leq s \leq n, a$ $\bar{\partial}$-closed form. Then, for $0 \leq \mathrm{m}<\mathrm{m}_{0}, \exists \psi=\bar{\partial}_{\mathrm{m}}^{*} N \psi \in L_{n, s-1}^{2}\left(D, \zeta^{-\mathrm{m}}, \Xi\right)$ satisfies $\bar{\partial} \psi=\psi$ and

$$
\begin{equation*}
\int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v \leq C \int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v \tag{47}
\end{equation*}
$$

Proof. Let $\chi=\psi e^{\phi}=\psi \zeta^{-\mathrm{m}}, \phi=-\mathrm{m} \log \zeta$. Then, χ is orthogonal to all $\bar{\partial}$-closed forms of $L_{n, s-1}^{2}\left(D, \zeta^{-m}, ~ \Xi\right)$. Equation (33) gives

$$
\int_{D}|\chi|^{2} \zeta^{\mathrm{m}} d v \leq C \int_{D}|\bar{\partial} \chi|^{2} \zeta^{\mathrm{m}} d v
$$

For $\phi=-\mathrm{m} \log \zeta$, one obtains

$$
\bar{\partial} \chi=e^{\phi} \bar{\partial} \psi+e^{\phi} \bar{\partial} \phi \wedge \psi=\zeta^{-m} \bar{\partial} \psi+\zeta^{-m} \bar{\partial} \phi \wedge \psi .
$$

Then,

$$
\int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v=\int_{D}|\chi|^{2} \zeta^{\mathrm{m}} d v \leq C \int_{D}|\bar{\partial} \chi|^{2} \zeta^{\mathrm{m}} d v
$$

Then,

$$
\begin{aligned}
\int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v & \leq C \int_{D}|\bar{\partial} \psi+\bar{\partial} \phi \wedge \psi|^{2} \zeta^{-\mathrm{m}} d v \\
& \leq C\left(\left(1+\frac{1}{\tau}\right) \int_{D}|\psi| \zeta^{-\mathrm{m}} d v+(1+\tau) \int_{D}|\bar{\partial} \phi \wedge \psi|^{2} \zeta^{-\mathrm{m}} d v\right)
\end{aligned}
$$

for every $\tau>0$. Since

$$
|\bar{\partial} \phi \wedge \psi|^{2} \leq|\psi|^{2}|\bar{\partial} \phi|^{2} \leq t^{2}|\psi|^{2},
$$

by choosing τ, which satisfies $(1+\tau) t^{2}<1$, (i.e., $0<\tau<\left(\frac{m_{0}}{m}\right)^{2}-1$),

$$
\int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v \leq C \frac{\left(1+\frac{1}{\tau}\right)}{\left[1-(1+\tau) t^{2}\right]} \int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v
$$

It follows that $\bar{\partial} \psi=\psi$ and

$$
\int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v \leq \widetilde{C} \int_{D}|\psi|^{2} \zeta^{-\mathrm{m}} d v
$$

Theorem 7. Let X, D and Ξ be the same as Theorem 2. The Bergman projection $\mathcal{P}: L_{n, s}^{2}(D, \Xi) \longrightarrow$ $L_{n, s}^{2}(D, E) \cap \operatorname{ker}(\bar{\partial}, \Xi)$ is bounded from $W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$ to $W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$, where $0 \leq s \leq n-1$.

Proof. From Lemma 2, $\mathcal{P}=I-\bar{\partial}^{*} N_{r, s+1} \bar{\partial}$. Then, by using Equation (47), $\bar{\partial}^{*} N$ is bounded on $\operatorname{ker}(\bar{\partial}, \Xi)$ with

$$
\begin{equation*}
\left\|\bar{\partial}^{*} N \psi\right\|_{-\mathrm{m}} \leq C\|\psi\|_{-\mathrm{m}}, \tag{48}
\end{equation*}
$$

for $\psi \in \operatorname{ker}(\bar{\partial}, \Xi), 1 \leq s \leq n-1$. The Bergman projection with respect to the weighted space $L^{2}\left(D, \zeta^{\mathrm{m}}, \Xi\right)$ is denoted by $\mathcal{P}_{\mathrm{m}} . \forall \psi, \varphi \in L_{n, 0}^{2}(D, \Xi)$ with $\bar{\partial} \psi=0$, and one obtains

$$
<\mathcal{P} \varphi, \psi>=<\varphi, \psi>=<\zeta^{-\mathrm{m}} \varphi, \psi>_{\mathrm{m}}=<\mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \varphi, \psi>_{\mathrm{m}}=<\zeta^{\mathrm{m}} \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \varphi, \psi>
$$

