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Abstract: Let D be a relatively compact domain in an n-dimensional Kähler manifold with a C2

smooth boundary that satisfies some “Hartogs-pseudoconvexity” condition. Assume that Ξ is a
positive holomorphic line bundle over X whose curvature form Θ satisfies Θ ≥ Cω, where C > 0.
Then, the ∂-Neumann operator N and the Bergman projection P are exactly regular in the Sobolev
space Wm(D, Ξ) for some m, as well as the operators ∂N, ∂

>
N.
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1. Introduction

Sobolev estimates are crucial tools in the study of complex analysis on pseudoconvex
manifolds. In this paper, we will focus on the Sobolev estimates for the ∂ operator and
the ∂-Neumann operator on such manifolds. Consider a Hartogs pseudoconvex domain
D with a C2 boundary in a Kähler manifold X of complex dimension n, and if Ξ is a
positive line bundle over X whose curvature form satisfies Θ ≥ Cω with constant C > 0,
then the operators N, ∂N, ∂

>
N and the Bergman projection P are regular in the Sobolev

space Wm(D, Ξ) for some positive m. This result generalizes the well-known results of
Berndtsson–Charpentier [1], Boas–Straube [2], Cao–Shaw–Wang [3], Harrington [4] and
Saber [5] and others in the case of the Hartogs pseudoconvex domain in a Kähler manifold
for forms with values in a holomorphic line bundle. Indeed, in [1], Berndtsson–Charpentier
(see also [6]) obtained the Sobolev regularity for P for a pseudoconvex domain Ω. In [2],
Boas–Straube proved that the Bergman projection B maps the Sobolev space Wm(Ω) to itself
for all m > 0 on a smooth pseudoconvex domain in Cn that admits a defining function that
is plurisubharmonic on the boundary bΩ. In [3], Cao–Shaw–Wang obtained the Sobolev
regularity of the operators N, ∂N, ∂

>
N and P on a local Stein domain subset of the complex

projective space. In [4], Harrington proved this result on a bounded pseudoconvex domain
in Cn with a Lipschitz boundary. In [5], Saber proved that the operators N, ∂

>
N and P are

regular in Wm
r,s(D) for some m on a smooth weakly q-convex domain in Cn. Similar results

can be found in [7–16].
This paper is organized into five sections. The introduction presents an introduction

to the subject and contains the history and development of the problem. Section 2 recalls
the basic definitions and fundamental results. In Section 3, the basic Bochner–Kodaira–
Morrey–Kohn identity is proved on the Kähler manifold. In Section 4, it is proved that
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the C2 smoothly bounded Hartogs pseudoconvex domains in the Kähler manifold admit
bounded plurisubharmonic exhaustion functions. Section 5 deals with the L2 estimates
of the ∂ and ∂-Neumann operator on the C2 smoothly bounded Hartogs pseudoconvex
domains in the Kähler manifold. Section 6 presents the main results.

2. Preliminaries

Assuming that X is a complex manifold of the complex dimension n, n ≥ 2, T(X)
(resp. Tx(X)) is the holomorphic tangent bundle of X (resp. at x ∈ X) and π : Ξ −→ X
is a holomorphic line bundle over X. A system of local complex analytic (holomorphic)
coordinates on X is a collection {γj}j∈J (for some index set J) of local complex coordinates
γj : Uj −→ Cn such that:

(i) X = ∪j∈JUj, i.e., {Uj}j∈J is an open covering of X by charts with coordinate
mappings wj : Uj −→ Cn satisfies π−1(Uj) = Uj ×C.

(ii) { fij} is a system of transition functions for Ξ; that is, the maps f jk = γj ◦ γ−1
k :

γk(z) −→ γj(z) are biholomorphic for each pair of indices (j, k) with Uj ∩ Uk being
nonempty (i.e., f jk (resp. f−1

jk = γk ◦ γ−1
j ) are holomorphic maps of γk(Uj ∩ Uk) onto

γj(Uj ∩Uk) (resp. γj(Uj ∩Uk) onto γk(Uj ∩Uk))).
Assume that (w1

j , w2
j , · · · , wn

j ) is the local coordinates on Uj. A system of functions

h̄ = {h̄j}, j ∈ J is a Hermitian metric along the fibers of Ξ with h̄j =| fij |2 h̄i in Ui ∩Uj,
and h̄j is a C∞ positive function in Uj. The (1,0) form of the connection associated with the
metric h̄ is given as θ = {θj}, θj = h̄−1

j ∂h̄j. Θ = {Θj} is the curvature form associated with
the connection θ and is given by

Θj = ∂θj = ∂∂ log h̄j =
n

∑
α,β=1

Θjαβdwα
j ∧ dwβ

j .

Definition 1. Ξ is positive at x ∈ Uj if the Hermitian form

∑ Θjαβ µα µβ,

is positive definite on Tx(X), ∀ µ ∈ Ξx \ {0}.

Along the fibers of Ξ, h̄0 = (h̄−1
j ), j ∈ J is a Hermitian metric for which Ξ is positive;

i.e., ∂∂ log h̄j > 0. Then, h̄0 defines a Kähler metric G on X,

G =
n

∑
α,β=1

gjαβ dwα
j dwβ

j , gjαβ = ∂2 log h̄j/∂wα
j ∂w

β
j .

Let C∞
r,s(X, Ξ) (resp. D∞

r,s(X, Ξ)) be the space of C∞ (r, s) differential forms (resp. with
compact support) on X with values in Ξ. A form ψ = (ψj) ∈ C∞

r,s(X, Ξ) is expressed on Uj
as follows:

ψj(z) = ∑
Ar ,Bs

ψjAr Bs(z)dw
Ar
j ∧ dwBs

j ⊗ sj,

where Ar = (a1, . . . , ar) and Bs = (b1, . . . , bs) are multi-indices and sj is a section of Ξ|Uj
.

Define the inner product

(ψ, ψ) = h̄j ∑
Ar ,Bs

ψjAr Bs
ψAr Bs

j ,

where ψAr Bs
j = ∑Cr ,Ds g

c1a1
j · · · gcrar

j g
b1d1
j · · · gbsds

j ψjc1···crd1···ds
. Let

C∞
r,s(Ω, Ξ) = {ψ |Ω ; ψ ∈ C∞

r,s(X, Ξ)}.
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Let > : C∞
r,s(X, Ξ) −→ C∞

(n−s,n−r)(X, Ξ) be the Hodge star operator, which is a real operator
and satisfies

>> ψ = (−1)r+sψ,

For the proof, see Morrow and Kodaira [17]. Set the volume element with respect to G as
dv. The inner product < ψ, ψ > and the norm ‖ ψ ‖ are defined by

< ψ, ψ >=
∫

Ω
(ψ, ψ) dv =

∫
Ω

tψ ∧>h̄ ψ, and ‖ ψ ‖2=< ψ, ψ > .

The formal adjoint operator ψ of ∂ : C∞
r,s−1(Ω, Ξ) −→ C∞

r,s(Ω, Ξ) is defined by

< ψψ, ψ >=< ψ, ∂ψ >,

ψ ∈ C∞
r,s(Ω, Ξ) and ψ ∈ D∞

r,s−1(Ω, Ξ). Let # : C∞
r,s(X, Ξ) −→ C∞

s,r(X, E>) be defined locally
as (#ψ)j = h̄j ψj; the inner product < ψ, ψ > is given by

< ψ, ψ >=
∫

Ω

tψ ∧> # ψ.

From Stokes’ theorem, ψ ∈ C∞
r,s(Ω, Ξ), ψ ∈ C∞

r,s−1(Ω, Ξ), one obtains

< ∂ψ, ψ >=< ψ, ∂
>

ψ > +
∫

∂Ω

tψ ∧> # ψ.

Put
Br,s(Ω, Ξ) = {ψ ∈ C∞

r,s(Ω, Ξ);> # ψ |∂Ω= 0}.

As a result,
< ∂ψ, ψ >=< ψ, ∂

>
ψ >,

for ψ ∈ Br,s(Ω, Ξ).
L2

r,s(Ω, Ξ) is the Hilbert space of the measurable E-valued (r, s) forms ψ, which are
square integrable in the sense that ‖ψ‖2 < ∞. Let ∂ : L2

r,s(Ω, Ξ) −→ L2
r,s+1(Ω, Ξ) and

∂
>

: L2
r,s+1(Ω, Ξ) −→ L2

r,s(Ω, Ξ). In L2
r,s(Ω, Ξ), the spaces ker(∂, Ξ), Domr,s(∂, Ξ) and

Rang(∂, Ξ) are the kernel, the domain and the range of ∂, respectively. A Bergman projection
operator P : L2

r,s(D, Ξ) −→ L2
r,s(D, Ξ) ∩ kerr,s(E). Let � = �r,s = ∂∂

∗
+∂
∗
∂ be the

unbounded Laplace–Beltrami operator from L2
r,s(Ω, Ξ) to L2

r,s(Ω, Ξ) with Dom(�r,s, Ξ) =

{ψ ∈ L2
r,s(Ω, E)|ψ ∈ Dom(∂, Ξ)∩ Dom(∂

>
, Ξ); ∂ψ ∈ Dom(∂

>
, Ξ) and ∂

>
ψ ∈ Dom(∂, Ξ)}.