This implies that

$$
\begin{equation*}
\mathcal{P}=\mathcal{P}^{2}=\mathcal{P} \zeta^{\mathrm{m}} \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}}=\left(I-\bar{\partial}^{*} N \bar{\partial}\right) \zeta^{\mathrm{m}} \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}}=\zeta^{\mathrm{m}} \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}}-\bar{\partial}^{*} N\left(\bar{\partial} \zeta^{\mathrm{m}} \wedge \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}}\right), \tag{49}
\end{equation*}
$$

because $\bar{\partial} \mathcal{P}_{\mathrm{m}}=0 . \forall \psi \in L^{2}(D, \Xi)$,

$$
\begin{equation*}
\left\|\zeta^{\mathrm{m}} \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \psi\right\|_{-\mathrm{m}}^{2} \leq\left\|\mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2} \leq\left\|\zeta^{-\mathrm{m}} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}=\|\psi\|_{-\mathrm{m}}^{2} . \tag{50}
\end{equation*}
$$

With (46), one obtains

$$
\begin{align*}
\left\|\bar{\partial}^{*} N\left(\bar{\partial} \zeta^{\mathrm{m}} \wedge \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \psi\right)\right\|_{-\mathrm{m}}^{2} & \leq C\left\|\bar{\partial} \zeta^{\mathrm{m}} \wedge \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \psi\right\|_{-\mathrm{m}}^{2} \\
& \leq C\left\|\zeta^{\mathrm{m} / 2} \mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \psi\right\|^{2} \\
& =C\left\|\mathcal{P}_{\mathrm{m}} \zeta^{-\mathrm{m}} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2} \tag{51}\\
& \leq C\left\|\zeta^{-\mathrm{m}} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}^{2}= \\
& C\|\psi\|_{-\mathrm{m}}^{2} .
\end{align*}
$$

With Equations (49) to (51), one obtains

$$
\begin{equation*}
\|\mathcal{P} \psi\|_{-m}^{2} \leq C\|\psi\|_{-m}^{2} \tag{52}
\end{equation*}
$$

We note that $W^{m / 2}(D, \Xi) \subset L^{2}\left(D, \zeta^{-m}, \Xi\right)$. From Equation (52), one obtains

$$
\begin{equation*}
\left\|\mathcal{P}_{\mathrm{m}} \psi\right\|_{-\mathrm{m}}^{2} \leq C\|\psi\|_{-\mathrm{m}}^{2} \leq C_{1}\|\psi\|_{\mathrm{m} / 2}^{2} \tag{53}
\end{equation*}
$$

Using Equation (52), one obtains that the Bergman projection satisfies

$$
\begin{equation*}
\|\mathcal{P} \psi\|_{\mathrm{m} / 2} \leq C_{2}\|\psi\|_{\mathrm{m} / 2}^{2} \tag{54}
\end{equation*}
$$

Then, the Theorem is proved.
In the following, the Sobolev boundary regularity for $N, \bar{\partial} N$ and $\bar{\partial}^{*} N$ is studied.
Theorem 8. Let X, D and Ξ be the same as Theorem 2. Then, $\forall 0<m<m_{0}, N$ is bounded from $W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$ to $W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$ and $0 \leq s \leq n-1$. Also, $\forall \psi \in W_{n, s}^{\mathrm{m}}(D, \Xi)$, and one obtains the following estimates:

$$
\begin{align*}
\|N \psi\|_{W_{n, s}^{m / s}(D, \Xi)} & \leq 2 C^{2}\|\psi\|_{W_{n, s}^{m / 2}(D, \Xi)}^{2} \\
\|\bar{\partial} N \psi\|_{W_{n, s}^{m / s}(D, \Xi)} & \leq C\|\psi\|_{W_{n, s}^{m / 2}(D, \Xi)}^{2}, \tag{55}\\
\left\|\bar{\partial}^{*} N \psi\right\|_{W_{n, s}^{\mathrm{m} / s}(D, \Xi)} & \leq C\|\psi\|_{W_{n, S}^{m / 2}(D, \Xi)^{\prime}}^{2},
\end{align*}
$$