Let Nr,s be the ∂-Neumann operator on (r, s) forms, solving Nr,s�r,sψ = ψ for any (r, s)
form ψ in L2

r,s(Ω, Ξ). Denote by P the Bergman operator, mapping a (r, s) form in L2
r,s(Ω, Ξ)

to its orthogonal projection in the closed subspace of ∂-closed forms.
Let

Hr,s(E) = ker(�r,s, Ξ) = {ψ ∈ Dom(∂, Ξ) ∩Dom(∂
>

, Ξ); ∂ψ = 0 and ∂
>

ψ = 0}.

Let Wm
r,s(Ω, Ξ) be the Sobolev space with − 1

2 < m < 1
2 and let ‖ ‖Wm

r,s(Ω,Ξ) denote its norm.

∀ ψ ∈ Dom(∂, Ξ) ∩Dom(∂
>

, Ξ), one obtains ψ ∈ W1
r,s(Ω, loc). Thus, ψ is an elliptic and

ψ ∈Wm
r,s(Ω, Ξ) for − 1

2 < m < 1
2 if and only if

‖ψ‖2
Wm

r,s(Ω,Ξ) =
∫

Ω
ζ−2m |ψ|2 < ∞.

For the proof, see Theorems 4.1 and 4.2 in Jersion and Kenig [18], Lemma 2 in Charpen-
tier [19] and also Theorem C.4 in the Appendix in Chen and Shaw [20].
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Proposition 1 ([21–23]). (i) If ψ ∈ Dom(ψ, Ξ) ⊂ L2
r,s(Ω, Ξ) satisfies supp.ψ ⊆ Ω and supp.

ψψ ⊆ Ω, then ψ|Ω ∈ Dom(∂
>

, Ξ) ⊂ L2
r,s(Ω, Ξ); i.e., ψψ|Ω = ∂

>
ψ|Ω in L2

r,s−1(Ω, Ξ).
(ii) C∞

r,s(Ω, Ξ) is dense in Dom(∂, Ξ) in the sense of (‖ ψ ‖2 + ‖ ∂ψ ‖2)1/2. (iii) Br,s(Ω, Ξ) is

dense in Dom(∂
>

, Ξ) (resp. Dom(∂, Ξ) ∩Dom(∂
>

, Ξ)) in the sense of the norm (‖ ψ ‖2 + ‖
∂
>

ψ ‖2)1/2 (resp. (‖ ψ ‖2 + ‖ ∂ψ ‖2 + ‖ ∂
>

ψ ‖2)1/2).
(iv) ∂

>
= ψ on Br,s(Ω, Ξ).

3. The Kähler Identity

As in Takeuchi A. [24–26], one can prove the following Kähler identity: Fix the
following notation: C∞ sections of A(T(X)), A(T>(X)), A(T(X)) and A(T>

(X)) written
as ∑n

α=1 ζα ∂
∂zα , ∑n

α=1 ψα dzα, ∑n
α=1 ηα ∂

∂zα and ∑n
α=1 ψα dzα, respectively. Use the notation ∂β =

∂
∂ zβ , ∂α = ∂

∂ zα . For η = ∑n
α=1 ηα ∂

∂ zα ∈ A(T(X)), ψ = ∑n
α=1 ψα dzα ∈ A(T>

(X)), define

∇β ηα = ∂β ηαand∇β ψα = ∂β ψα.

A connection ω for T(X) is defined as

ω = (ω
β
α ), ω

β
α =

n

∑
γ=1

Γβ
γα dzγ, with Γβ

γα =
n

∑
σ=1

gσβ∂γgασ,

and its Riemann curvature tensor

Rαβντ =
n

∑
µ=1

gµαR
µ
βντ , Rα

βντ = ∂νΓα
τβ. (1)

One obtains
Γα

βγ
= Γα

βγ, Rα
βντ

= Rα
βντ , andRαβντ = Rαβντ . (2)

The Ricci curvature is defined by

Rντ =
n

∑
β=1
Rβ

βντ . (3)

Following Morrow and Kodaira [13], if G is a Kähler metric,

Γα
βγ = Γα

γβ,

Rαβντ = Rατνβ = Rνβατ = Rνταβ,
(4)

where
n

∑
τ=1

Γτ
τα = ∂α log g, andRντ = ∂ν∂τ log g, where g = det (gαβ).
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For ζ = ∑n
α=1 ζα ∂

∂ zα ∈ A(T(X)), ψ = ∑n
α=1 ψα dzα ∈ A(T>

(X)), one defines

∇βζα = ∂βζα +
n

∑
γ=1

Γα
βγζγ,

∇βψα = ∂βψα −
n

∑
γ=1

Γγ
βαψγ,

∇βζα = ∂βζα,

∇βηα = ∂βηα +
n

∑
γ=1

Γα
βγηγ,

∇βψα = ∂βψα,

∇βψα = ∂βψα −
n

∑
γ=1

Γγ
βαψγ.

(5)

For ψ ∈ C∞
r,s(X, Ξ), one defines

∇αψα1 ...αr β1 ...βs
= ∂αψα1 ...αr β1 ...βs

−
r

∑
j=1

∑
τ

Γτ
ααj

ψα1 ...αj−1ταj+1 ...αr β1 ...βs
,

∇(h̄)
α ψα1 ...αr β1 ...βs

= ∇αψα1 ...αr β1 ...βs
− ∂α log h̄ ψα1 ...αr β1 ...βs

,

∇βψα1 ...αr β1 ...βs
= ∂βψα1 ...αr β1 ...βs

−
s

∑
j=1

∑
τ

Γτ
ββ j

ψα1 ...αr β1 ...βj−1τβj+1 ...βs
,

∇βψβ1 ...βsα1 ...αr = ∂βψβ1 ...βsα1 ...αr +
s

∑
j=1

∑
τ

Γ
β j
βτ ψ

β1 ...βj−1τβj+1 ...βsα1 ...αr ,

(6)

For the proof, see Choquet-Bruhat [27], p. 235.
Following Morrow and Kodaira [17], the operators ∂, ψ are defined as

∂ψ = ∑
Ar ,Bs

∑
µ

∇µψAr Bs
dzµ ∧ dzα1 ∧ . . . ∧ dzαr ∧ dzβ1 ∧ . . . ∧ dzβs ,

(∂
>

ψ)Ar Bs−1
= (−1)r−1

n

∑
α,β=1

gβα∇(h̄)
α ψβAr Bs−1

,
(7)

for ψ ∈ C∞
r,s(X, Ξ).

For a C∞ function λ and for a ψ ∈ C∞
r,s(X, Ξ) at any point of X, one defines

grad λ =

(
∂λ

∂z1 , . . . ,
∂λ

∂zn ,
∂λ

∂z1 , . . . ,
∂λ

∂zn

)
,

| grad λ|2 = (grad λ)(grad λ) =
n

∑
α=1

∣∣∣∣ ∂λ

∂zα

∣∣∣∣2 +
n

∑
β=1

∣∣∣∣∣ ∂λ

∂zβ

∣∣∣∣∣
2

,

(L (λ)ψ, ψ) = ∑
Bs−1

n

∑
β,γ=1

∂2λ

∂zβ∂zγ
ψ

β

Bs−1
ψγBs−1 .

Since dλ 6= 0 on U, then grad λ 6= 0 on U also. Also, set(
∇,∇

)
= h̄−1 ∑

Cs

∑
µ

∇µψCs
∇µψCs .
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For ψ ∈ C∞
0,s(X, Ξ), s ≥ 1, we construct from ψ the two tangent vector fields ξ and η to X as

follows:

ξ = {ξβ = ∑
Bs−1

n

∑
γ=1

h̄−1
(
∇γψ

β

Bs−1

)
ψγBs−1 , ξβ = 0},

η = {ηγ = 0, ηγ = ∑
Bs−1

n

∑
β=1

h̄−1
(
∇(h̄)

β ψ
β

Bs−1

)
ψγBs−1},

where β, γ = 1, 2, . . . , n.

Proposition 2 ([24]).

∇µ gαβ = 0, ∇µ gαβ = 0, and ∇µ gβα = 0.

Proof. Since gαβ is a C∞ section of T>(X)⊗ T>
(X), then Equation (3) gives

∇µ gαβ = ∂µ gαβ −∑
τ

Γτ
µα gτβ

= ∂µ gαβ −∑
γ,τ

gγτ(∂µgαγ) gτβ

= ∂µ gαβ −∑
γ

ζ
γ
β(∂µgαγ)

= ∂µ gαβ − ∂µ gαβ

= 0.

∇µ gαβ = ∂µ gαβ −∑
τ

Γτ
µβ gατ

= ∂µ gαβ −∑
γ,τ

gτγ(∂µgγβ) gατ

= ∂µ gαβ −∑
γ

ζ
γ
α (∂µgγβ)

= ∂µ gαβ − ∂µ gαβ

= 0.

∇µ gβα = ∂µ gβα + ∑
τ

Γβ
µτ gτα

= ∂µ gβα + ∑
γ,τ

gβγ (∂µ gγτ) gτα

= ∂µ gβα − ∑
τ,γ

gγτ (∂µgβγ) gτα

= ∂µ gβα − ∑
γ

ζα
γ (∂µ gβγ)

= ∂µ gβα − ∂µ gβα

= 0.

Proposition 3 ([24]).

div ξ − div η =
n

∑
β=1
∇β ξβ −

n

∑
γ=1
∇γ ηγ.
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Proof. The divergence of the vector ξ,

div ξ =
n

∑
β=1
∇β ξβ −

n

∑
β, γ=1

(
Γβ

β γ − Γβ
γ β

)
ξγ.

Since the metric G is Kähler, then from Equation (4),
(

Γβ
β γ − Γβ

γ β

)
= 0. Therefore,

div ξ =
n

∑
β=1
∇β ξβ, div η =

n

∑
γ=1
∇γ ηγ.

Then, the proof is complete.

Proposition 4 ([24]). For a C∞ function λ and for ψ ∈ B0,s(Ω, Ξ), s ≥ 1,

‖∂ψ‖2 + ‖∂>ψ‖2 = ‖∇ψ‖2 + (h̄|grad λ|)−1
∫

∂Ω
(L (λ)ψ, ψ) ds+ < (Θ−R)ψ, ψ >,

where Θ = (Θαβ) andR = (Rαβ).

Proof. Since

∇βξβ = ∇β

(
∑

Bs−1

n

∑
γ=1

h̄−1∇γψ
β

Bs−1
ψγBs−1

)
.

Since ∇(h̄)
β = (∇β − ∂β log h̄), from Equation (6), then

n

∑
β=1
∇βξβ =

n

∑
β,γ=1

∇β

(
h̄−1 ∑

Bs−1

∇γψ
β

Bs−1
ψγBs−1

)
= h̄−1 ∑

β,γ
∑

Bs−1

(∇β − ∂β log h̄)∇γψ
β

Bs−1
ψγBs−1 + h̄−1 ∑

β,γ
∑

Bs−1

∇γψ
β

Bs−1
∇βψγBs−1

= h̄−1 ∑
β,γ

∑
Bs−1

∇γ∇
(h̄)
β ψ

β

Bs−1
ψγBs−1 + h̄−1 ∑

β,γ
∑

Bs−1

∇γψ
β

Bs−1
∇βψγBs−1

+ h̄−1 ∑
β,γ

∑
Bs−1

[∇(h̄)
β ,∇γ]ψ

β

Bs−1
ψγBs−1 .

Then, one obtains the commutator

[∇(h̄)
β ,∇γ]ψBs

= [∇β,∇γ]ψBs
+ Θβγ ψBs

.

Using Equation (6), one obtains

∇γ∇βψBs
= ∂γ∂βψBs

−
s

∑
µ=1

n

∑
τ=1

Γτ
γβµ

∂βψβ1 ...βµ−1τβµ+1 ...βs
,

∇β∇γψBs
= ∂β∂γψBs

−
s

∑
µ=1

n

∑
τ=1

∂βΓτ
γβµ

ψβ1 ...βµ−1τβµ+1 ...βs
−

s

∑
µ=1

n

∑
τ=1

Γτ
γβµ

∂βψβ1 ...βµ−1τβµ+1 ...βs
.

Hence, by using Equation (1), one obtains

[∇β,∇γ] ψBs
= −

s

∑
µ=1

n

∑
τ=1
Rτ

βµ βγ
ψβ1 ...βµ−1τβµ+1 ...βs

.
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Therefore, one obtains

[∇(h̄)
β ,∇γ] ψBs

= −∑
Bs

s

∑
µ=1

n

∑
τ=1
Rτ

βµ βγ
ψβ1 ...βµ−1τβµ+1 ...βs

+ ΘβγψBs
.

So,

h̄−1 ∑
β,γ

∑
Bs−1

[∇(h̄)
β ,∇γ] ψ

β

Bs−1
ψγBs−1 = h̄−1 ∑

α,β,γ
gαβ[∇(h̄)

β ,∇γ]ψαBs−1
ψγBs−1

= −h̄−1 ∑
α,β,γ

gαβ

(
s−1

∑
µ=1

n

∑
τ=1
Rτ

βµ βγ
ψαβ1 ...βµ−1τβµ+1 ...βs−1

)
ψγBs−1

+ h̄−1 ∑
α,β,γ

gαβΘβγψαBs−1
ψγBs−1

= −h̄−1 ∑
α,β,γ,τ

gαβRτ
αβγψτBs−1

ψγBs−1 − h̄−1 ∑
α,β,γ,τ

gαβRτ
βµ βγ

ψArαβ1 ...βµ−1τβµ+1 ...βs−1
ψγBs−1

+ h̄−1 ∑
α,γ

Θβγ ψ
β

Bs−1
ψγBs−1 .

(8)

From the Kähler property of G, Equation (2) gives

Rτ α
βµ γ

= ∑
β

gα βRτ
βµ β γ

= Rα τ
βµ γ

.

Moreover, we remark that ψαβ1 ...βµ−1τβµ+1 ...βs−1
= −ψτβ1 ...βµ−1αβµ+1 ...βs−1

. Hence, the second

term of the right-hand side of Equation (8) is zero, i.e.,

h̄−1 ∑
α,β,γ,τ

gαβRτ
βµ βγ

ψArαβ1 ...βµ−1τβµ+1 ...βs−1
ψγBs−1 = 0.

As a result, Equation (8) becomes

h̄−1 ∑
β,γ

∑
Bs−1

[∇(h̄)
β ,∇γ]ψ

β

Bs−1
ψγBs−1 = −h̄−1 ∑

γ,τ

(
∑
α,β

gαβRτ
αβγ

)
ψτBs−1

ψγBs−1

+ h̄−1 ∑
α,γ

Θβγ ψ
β

Bs−1
ψγBs−1 .

(9)

On the other hand,

n

∑
α,β=1

gαβRτ
αβγ = ∑

α,β,λ
gαβgτλRλαβγ = ∑

α,λ
gτλ∑

β

gβαRβαλγ = ∑
α,λ

gτλR α
α λ γ

= ∑
λ

gτλRγ λ.

Hence,

h̄−1 ∑
β,γ

∑
Bs−1

[∇(h̄)
β ,∇γ]ψ

β

Bs−1
ψγBs−1 = (s− 1)! h̄−1 ∑

Bs−1

n

∑
α,γ=1

(
Θβγ −Rβγ

)
ψ

β

Bs−1
ψγBs−1 .

We compute the second term of Equation (9). From Equations (1) and (5), one obtains

(∂ψ, ∂ψ) = h̄−1 ∑
Cs ,Ds

∇µψCs
∇τψDs Eµ Cs

τ Ds
,
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where Eµ Cs
τ Ds

= 0 unless µ /∈ Cs, τ /∈ Ds and {µ} ∪ Cs = {τ} ∪ Ds, in which case Eµ Cs
τ Ds

is

the sign of the permutation (µ Csτ Ds). Consider the terms with µ = τ. If Eµ Cs
τ Ds
6= 0, then

we must have Cs = Ds and µ /∈ Cs, and hence the sum of these terms is

h̄−1 ∑
Cs

∑
µ/∈Cs

∇µψCs
∇µψCs .

Next, we consider the terms with µ 6= τ. If Eµ Cs
τ Ds
6= 0, τ ∈ Cs, µ ∈ Ds with deletion τ from

Cs or µ from Ds has the same multi-index Bs−1:

Eµ Cs
τ Ds

= Eµ Cs
µ τ Bs−1

Eµ τ Bs−1
τ µ Bs−1

Eτ µ Bs−1
τ Ds

= − ECs
τ Bs−1

Eµ Bs−1
Ds

,

The sum of the terms in question is

− h̄−1 ∑
Bs−1

∑
µ 6=τ

∇µψτBs−1
∇τψµBs−1 .

Therefore, one obtains(
∂ψ, ∂ψ

)
= h̄−1 ∑

Cs

∑
µ/∈Cs

∇µψCs
∇µψCs − h̄−1 ∑

Bs−1

∑
µ 6=τ

∇µψτBs−1
∇τψµBs−1

= h̄−1 ∑
Cs

∑
µ

∇µψCs
∇µψCs − h̄−1 ∑

Bs−1

∑
µ 6=τ

∇µψτBs−1

(
∑
γ

gγτ∇γ

)
ψµBs−1

= h̄−1 ∑
Cs

∑
µ

∇µψCs
∇µψCs − h̄−1 ∑

Bs−1

∑
µ 6=τ

∑
γ

gτγ∇µψτBs−1
∇γψµBs−1 .

(10)

Since ∇τ gβα = 0, then by using Proposition 2, one obtains(
∂ψ, ∂ψ

)
=
(
∇,∇

)
− h̄−1 ∑

Bs−1

∑
µ,γ
∇µψ

γ

Bs−1
∇γψµBs−1 .

Then, one obtains

h̄−1 ∑
Bs−1

∑
β,γ
∇βψ

γ

Bs−1
∇γψβBs−1 = (s− 1)!

[(
∇,∇

)
−
(

∂ψ, ∂ψ
)]

.

Therefore,

n

∑
β=1
∇βξβ = h̄−1 ∑∇γ∇

(h̄)
β ψ

β

Bs−1
ψArγBs−1 + (s− 1)!

{
((Θ−R)ψ, ψ) +

(
∇,∇

)
−
(

∂ψ, ∂ψ
)}

. (11)

Using Equation (7),

n

∑
γ=1
∇γηγ = h̄−1

n

∑
β,γ=1

∑
Bs−1

(∇γ − ∂γ log h̄)∇(h̄)
β ψ

β

Bs−1
ψγBs−1

+ h̄−1 ∑
β,γ

∑
Bs−1

∇(h̄)
β ψ

β

Bs−1
∇γψγBs−1

= h̄−1 ∑
β,γ

∑
Bs−1

∇γ∇
(h̄)
β ψ

β

Bs−1
ψγBs−1 + h̄−1 ∑

β,γ
∑

Bs−1

∇(h̄)
β ψ

β

Bs−1
∇(h̄)

γ ψγBs−1 .