where C depends only on m .
Proof. Since $\mathcal{P}=I-\bar{\partial}^{*} N \bar{\partial}$, then $\bar{\partial}^{*} N \psi=\bar{\partial}^{*} N \mathcal{P} \psi$. Let $\mathcal{P}^{\prime}=\bar{\partial}^{*} N \bar{\partial}$ be another projection operator into $\operatorname{ker}\left(\bar{\partial}^{*}, \Xi\right)$. Then, $\mathcal{P}=I-\mathcal{P}^{\prime}$. It follows that $\overline{\bar{\gamma}} N \psi=\bar{\partial} N \mathcal{P}^{\prime} \psi$. The self-adjoint property of \mathcal{P} and \mathcal{P}^{\prime} gives

$$
\|\mathcal{P} \psi\|_{W_{n, s}^{\mathrm{m}}(D, \Xi)}+\left\|\mathcal{P}^{\prime} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C_{3}\|\psi\|_{W_{n, s}^{\mathrm{m}}(D, \Xi)} .
$$

Thus, by using Equation (54), and for $s \geq 0$, one obtains

$$
\begin{equation*}
\|\bar{\partial} N \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}=\left\|\bar{\partial} N \mathcal{P}^{\prime} \psi\right\|_{W_{n, s}^{\mathrm{m}}(D, \Xi)} \leq C_{4}\left\|\mathcal{P}^{\prime} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C_{4} C_{3}\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}, \tag{56}
\end{equation*}
$$

and for $s \geq 2$, one obtains

$$
\left\|\bar{\partial}^{*} N \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}=\left\|\bar{\partial}^{*} N \mathcal{P} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C_{4}\|\mathcal{P} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C_{4} C_{3}\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} .
$$

Since for all $\psi \in \operatorname{ker}(\overline{\bar{\partial}}, \Xi)$, one obtains

$$
\bar{\partial}^{*} N \psi=\bar{\partial}_{\mathrm{m}}^{*} N_{\mathrm{m}} \psi-\mathcal{P}_{\mathrm{m}} \bar{\partial}_{\mathrm{m}}^{*} N_{\mathrm{m}} \psi .
$$

Thus, for all $\psi \in L_{n, 1}^{2}(D, \Xi)$, one obtains

$$
\begin{align*}
\left\|\bar{\partial}^{*} N \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} & =\left\|\bar{\partial}^{*} N \mathcal{P} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)}=\left\|\bar{\partial}_{\mathrm{m}}^{*} N_{\mathrm{m}} \mathcal{P} \psi-\mathcal{P}_{\mathrm{m}} \bar{\partial}_{\mathrm{m}}^{*} N_{\mathrm{m}} \mathcal{P} \psi\right\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \\
& \leq C_{5}\|\mathcal{P} \psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} \leq C_{5} C_{3}\|\psi\|_{W_{n, S}^{\mathrm{m}}(D, \Xi)} . \tag{57}
\end{align*}
$$

Since $(\bar{\partial} N)^{*}=N \bar{\partial}^{*}=\bar{\partial}^{*} N$ and $\left(\bar{\partial}^{*} N\right)^{*}=N \bar{\partial}=\bar{\partial} N$. Use Equations (56) and (57), and by choosing $C=\max \left\{C_{3} C_{4}, C_{3} C_{5}\right\}$, the second and third inequality of Equation (55) follows. Since

$$
N=\bar{\partial}_{\bar{\partial}}{ }^{*} N^{2}+\bar{\partial}^{*} \bar{\partial} N^{2}=\bar{\partial} N \bar{\partial}^{*} N+\bar{\partial}^{*} N \bar{\partial} N .
$$

Equations (56) and (57) give

$$
\|N \psi\|_{\mathrm{m} / 2(D)} \leq 2 C^{2}\|\psi\|_{\mathrm{m} / 2(D)}^{2}
$$

Theorem 9. Let X, D and Ξ be the same as Theorem 2. Then, $\forall 0<\mathrm{m}<\mathrm{m}_{0}$ and N is bounded from $W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$ to $W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$, where $0 \leq s \leq n-1$. Also, $\forall \psi \in W_{n, s}^{\mathrm{m} / 2}(D, \Xi)$, and one obtains the following estimates:

$$
\begin{aligned}
\|N \psi\|_{W_{n, s}^{-\mathbb{m} / 2}(D, \Xi)} & \leq C\|\psi\|_{W_{n, S}^{-m / 2}(D, \Xi)^{\prime}} \\
\|\bar{\partial} N \psi\|_{W_{n, 5}^{-\mathrm{m} / 2}(D, \Xi)} & \leq C\|\psi\|_{W_{n, s}^{-\mathrm{m} / 2}(D, \Xi)^{\prime}} \\
\left\|\bar{\partial}^{*} N \psi\right\|_{W_{n, s}^{-\mathrm{m} / 2}(D, \Xi)} & \leq C\|\psi\|_{W_{n, s}^{-\mathrm{m} / 2}(D, \Xi)^{2}}
\end{aligned}
$$