(12)

Hence, by using Equation (11), one obtains

n

∑
γ=1
∇γηγ = (s− 1)!

(
∂
>

ψ, ∂
>

ψ
)
+ h̄−1 ∑

β,γ
∑

Bs−1

∇γ∇
(h̄)
β ψ

β

Bs−1
ψγBs−1 . (13)
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Subtracting Equation (13) from Equation (12) and from Proposition 2, one obtains

1
(s− 1)!

(div ξ − div η) =
(
∇,∇

)
−
(

∂ψ, ∂ψ
)
−
(

∂
>

ψ, ∂
>

ψ
)
+ ((Θ−R)ψ, ψ).

By integrating this identity over Ω and by applying the divergence theorem, one obtains

1
(s− 1)!

∫
∂Ω

(ξ − η).n ds = ‖∇ψ‖2 − ‖∂ψ‖2 − ‖∂>ψ‖2+ < (Θ−R)ψ, ψ >, (14)

with the outer unit normal vector n to ∂Ω, which is given at each point x ∈ ∂Ω by
n =

grad λ
|grad λ| , and the projection of the vector (ξ − η) on the vector n is (ξ − η) . n. Now, we

compute η . grad λ. Since

η . grad λ =
n

∑
γ=1

ηγ ∂γ λ = h̄−1
n

∑
β=1

∑
Bs−1

∇(h̄)
β ψ

β

Bs−1

(
n

∑
γ=1

ψγBs−1 ∂γ λ

)
,

at any point of X, then for ψ ∈ B0,s(Ω, Ξ), s ≥ 1, one obtains

η . grad λ = 0 on ∂Ω.

Hence,
η . n = 0, on ∂Ω. (15)

Now we compute ξ . n. from Equation (5); one obtains

ξ . n =
1

|grad λ| (ξ . grad λ) =
1

|grad λ|
n

∑
β=1

ξβ∂β λ

=
1

h̄|grad λ|
n

∑
γ=1

∑
Bs−1

(
n

∑
β=1
∇γψ

β

Bs−1
∂β λ

)
ψγBs−1 .

(16)

Again, for ψ ∈ B0,s(Ω, Ξ), s ≥ 1, one obtains

n

∑
β=1

ψ
β

Bs−1
∂β λ = 0 on ∂Ω.

Since λ ≡ 0 on ∂Ω, then we can write

n

∑
β=1

ψ
β

Bs−1
∂β λ = λ φBs−1

,

on the neighborhood U of ∂Ω, where φBs−1
is a C∞ section of

∧s−1 T>
(X)⊗ Ξ. So,

n

∑
β=1
∇γψ

β

Bs−1
∂β λ +

n

∑
β=1

ψ
β

Bs−1
∂β∂γ λ = φBs−1

∂γλ + λ∇γ φBs−1
on U.
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Then, we multiply this equation by h̄−1ψγBs−1 and sum it with respect to γ. Since ψ ∈
B0,s(Ω, Ξ), one obtains

h̄−1 ∑
Bs−1

n

∑
β,γ=1

∇γψ
β

Bs−1
∂β λ ψγBs−1 + h̄−1 ∑

Bs−1

n

∑
β,γ=1

∂β∂γλ ψ
β

Bs−1
ψγBs−1

= h̄−1 ∑
Bs−1

n

∑
γ=1

φBs−1
∂γλ ψγBs−1 + h̄−1 ∑

Bs−1

n

∑
γ=1

λ∇γ φBs−1
ψγBs−1

= 0,

on ∂Ω. Therefore, by dividing by |grad λ|, (16) becomes

ξ . n = − 1
h̄|grad λ| ∑

Bs−1

n

∑
β,γ=1

∂β∂γ λ ψ
β

Bs−1
ψγBs−1 on ∂Ω.

Then,

ξ . n = − 1
h̄|grad λ| (L (λ)ψ, ψ), (17)

on ∂Ω. Thus, the proposition is proved by substituting Equations (15) and (17) in
Equation (14).

4. Bounded P.S.H. Functions and Hartogs Pseudoconvexity in Kähler Manifolds

Definition 2 ([28]). Ω is the smooth local Stein domain if ∀ point z ∈ ∂Ω, and ∃ is a neighborhood
U if z satisfies U ∩Ω, which is Stein.

Definition 3 ([29]). We say that Ω is Hartogs pseudoconvex if there exists a smooth bounded
function h on Ω such that

i∂∂(− log δ + h) ≥ C ω in Ω, (18)

for some C > 0, where ω is the Kähler form associated with the Kähler metric.

In particular, every Hartogs pseudoconvex domain admits a strictly plurisubharmonic
exhaustion function and is thus a Stein manifold.

Next, we will examine several examples of Hartogs pseudoconvex domains.

Example 1. Suppose X is a complex manifold with a continuous strongly plurisubharmonic
function and Ω b X is a Stein domain. According to [30], there exists a Kähler metric on X such
that Ω is Hartogs pseudoconvex.

Example 2 ([29]). All the local Stein-domain subsets of a Stein manifold are in the Hartogs
pseudoconvex domain.

Example 3 ([29]). Every C2 pseudoconvex domain in the Cn subset of a Stein manifold is a Hartogs
pseudoconvex domain.

Example 4 ([30]). Any local Stein domain subset of a Kähler manifold with positive holomorphic
bisectional curvature satisfies Equation (18) on U ∩Ω.

Example 5 ([30]). If Ω is a local Stein domain of the complex projective space Pn, then Ω satisfies
Equation (18).

The canonical line bundle K of X is defined by transition functions (kij)

kij =
∂(w1

j , w2
j , . . . , wn

j )

∂(w1
i , w2

i , . . . , wn
i )

on Ui ∩Uj,
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with
gi = |kij|2gj on Ui ∩Uj.

Hence, g = {gi} determines a metric of K. Let h = {hi} be a Hermitian metric of Ξ and
∂∂ log h its curvature tensor. So, {h̄ = g.h} determines a Hermitian metric of Ξ⊗ K and

∂∂ log h̄ = ∂∂ log h + ∂∂ log g.

Then, from Proposition 4,

‖∂ψ‖2 + ‖∂>ψ‖2 = ‖∇ψ‖2+ < Θψ, ψ > +
1

h̄|grad λ|

∫
∂D

(L (λ)ψ, ψ) ds, (19)

for ψ ∈ B0,s(D, Ξ⊗ K), s ≥ 1. Using h = hm = ζmh, one obtains

Θm = Θ− m∂∂(− log ζ).

With respect to the G and hm , and for ψ, ψ ∈ C∞
n,s(D, Ξ), we define the global inner product

< ψ, ψ >m and the norm ‖ψ‖Wm
n,s(D,Ξ) by

< ψ, ψ >m=
∫

D
(ψ, ψ)m dv and ‖ψ‖2

Wm
n,s(D,Ξ) =< ψ, ψ >m .

Then, (19) becomes

‖∂ψ‖2
Wm

n,s(D,Ξ) + ‖∂
>
m ψ‖2

Wm
n,s(D,Ξ) = ‖∇ψ‖2

Wm
n,s(D,Ξ) +

1
h̄|grad λ|

∫
∂D

(L (λ)ψ, ψ)m ds+ < Θmψ, ψ >m

+ < m∂∂(− log ζ)ψ, ψ >m .
(20)

As Theorem 1.1 in [31], one obtains

Theorem 1. Suppose X is an n-dimensional complex manifold and D b X is a Hartogs pseu-
doconvex. ζ(z) = dist(z, ∂D) = −ρ(z), where ζ is the Kähler metric ω on X. If m > 0, then

i∂∂(−ζm) ≥ cm |ζm| ω, (21)

for some constant cm > 0.

Proof. Using Equation (18) and if ρ = −ζ,

−ρ i ∂∂ρ + i ∂ρ ∧ ∂ρ ≥ C ρ2ω. (22)

Let (ei) be an orthonormal basis for T(∂D) near p. In this case, near p ∈ ∂D, choose local
coordinates that satisfy x2n = ρ, ei(p) = 0, i = 1, 2, . . . , n− 1. The Hermitian form for i∂∂ρ
is denoted by (aij). The inequality (22) gives the coordinates

−ρ
n

∑
i,j=1

aij ηi η j + |∂ρ |2|ηn|2 ≥ C ρ2
n

∑
j=1
|ηj|2. (23)

If ηn = 0,
n−1

∑
i,j=1

aij ηi η j ≥ C |ρ|
n−1

∑
j=1
|ηj|2.

Expanding (23), one obtains

−ρ
n−1

∑
i,j=1

aij ηi η j + 2 Re (−ρ)
n−1

∑
k=1

ank ηn ηk − ρ ann |ηn|2 + |∂ρ|2 |ηn|2 ≥ C |ρ|2
n−1

∑
j=1
|ηj|2.
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for j ≤ n− 1, replacing v by ηj/(−ρ),

n−1

∑
i,j=1

( aij

−ρ

)
ηi η j + 2 Re (−ρ)

n−1

∑
k=1

ank ηn ηk − ρ ann |ηn|2 + |∂ρ|2 |ηn|2 ≥ C′
n−1

∑
j=1
|ηj|2. (24)

The inequality’s left side can be expressed as follows:

Q(z, η) + |∂ρ|2 |ηn|2.

For z ∈ D, we assume that

Q̃(ς, η) = lim inf
z→ς

Q(z, η) = lim
t→0

inf
|z−ς|<t

Q(z, η).

From Equation (24), one obtains

Q̃ (ς, η) + |∂ρ|2 (ς) |ηn|2 ≥ C′
n−1

∑
j=1
|ηj|2. (25)

Take a look at Q̃(p, (0, ηn) ≥ 0; for a small enough C′,

Q̃(ς, v) + |∂ρ|2(ς)|ηn|2 ≥ C′|ηn|2,

in a neighborhood of p. On the sphere |η| = 1, inequality (25) still holds for |η′| ≤ σ in a
neighborhood of η′ = 0, where η = (η′, ηn). This gives us

Q(z, η) + |∂ρ|2(z)|ηn|2 ≥
C′

2
|ηn|2,

for ζ(z) < σ′, |η′| ≤ σ. But, when |η′| > σ and |η| = 1, one obtains |η′|2 ≥ σ0|ηn|2, where
σ0 = σ2(1− σ2)−1. So, by using (25),

Q(z, η) + |∂ρ|2 |ηn|2 ≥ σ∗∗|ηn|2 for some σ∗∗ > 0

and for ζ(z) < σ∗,

Q(z, η) + |∂ρ|2 |ηn|2 ≥
σ∗∗

2
|ηn|2 +

C′

2

n−1

∑
j=1
|ηj|2.

Recalling this one yields

−ρ
n

∑
i,j=1

aijηiη j + |∂ρ|2|ηn|2 ≥
σ

2
|ηn|2 +

C′

2

n−1

∑
j=1
|ηj|2

Which means

−i ∂∂(−ρ)m = i m (−ρ)m
(

∂∂ρ

−ρ
+ (1− m)

∂ρ ∧ ∂ρ

ρ2

)

≥ C′

2
m |ρ|m ω.

Lemma 1. Let D b X be a C2 Hartogs pseudoconvex in an n-dimensional complex manifold X.
Suppose m0 = m0(D) > 0 is the order of plurisubharmonicity for ζ(z) = d(z, ∂D):

m0(D) = sup{0 < ε ≤ 1| i∂∂(−ζε) ≥ on D}.
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Then, ∀ 0 < m < m0 and φ = −m log ζ; there exists

it∂∂φ ≥ i ∂φ ∧ ∂φ, (26)

with 0 < t = m
m0

< 1. Also, there exists Cm > 0, which satisfies

i∂∂(−ζm) ≥ Cm ζm

(
i∂ζ ∧ ∂ζ

ζ2 + ω

)
. (27)

Proof. By Equation (21), ∃ m0 > 0 satisfies i∂∂(−ζm0) ≥ 0 on D. Since

i∂∂(−ζm0) = −i∂(m0ζm0−1∂ζ) = −im0(m0 − 1)ζm0−2∂ζ ∧ ∂ζ − im0ζm0−1∂∂ζ

= m0ζm0

(
(1− m0)

∂ζ ∧ ∂ζ

ζ2 + i
∂∂(−ζ)

ζ

)
.

(28)

Then

(1− m0)
i∂ζ ∧ ∂ζ

ζ2 + i
∂∂(−ζ)

ζ
≥ 0. (29)

Also, by using Equation (18), one obtains

i∂∂(− log ζ) =
i∂ζ ∧ ∂ζ

ζ2 + i
∂∂(−ζ)

ζ
≥ ω. (30)

Therefore, from Equations (29) and (30), one obtains

i∂∂(− log ζ) ≥ m0
i∂ζ ∧ ∂ζ

ζ2 . (31)

Since ∂φ = −m ∂ζ
ζ and ∂φ = −m ∂ζ

ζ , then

i∂φ ∧ ∂φ = m2 i∂ζ ∧ ∂ζ

ζ2 . (32)

Then, from Equations (31) and (32), one obtains

i∂∂(− log ζ) ≥ m0
i∂φ ∧ ∂φ

m2 .

Then, Equation (26) is proved.
To prove Equation (27), choose 0 < κ < min{1, m0−m

m0
}, and by using Equation (28),

one obtains

i∂∂(−ζm) = −im(m− 1)ζm−2∂ζ ∧ ∂ζ − imζm−1∂∂ζ = mζm

(
(1− m)

i∂ζ ∧ ∂ζ

ζ2 +
i∂∂(−ζ)

ζ

)

= mζm

(
(m0 − m− κm0)

i∂ζ ∧ ∂ζ

ζ2 + (1− κ)
i∂∂(−ζm0)

m0ζm0
+ κi∂∂(− log ζ)

)

≥ Cmmζm

(
i∂ζ ∧ ∂ζ

ζ2 + ω

)
.

Then, Equation (27) is proved.

5. The L2 Estimates of ∂

As in [21–23,32,33], one proves the following results:
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Theorem 2. Let D b X be a C2 Hartogs pseudoconvex in an n-dimensional complex manifold
X. Let Ξ be a positive line bundle over X whose curvature form Θ satisfies Θ ≥ Cω, where
C > 0. Let ψ ∈ L2

n,s(D, ζm, Ξ), 1 ≤ s ≤ n, a ∂-closed form. Then, for 0 < m < m0, there exists
ψ ∈ L2

n,s−1(D, ζm, Ξ), which satisfies ∂ψ = ψ and∫
Ω
|ψ|2ζmdv ≤ C

∫
Ω
|ψ|2ζmdv. (33)

Proof. The boundary term in Equation (20) vanishes since m > 0. For u ∈ Bn,s(D, Ξ), s ≥ 1,
and since the curvature form Θ of Ξ satisfies

Θ ≥ CD ω on D with CD > 0.

then by using Equation (18), one obtains

< Θm ψ, ψ >m ≥ Cm < ψ, ψ >m . (34)

Also, from the assumption of pseudoconvex on D, one obtains

‖∂u‖2
Wm

n,s(D,Ξ) + ‖∂
>
m u‖2

Wm
n,s(D,Ξ) ≥ CΩ ‖u‖2

Wm
n,s(D,Ξ),

for all u ∈ Bn,s(D, Ξ). Let u ∈ D∞
n,s(D, E), with u = u1 + u2, u1 ∈ ker(∂, Ξ) and u2 ∈

ker(∂, E)⊥ = Im (∂
>
m , E) ⊂ ker(∂

>
m , Ξ). Then, for every (n, s) form u with compact support,

one obtains

| < u, ψ >m | = | < u1 + u2, ψ >m |
= | < u1, ψ >m |+ | < u2, ψ >m |
= | < u1, ψ >m | ≤ ‖u1‖Wm

n,s(D,Ξ) ‖ψ‖Wm
n,s(D,Ξ)

≤ 1√
C
‖∂>m u1‖Wm

n,s(D,Ξ) ‖ψ‖Wm
n,s(D,Ξ)

=
1√
C
‖∂>m u‖Wm

n,s(D,Ξ) ‖ψ‖Wm
n,s(D,Ξ).

Using the Riesz representation theorem, the linear form

∂
>
m u 7−→< u, ψ >m,

is continuous on Rang(∂
>

, Ξ) in the L2 norm and has norm ≤ C, with

‖ψ‖Wm
n,s(D,Ξ) = C.

Following Hahn–Banach theorem, ∃ is an element that is E valued (n, s− 1) from u on D
(with a smooth boundary) perpendicular to ker(∂, E) with ‖ψ‖Wm

n,s(D,Ξ) ≤ C,

< ∂
>
m u, ψ >m=< u, ψ >m,

for all L2u with both ∂u and ∂
>
m u and also L2. Hence,

∂ψ = ψ,

and
‖ψ‖Wm

n,s(D,Ξ) ≤ C‖ψ‖Wm
n,s(D,Ξ).
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Exhaust a general pseudoconvex domain D by a sequence Dµ of C∞ pseudoconvex do-
mains:

D = ∪∞
µ=1D,

with Dµ ⊂ Dµ+1 ⊂ D for each µ. On each Dµ, ∃ a ψµ ∈ L2
n,s−1(Dµ, ζm, Ξ) satisfies

∂ψµ = ψ in Dµ,

and ∫
Dµ

|ψµ|2ζmdv ≤ C
∫

Dµ

|ψ|2ζmdv ≤ c
∫

D
|ψ|2ζmdv.

Choose a subsequent ψµ of ψµ, satisfying

ψµ −→ ψ,

in L2
n,s−1(D, ζm, Ξ) weakly. Moreover,∫

D
|ψ|2ζmdv ≤ lim inf C

∫
D
|ψ|2ζmdv ≤ c

∫
D
|ψ|2ζmdv.

Theorem 3. Let X, D and Ξ be the same as Theorem 2. Let ψ ∈ L2
n,s(D, Ξ), 1 ≤ s ≤ n, with

∂ψ = 0. Thus, ∃ ψ ∈ L2
n,s−1(D, Ξ) satisfies ∂ψ = ψ and

‖ψ‖ ≤ ‖ψ‖.

Proof. Since
1

h̄|grad λ|

∫
∂Ω

(L (λ)u, u) ds ≥ C
∫

∂Ω
|u|2 ds,

and from Equation (18), one obtains

‖∂u‖2 + ‖ψu‖2 ≥ CD‖u‖2,

∀ u ∈ Bn,s(D, Ξ). This completes the proof of Theorem 3.