Proof. With respect to the L^{2} norm, if \mathcal{S}^{*} is the adjoint map of \mathcal{S}, one obtains

$$
\begin{align*}
\|\mathcal{S} f\|_{W_{n, s}^{\mathrm{m} / 2}(D, \Xi)} & =\sup _{g \in L^{2}} \frac{<\mathcal{S} f, g>_{L^{2}}}{\|g\|_{W_{n, s}^{m / 2}(D, \Xi)}} \\
& =\sup _{g \in L^{2}} \frac{<f, \mathcal{S}^{*} g>_{L^{2}}}{\|g\|_{W_{n, s}^{-m / 2}(D, \Xi)}} \tag{58}\\
& \leq\left\|\mathcal{S}^{*}\right\|_{W_{n, s}^{-m / 2}(D, \Xi)}\|g\|_{W_{n, s}^{m / 2}(D, \Xi)}
\end{align*}
$$

Then, by using Theorem 9 and Equation (58), the proof follows.

7. Conclusions

Sobolev estimates for the $\bar{\partial}$ and the $\bar{\partial}$-Neumann operator on pseudoconvex manifolds are fundamental results in complex analysis. They allow us to understand the behavior of holomorphic functions and provide important tools for solving the $\bar{\partial}$ equation. These estimates have applications in various areas of mathematics, such as the study of complex geometry and partial differential equations on pseudoconvex manifolds.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Najran University under the General Research Funding program, grant code (NU/DRP/SERC/12/24).

Data Availability Statement: Not applicable.
Acknowledgments: The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the General Research Funding program, grant code (NU/DRP/SERC/12/24).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berndtsson, B.; Charpentier, P. A Sobolev mapping property of the Bergman kernel. Math. Z. 2000, 235, 1-10. [CrossRef]
2. Boas, H.P.; Straube, E.J. Equivalence of regularity for the Bergman projection and the $\bar{\partial}$-Neumann operator . Manuscripta Math. 1990, 67, 25-33. [CrossRef]
3. Cao, J.; Shaw, M.C.; Wang, L. Estimates for the $\bar{\partial}$-Neumann problem and nonexistence of C^{2} Levi-flat hypersurfaces in \mathcal{P}^{n}. Math. Z. 2004, 248, 183-221. [CrossRef]
4. Harrington, P.S. A quantitative analysis of Oka's lemma. Math. Z. 2007, 256, 113-138. [CrossRef]
5. Saber, S. Solution to $\bar{\partial}$ with exact support and regularity for the $\bar{\partial}$-Neumann operator on weakly q-convex domains. Int. J. Geom. Methods Mod. Phys. 2010, 7, 135-142. [CrossRef]
6. Kohn, J.J. A survey of the $\bar{\partial}$-Neumann problem, Complex Analysis of Several Variables. In Proceedings of Symposia in Pure Mathematics; Siu, Y.-T., Ed.; American Mathematical Society: Providence, RI, USA, 1984; Volume 41, pp. 137-145.
7. Bonami, A.; Charpentier, P. Boundary Values for the Canonical Solution to $\bar{\jmath}$-Equation and $W^{1 / 2}$ Estimates. Preprint 1990. Bordeaux. Available online: https://www.math.u-bordeaux.fr/~pcharpen/recherche/data/Bon-Ch-Neumann.pdf (accessed on 29 August 2023).
8. Saber, S. Sobolev regularity of the Bergman projection on certain pseudoconvex domains. Trans. Razmadze Math. Inst. 2017, 171, 90-102. [CrossRef]
9. Boas, H.P.; Straube, E.J. Global Regularity of the $\bar{\partial}$-Neumann problem: A Survey of the L^{2}-Sobolev Theorey. In Several Complex Variables; MSRI Publications: Berkeley, CA, USA, 1999; Volume 37.
10. Marin, M. On existence and uniqueness in thermoelasticity of micropolar bodies. Comptes Rendus L'AcadéMie Des Sci. Paris Ser. II B 1995, 321, 375-480.
11. Abo-Dahab, S.M.; Abouelregal, A.E.; Marin, M. Generalized Thermoelastic Functionally Graded on a Thin Slim Strip NonGaussian Laser Beam. Symmetry 2020, 12, 1094. [CrossRef]
12. Othman, M.I.A.; Fekry, M.; Marin, M. Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. 2020, 73, 621-629.
13. Saber, S . The $\bar{\partial}$-Cauchy problem on weakly q-convex domains in CPn. Kragujev. J. Math. 2020, 44, 581-591. [CrossRef]
14. Saber, S. Solution To $\bar{\partial}$-Problem With Support Conditions In Weakly q-Convex Domains. Commun. Korean Math. Soc. 2018, 33, 409-421.
15. Saber, S. The д-problem with support conditions and pseudoconvexity of general order in Kahler manifolds. J. Korean Math. Soc. 2016, 53, 1211-1223. [CrossRef]
16. Saber, S. Solution to $\bar{\partial}$ and $\bar{\partial}_{b}$ problem with smooth forms and currents on strictly q-convex domains. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1220002. [CrossRef]
17. Morrow, J.; Kodaira, K. Complex Manifolds; Holt Rinehart and Winston, Inc.: Austin, TX, USA, 1971.
18. Jerison, D.; Kenig, C.E. The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 1995, 130, 161-219. [CrossRef]
19. Charpentier P. Sur les Valuers au Bord de Solutions de L'équation $\bar{\partial} u=f$. Actes du Colloque de Pointe à Pitre 1988, 5, 51-81.
20. Chen, S.C.; Shaw, M.C. Partial Differential Equations in Several Complex Variables; Studies in Advanced Mathematics; American Mathematical Society: Ann Arbor, MI, USA, 2001; Volume 19.
21. Hörmander, L. An Introduction to Complex Analysis in Several Variables; Elsevier: Amsterdam, The Netherlands, 1973.
22. Hörmander, L. L^{2}-estimates and existence theorems for the $\bar{\delta}$-operator. Acta Math. 1965, 113, 89-152. [CrossRef]
23. Hörmander, L. An Introduction to Complex Analysis in Several Variables, 3rd ed.; Van Nostrand: Princeton, NJ, USA, 1990.
24. Takegoshi, K. Representation theorems of cohomology on weakly 1-complete manifolds. Publ. Res. Inst. Math. Sci. 1982, 18, 131-186. [CrossRef]
25. Takeuchi, A. Domaines pseudoconvexes infinis et la métrique of riemanienne dans un espace projectif. J. Math. Soc. Jpn. 1964, 16, 159-181.
26. Takeuchi, A. Domaines pseudoconvexes sur les variétés kählériennes. J. Math. Soc. Jpn. 1967, 16, 159-181. [CrossRef]
27. Choquet-Bruhat, Y. Géométrie Différentielle et Systémes Extérieurs; Dunod: Paris, France, 1968.
28. Siu, Y.-T. Pseudoconvexity and the problem of Levi. Bull. Amer. Math. Soc. 1978, 84, 481-512. [CrossRef]
29. Gennadi, M. Henkin, Andrei Iordan, Regularity of $\bar{\partial}$ on pseudoconcave compacts and applications. Asian J. Math. 2000, 4, 855-884.
30. Elencwajg, G. Pseudo-convexité locale dans les variétés Kählériennes. Ann. Inst. Fourier 1975, 25, 295-314. [CrossRef]
31. Ohsawa, T.; Sibony, N. Bounded P.S.H. functions and pseudoconvexity in Kähler manifolds. Nagoya Math. J. 1998, 249, 1-8. [CrossRef]
32. Saber, S. Global solvability and regularity for $\bar{\jmath}$-on an annulus between two weakly convex domains which satisfy property (P). Asian-Eur. J. Math. 2019, 12, 1950041. [CrossRef]
33. Saber, S. The $L^{2} \bar{\jmath}$-Cauchy problem on pseudoconvex domains and applications. Asian-Eur. J. Math. 2018, 11, 1850025. [CrossRef]
34. Saber, S. Compactness of the complex Green operator in a Stein manifold. Univ. Politeh. Buchar. Sci.-Bull.-Ser.-Appl. Math. Phys. 2019, 81, 185-200.
35. Saber, S. Global regularity of $\bar{\partial}$ on certain pseudoconvexity. Trans. Razmadze Math. Inst. 2021, 175, 417-427.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