Following Theorem 3, as in [34,35], one can prove the following:

Theorem 4. Let X, D and Ξ be the same as Theorem 2. Then, � has a closed range and
kern,s(�, E) = {0}. For each 1 ≤ s ≤ n, there exists a bounded linear operator

Nn,s : L2
n,s(D, Ξ) −→ L2

n,s(D, Ξ),

which satisfies
(i) Rang(Nn,s, Ξ) ⊂ Dom(�n,s, Ξ) and �n,s Nn,s = Nn,s �n,s = I on Dom(�n,s, Ξ).
(ii) ∀ ψ ∈ L2

n,s(D, Ξ), ψ = ∂∂
>

Nn,sψ + ∂
>

∂Nn,sψ.
(iii) For ψ ∈ L2

n,s(D, Ξ), one obtains

‖Nn,sψ‖ ≤ c0‖ψ‖,
‖∂Nn,sψ‖ ≤ c0‖ψ‖,

‖∂>Nn,sψ‖ ≤ c0‖ψ‖.

(iv)
N(n,s+1)∂ = ∂Nn,s on Dom(∂, Ξ), 1 ≤ s ≤ n− 1,

∂
>

Nn,s = Nn,s−1∂
>

on Dom (∂
>

, E), 2 ≤ s ≤ n.
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(v) If ψ ∈ L2
n,s(D, Ξ) and ∂ψ = 0, then ψ = ∂∂

>
Nn,sψ and u = ∂

>
Nn,sψ.

Proof.
L2

n,s(D, Ξ) = Rang(�n,s, Ξ)⊕ ker(�n,s, Ξ).

We need to show that

ker(�n,s, Ξ) = ker(∂, Ξ) ∩ ker(∂
>

, Ξ) = {0}. (35)

To show that
ker(∂, Ξ) ∩ ker(∂

>
, Ξ) = {0}. (36)

We note that if ψ ∈ L2
n,s(∂, Ξ), then by using Theorem 4, ∃ a ψ ∈ L2

n,s−1(Ω, Ξ) satisfies

ψ = ∂ψ. If ψ is also in ker(∂
>

, Ξ), one obtains

0 =< ∂
>

∂ψ, ψ >= ‖∂ψ‖2.

Thus, ψ = 0 and Equation (35) is proved. We shall show that Rang(�n,s, Ξ) is closed.
Following Theorem 4, ∀ ψ ∈ L2

n,s(D, Ξ), s > 0 with ∂ψ = 0 and ∃ a ψ ∈ L2
n,s−1(D, Ξ)

satisfies ψ = ∂ψ and
‖ψ‖2 ≤ c0‖ψ‖2,

where c0 = c0(D) > 0. Thus, Rang(∂, Ξ) is closed in every degree. Thus,

‖ψ‖2 ≤ c0(‖∂ψ‖2 + ‖∂>ψ‖2),

for ψ ∈ Dom(∂, E) ∩Dom (∂
>

, Ξ) and ψ⊥ ker(∂, Ξ)∩ ker(∂
>

, Ξ). Thus, from (36),

‖ψ‖2 ≤ c0(‖∂ψ‖2 + ‖∂>ψ‖2),

for ψ ∈ Dom(∂, Ξ)∩ Dom(∂
>

, Ξ). Thus, ∀ ψ ∈ Dom(�n,s, Ξ),

‖ψ‖2 ≤ c0[< ∂ψ, ∂ψ > + < ∂
>

ψ, ∂
>

ψ >]

= c0[< ∂
>

∂ψ, ψ > + < ∂∂
>

ψ, ψ >]

= c0 < �ψ, ψ >

≤ c0‖�ψ‖‖ψ‖.

Thus,
‖ψ‖ ≤ c0‖�ψ‖, (37)

i.e., Rang(�n,s, Ξ) is closed. Therefore,

L2
n,s(D, Ξ) = Rang(�, Ξ) = ∂∂

>
Dom(�n,s, E)⊕ ∂

>
∂Dom(�n,s, Ξ).

Also, from Equation (37), �n,s is 1-1 and Rang(�n,s, Ξ) is the whole space L2
n,s(D, E). Thus,

there exists a unique inverse

Nn,s : L2
n,s(D, Ξ) −→ L2

n,s(D, Ξ),

which satisfies �N = N� = I and

‖Nn,sψ‖ ≤ c0‖ψ‖.



Mathematics 2023, 11, 4138 18 of 26

∀ ψ ∈ L2
n,s(D, Ξ). Also, by (ii),

< ∂
>

Nn,sψ, ∂
>

Nn,sψ > + < ∂Nn,sψ, ∂Nn,sψ > =< (∂∂
>
+ ∂

>
∂)Nn,sψ, Nn,sψ >

=< �n,sNn,sψ, Nn,sψ >

≤ ‖ψ‖‖Nn,sψ‖
≤ c0‖ψ‖2.

Then
‖∂>Nn,sψ‖2 ≤ c0‖ψ‖2,

and
‖∂Nn,sψ‖2 ≤ c0‖ψ‖2.

Now, we show that ∂
>

Nn,s = Nn,s∂
>

on Dom(∂
>

, Ξ). Using (ii), ∂
>

u = ∂
>

∂∂
>

Nn,su. Then,

Nn,s∂
>

u = Nn,s∂
>

∂∂
>

Nn,su = Nn,s(∂
>

∂ + ∂∂
>
)∂

>
Nn,su = ∂

>
Nn,su.

Similarly, one can prove ∂Nn,s = Nn,s∂ on Dom(∂, Ξ). From (ii),

ψ = ∂∂
>

Nn,sψ + ∂∂
>

∂Nn,sψ.

Thus, ∂ψ = 0 implies ∂∂
>

∂Nn,sψ = 0 and

< ∂∂
>

∂Nn,sψ, ∂Nn,sψ >= ‖∂>∂Nn,sψ‖2 = 0.

Since ∂Nn,sψ ∈ Dom(∂
>
). Thus, ψ = ∂∂

>
Nn,sψ and u = ∂

>
Nn,sψ is the solution which is

unique and orthogonal to ker(∂, Ξ).

Corollary 1. Let X, D and Ξ be the same as Theorem 2. Then, for all ψ ∈ L2
n,s(D, Ξ) that satisfies

∂ψ = 0, the canonical solution u = ∂
>

Nn,sψ satisfies the estimate

‖u‖2 ≤ C‖ψ‖2.

Proof. From (iv), one obtains ∂ Nn,s ψ = N(n,s+1) ∂ψ = 0. Since

‖Nn,sψ‖ ≤ c0‖ψ‖.

Thus,
‖u‖2 =< ∂

>
Nn,sψ, ∂

>
Nn,sψ >

=< ∂∂
>

Nn,sψ, Nn,sψ >

=< (∂∂
>
+ ∂

>
∂) Nn,sψ, Nn,sψ >

=< ψ, Nn,sψ >

≤ ‖ψ‖ ‖Nn,sψ‖
≤ c ‖ψ‖2.

Thus, the proof follows.

Let �n,0 = ∂
>

∂ on L2
n,0(D, Ξ). Set

Hn,0(Ω, Ξ) = ker(�n,0, E) = {ψ ∈ L2
n,0 (D, Ξ) | ∂ψ = 0}.

Since ∂ψ = 0, then Hn,0(D, Ξ) is a closed subspace of L2
n,0(D, Ξ). Let

P : L2
n,0(D, Ξ) −→Hn,0(D, Ξ),
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be the Bergman projection operator.

Lemma 2 ([16]). Let X, D and Ξ be the same as Theorem 2. Then,

Nn,0 : L2
n,0(D, Ξ) −→ L2

n,0(D, Ξ),

satisfies
(i) Rang(Nn,0, Ξ) ⊂ Dom(�n,0, Ξ), �n,0Nn,0 = Nn,0�n,0 = I −Pn,0.
(ii) ∀ ψ ∈ L2

n,0(D, Ξ); one obtains ψ = ∂
>

∂Nn,0ψ⊕Pn,0ψ.

(iii) Nn,1∂ = ∂Nn,0 on Dom(∂, Ξ), ∂
>

Nn,1 = Nn,0∂
>

on Dom(∂
>

, Ξ).
(iv) Nn,0 ψ = ∂

>
N2

n,1 ∂ ψ if ψ ∈ Dom(∂, Ξ).
(v) ∀ ψ ∈ L2

n,0(D, Ξ),
‖Nn,0 ψ‖ ≤ C ‖ψ‖,

‖∂Nn,0 ψ‖ ≤
√

C ‖ψ‖.

Proof. Let ψ ∈ Dom(�n,0, Ξ) ∩ (Hn,0(E))⊥. Since Rang(∂, Ξ) is closed in every degree,
Rang(∂

>
, Ξ) is closed. Thus, ψ ⊥ ker(∂, Ξ) and ψ ∈ Rang(∂

>
, Ξ). Let ψ = ∂ u; then,

ψ ∈ L2
n,1(D, E) since u ∈ Dom(�n,0, Ξ). Using (v) in Theorem 5, v ≡ ∂

>
Nn,0ψ is the

solution of ∂v = ψ, which is unique and v ⊥ ker(∂, Ξ). Thus, v = u. By using Equation
(36), one obtains

‖u‖2 ≤ c‖ψ‖2 = c‖∂u‖2 = c < �n,0u, u >≤ c‖�n,0u‖ ‖u‖.

Thus, �n,0 is bounded below on Dom(�n,0, Ξ) ∩ (Hn,0(E))⊥ and �n,0 has a closed range
and (i) and (ii) is proved. Then, from the strong Hodge decomposition,

L2
(n,0(Ω, Ξ) = Rang(�n,0, E)⊕Hn,0(Ω, E) = ∂

>
∂(Dom(�n,0, E))⊕Hn,0(Ω, Ξ),

for all ψ ∈ Rang(�n,0, Ξ), there is a unique Nn,0ψ ⊥Hn,0(D, Ξ) that satisfies�n,0Nn,0ψ = ψ.
Extending Nn,0 to L2

n,0(D, Ξ) by requiring Nn,0Pn,0 = 0, Nn,0 satisfies (i) and (ii). (iii) is
proved as before. If ψ ∈ Dom(∂, Ξ),

Nn,0u = (I −Pn,0)Nn,0u = Nn,0(∂
>

∂)Nn,0u = ∂
>

N2
n,0∂ u.

Thus, (iv) holds on Dom(∂, Ξ). From (iii) in Theorem 5,

‖Nn,1 ψ‖ ≤ C ‖ψ‖.

for all ψ ∈ C∞
n,0(Ω, E),

‖Nn,0 ψ‖2 =< ∂∂
>

N2
n,1∂ψ, N2

n,1∂ψ >=< Nn,1∂ψ, N2
n,1∂ψ >= ‖Nn,1∂ψ‖ ‖N2

n,1∂ψ‖
≤ C‖Nn,1∂ψ‖2.

(38)

On the other hand, one obtains

‖Nn,1∂ψ‖2 =< Nn,1∂ψ, Nn,1∂ψ >=< N2
n,1∂ψ, ∂ψ >=< ∂

>
N2

n,1∂ψ, ψ >≤ ‖Nn,0ψ‖ ‖ψ‖. (39)

Combining Equation (38) and Equation (39), one obtains

‖Nn,0 ψ‖ ≤ C ‖ψ‖,
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and
‖∂Nn,0 ψ‖2 =< ∂

>
∂Nn,0ψ, N2

n,0ψ >

=< (I −Pn,0)ψ, Nn,0ψ >

≤ ‖ψ‖ ‖Nn,0ψ‖
≤ C ‖ψ‖2.

Then, the proof follows.

6. Sobolev Estimates

As in Cao–Shaw–Wang [3,35], one prove the following results:

Proposition 5.
∂
>

ψ = −#−1 > ∂ > # ψ,

∂
>
m ψ = ∂

>
ψ + m>

(
∂ζ

ζ
∧>ψ

)
.

(40)

Proof. In fact, for ψ ∈ C∞
r,s−1(D, Ξ) and ψ ∈ C∞

r,s−1(D, Ξ), one obtains

∂(tψ ∧>#ψ) = t∂ψ ∧>#ψ + (−1)r+s tψ ∧ ∂ > #ψ

= t∂ψ ∧>#ψ + tψ ∧>> ∂ > #ψ

= t∂ψ ∧>#ψ + tψ ∧>#(#−1 > ∂ > #)ψ.

Since tψ ∧>#ψ is of type (n, n− 1), then

∂(tψ ∧>#ψ) = 0,

∂(tψ ∧>#ψ) = d(tψ ∧>#ψ).

Then, by Stokes theorem, one obtains

0 =
∫

Ω
d(tψ ∧>#ψ) =

∫
Ω

∂(tψ ∧>#ψ)

=
∫

Ω

t∂ψ ∧>#ψ +
∫

Ω

tψ ∧>#(#−1 > ∂ > #)ψ,

i.e., ∫
D

t∂ψ ∧>#ψ = −
∫

D

tψ ∧>#(#−1 > ∂ > #)ψ,

i.e., ∫
D

t∂ψ ∧>#ψ =
∫

D

tψ ∧>#∂
>

ψ.

Therefore,
ψψ = −#−1 > ∂ > # ψ.

Then,
∂
>
m ψ = −ζm#−1 > ∂ > ζ−m # ψ

= −ζmζ−m#−1 > ∂ > # ψ− ζm#−1 >
(
−mζ−m−1∂ζ ∧># ψ

)
= ∂

>
ψ + m#−1 >

(
∂ζ

ζ
∧># ψ

)
.

But,
∂ζ

ζ
∧>#ψ =

∂ζ

ζ
∧>bψ = b

∂ζ

ζ
∧>ψ,



Mathematics 2023, 11, 4138 21 of 26

and

#
(

∂ζ

ζ
∧>ψ

)
= b

∂ζ

ζ
∧>ψ = b

∂ζ

ζ
∧>ψ.

Then,
∂ζ

ζ
∧>#ψ = #

(
∂ζ

ζ
∧>ψ

)
,

i.e.,

#−1 > ∂ζ

ζ
∧>#ψ = >

(
∂ζ

ζ
∧>ψ

)
.

Then,

∂
>
m ψ = ∂

>
ψ + m>

(
∂ζ

ζ
∧>ψ

)
,

where ψ0 = ψ.

Theorem 5. Let X, D and Ξ be the same as Theorem 2. Let ψ ∈ L2
n,s(D, Ξ) ∩ Dom(∂, E) ∩

Dom(∂
>

, Ξ), 1 ≤ s ≤ n. Then,

‖∂ψ‖2
Wm

n,s(D,Ξ) + ‖∂
>

ψ‖2
Wm

n,s(D,Ξ) ≥ Cm

(
‖∂φ ∧>ψ‖2

Wm
n,s(D,Ξ) + ‖∇ψ‖2

Wm
n,s(D,Ξ) +

∫
D
(−h̄)|ψ|2dv

)
, (41)

where Cm > 0 is an independent constant of ψ.

Proof. As Lemma 1, one obtains

∂∂h̄ = mζm

(
(1− m)

∂ζ ∧ ∂ζ

ζ2 − ∂∂ζ

ζ

)
,

∂∂(− log ζm) = m

(
∂ζ ∧ ∂ζ

ζ2 − ∂∂ζ

ζ

)
.

Then

ζm∂∂(− log ζm) = ∂∂h̄ + m2

(
∂ζ ∧ ∂ζ

ζ2

)
.

Therefore, for ψ ∈ C1
n,s(D, E) ∩Dom(∂

>
, Ξ), and by using Equation (18), one obtains

‖∂ψ‖2
Wm

n,s(D,Ξ) + ‖∂
>
m ψ‖2

Wm
n,s(D,Ξ) = ‖∇ψ‖2

Wm
n,s(D,Ξ)+ < Θmψ, ψ >m + < (∂∂h̄)ψ, ψ > +m2 <

(
∂ζ ∧ ∂ζ

ζ2

)
ψ, ψ > . (42)

Also, by using Equation (40), one obtains

‖∂>m ψ‖2
m = ‖∂>ψ‖2

m + 2Re < ∂
>

ψ, m>
(

∂ζ

ζ
∧>ψ

)
>m +‖m>

(
∂ζ

ζ
∧>ψ

)
‖2
m,

= ‖∂>ψ‖2
m + 2Re < ∂

>
ψ, m>

(
∂ζ

ζ
∧>ψ

)
>m +m2‖∂ζ

ζ
∧>ψ‖2

m,
(43)

and since for all κ > 0,

2Re < ∂
>

ψ, m>
(

∂ζ

ζ
∧>ψ

)
>m | ≤

m

κ

∫
Ω
(−h̄)|∂>ψ|2dv + κm

∫
D
(−h̄)|m>

(
∂ζ

ζ
∧>ψ

)
|2dv, (44)

and since

< (∂∂h̄)ψ, ψ > ≥ C0

(∫
D
(−h̄)|ψ|2dv +

∫
D
(−h̄)|∂ζ

ζ
∧>ψ|2dv

)
. (45)
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Then, by using Equations (43)–(45), the identity (42) becomes

‖∂ψ‖2
Wm

n,s(D,Ξ) + ‖∂
>

ψ‖2
Wm

n,s(D,Ξ) ≥ Cm

(
‖∂φ ∧>ψ‖2

Wm
n,s(D,Ξ) + ‖∇ψ‖2

Wm
n,s(D,Ξ) +

∫
D
(−h̄)|ψ|2dv

)
.

Then the proof follows from the density of C1
n,s(D, E) ∩ Dom(∂

>
, Ξ) in Dom(∂, Ξ)∩

Dom(∂
>

, E) in the sense of
(
‖ψ‖2

Wm
n,s(D,Ξ) + ‖∂ψ‖2

Wm
n,s(D,Ξ) + ‖∂

>
ψ‖2

Wm
n,s(D,Ξ)

)2
.

Corollary 2. Let X, D and Ξ be the same as Theorem 2. Then,

‖∂Nn,sψ‖Wm
n,s(D,Ξ) ≤ C‖ψ‖Wm

n,s(D,Ξ), ψ ∈ ker(∂
>

, E), 0 ≤ s ≤ n− 1.

‖∂>Nn,sψ‖Wm
n,s(D,Ξ) ≤ C‖ψ‖Wm

n,s(D,Ξ), ψ ∈ ker(∂, Ξ), 2 ≤ s ≤ n.
(46)

Proof. Since ∂Nn,sψ ∈ Dom(∂, E) ∩Dom(∂
>

, Ξ), 0 ≤ s ≤ n− 1. Then, substituting ∂Nn,sψ

into Equation (41), for ψ ∈ ker(∂
>

, Ξ), one obtains

‖∂∂Nn,sψ‖2
Wm

n,s(D,Ξ) + ‖ψ∂Nn,sψ‖2
Wm

n,s(D,Ξ) ≥ Cm

(
‖∂φ ∧>∂Nn,sψ‖2

Wm
n,s(D,Ξ) + ‖∇∂Nn,sψ‖2

Wm
n,s(D,Ξ) +

∫
D
(−h̄)|∂Nn,sψ|2dv

)
.

Then, by using the fact that ψ =
(

∂
>

∂ + ∂∂
>)

Nψ, ∂ ∂ = 0 and ∂
>

Nψ = N∂
>

ψ = 0, one
obtains

‖ψ‖2
Wm

n,s(D,Ξ) ≥ Cm

∫
D
(−h̄)|∂Nψ|2dv.

Then, the first equation of Equation (46) is proved by choosing C = 1
Cm

. Similarly, for

2 ≤ s ≤ n, ∂
>

Nψ ∈ Dom(∂, E) ∩Dom(∂
>

, Ξ). Then, substituting ∂
>

Nn,sψ into Equation
(41), for ψ ∈ ker(∂, Ξ), one obtains

‖∂∂
>

Nψ‖2
Wm

n,s(D,Ξ) + ‖ψ∂
>

Nψ‖2
Wm

n,s(D,Ξ) ≥ Cm

(
‖∂φ ∧>∂

>
Nψ‖2

Wm
n,s(D,Ξ) + ‖∇∂

>
Nψ‖2

Wm
n,s(D,Ξ) +

∫
D
(−h̄)|∂>Nψ|2dv

)
.

Then, by using the fact that ψ =
(

∂
>

∂ + ∂∂
>)

Nψ, ∂
>

∂
>
= 0 and ∂Nψ = N∂ψ = 0, one

obtains
‖ψ‖2

Wm
n,s(D,Ξ) ≥ Cm

∫
D
(−h̄)|∂>Nψ|2dv.

Then, Equation (48) is proved by choosing C = 1
Cm

.

Theorem 6. Let X, D and Ξ be the same as Theorem 2. Let ψ ∈ L2
n,s(D, ζ−m, Ξ), 1 ≤ s ≤ n, a

∂-closed form. Then, for 0 ≤ m < m0, ∃ ψ = ∂
>
m Nψ ∈ L2

n,s−1(D, ζ−m, Ξ) satisfies ∂ψ = ψ and∫
D
|ψ|2ζ−mdv ≤ C

∫
D
|ψ|2ζ−mdv. (47)

Proof. Let χ = ψeφ = ψζ−m, φ = −m log ζ. Then, χ is orthogonal to all ∂-closed forms of
L2

n,s−1(D, ζ−m, Ξ). Equation (33) gives∫
D
|χ|2ζmdv ≤ C

∫
D
|∂χ|2ζmdv.

For φ = −m log ζ, one obtains

∂ χ = eφ∂ ψ + eφ∂ φ ∧ ψ = ζ−m∂ ψ + ζ−m∂ φ ∧ ψ.
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Then, ∫
D
|ψ|2ζ−mdv =

∫
D
|χ|2ζmdv ≤ C

∫
D
| ∂ χ |2ζmdv.

Then, ∫
D
|ψ|2ζ−mdv ≤ C

∫
D
|∂ψ + ∂φ ∧ ψ|2ζ−mdv

≤ C
((

1 +
1
τ

) ∫
D
|ψ|ζ−mdv + (1 + τ)

∫
D
|∂φ ∧ ψ|2ζ−mdv

)
,

for every τ > 0. Since
|∂φ ∧ ψ|2 ≤| ψ |2 |∂φ|2 ≤ t2|ψ|2,

by choosing τ, which satisfies (1 + τ)t2 < 1, (i.e., 0 < τ <
( m0
m

)2 − 1),

∫
D
|ψ|2ζ−mdv ≤ C

(
1 + 1

τ

)
[1− (1 + τ)t2]

∫
D
|ψ|2ζ−mdv.

It follows that ∂ψ = ψ and ∫
D
|ψ|2ζ−mdv ≤ C̃

∫
D
|ψ|2ζ−mdv.

Theorem 7. Let X, D and Ξ be the same as Theorem 2. The Bergman projectionP : L2
n,s(D, Ξ) −→

L2
n,s(D, E) ∩ ker(∂, Ξ) is bounded from Wm/2

n,s (D, Ξ) to Wm/2
n,s (D, Ξ), where 0 ≤ s ≤ n− 1.

Proof. From Lemma 2, P = I − ∂
>

Nr,s+1∂. Then, by using Equation (47), ∂
>

N is bounded
on ker(∂, Ξ) with

‖∂>Nψ‖−m ≤ C‖ψ‖−m, (48)

for ψ ∈ ker(∂, Ξ), 1 ≤ s ≤ n− 1. The Bergman projection with respect to the weighted
space L2(D, ζm, Ξ) is denoted by Pm. ∀ ψ, ϕ ∈ L2

n,0(D, Ξ) with ∂ψ = 0, and one obtains

< Pϕ, ψ > =< ϕ, ψ >=< ζ−mϕ, ψ >m=< Pmζ−mϕ, ψ >m=< ζmPmζ−mϕ, ψ > .

This implies that

P = P2 = PζmPmζ−m = (I − ∂
>

N∂)ζmPmζ−m = ζmPmζ−m − ∂
>

N(∂ ζm ∧ Pm ζ−m), (49)

because ∂Pm = 0. ∀ ψ ∈ L2(D, Ξ),

‖ζm Pm ζ−m ψ‖2
−m ≤ ‖Pm ζ−m ψ‖2

Wm
n,s(D,Ξ) ≤ ‖ζ

−m ψ‖2
Wm

n,s(D,Ξ) = ‖ψ‖
2
−m. (50)

With (46), one obtains

‖∂>N(∂ ζm ∧ Pm ζ−m ψ)‖2
−m ≤ C ‖∂ ζm ∧ Pm ζ−m ψ‖2

−m

≤ C ‖ζm/2 Pm ζ−m ψ‖2

= C‖Pm ζ−m ψ‖2
Wm

n,s(D,Ξ)

≤ C ‖ζ−m ψ‖2
Wm

n,s(D,Ξ) =

C‖ψ‖2
−m.

(51)
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With Equations (49) to (51), one obtains

‖P ψ‖2
−m ≤ C‖ψ‖2

−m. (52)

We note that Wm/2(D, Ξ) ⊂ L2(D, ζ−m, Ξ). From Equation (52), one obtains

‖Pmψ‖2
−m ≤ C‖ψ‖2

−m ≤ C1‖ψ‖2
m/2. (53)

Using Equation (52), one obtains that the Bergman projection satisfies

‖Pψ‖m/2 ≤ C2‖ψ‖2
m/2. (54)

Then, the Theorem is proved.

In the following, the Sobolev boundary regularity for N, ∂N and ∂
>

N is studied.

Theorem 8. Let X, D and Ξ be the same as Theorem 2. Then, ∀ 0 < m < m0, N is bounded from
Wm/2

n,s (D, Ξ) to Wm/2
n,s (D, Ξ) and 0 ≤ s ≤ n− 1. Also, ∀ ψ ∈ Wm

n,s(D, Ξ), and one obtains the
following estimates:

‖Nψ‖Wm/2
n,s (D,Ξ) ≤ 2C2‖ψ‖2

Wm/2
n,s (D,Ξ)

,

‖∂Nψ‖Wm/2
n,s (D,Ξ) ≤ C‖ψ‖2

Wm/2
n,s (D,Ξ)

,

‖∂>Nψ‖Wm/2
n,s (D,Ξ) ≤ C‖ψ‖2

Wm/2
n,s (D,Ξ)

,

(55)

where C depends only on m.

Proof. Since P = I − ∂
>

N∂, then ∂
>

Nψ = ∂
>

NPψ. Let P ′ = ∂
>

N∂ be another projection
operator into ker(∂

>
, Ξ). Then, P = I−P ′. It follows that ∂ Nψ = ∂NP ′ψ. The self-adjoint

property of P and P ′ gives

‖Pψ‖Wm
n,s(D,Ξ) + ‖P ′ψ‖Wm

n,s(D,Ξ) ≤ C3‖ψ‖Wm
n,s(D,Ξ).

Thus, by using Equation (54), and for s ≥ 0, one obtains

‖∂Nψ‖Wm
n,s(D,Ξ) = ‖∂NP ′ψ‖Wm

n,s(D,Ξ) ≤ C4‖P ′ψ‖Wm
n,s(D,Ξ) ≤ C4C3‖ψ‖Wm

n,s(D,Ξ), (56)

and for s ≥ 2, one obtains

‖∂>Nψ‖Wm
n,s(D,Ξ) = ‖∂

>
NPψ‖Wm

n,s(D,Ξ) ≤ C4‖Pψ‖Wm
n,s(D,Ξ) ≤ C4C3‖ψ‖Wm

n,s(D,Ξ).

Since for all ψ ∈ ker(∂, Ξ), one obtains

∂
>

Nψ = ∂
>
m Nmψ−Pm∂

>
m Nmψ.

Thus, for all ψ ∈ L2
n,1(D, Ξ), one obtains

‖∂>Nψ‖Wm
n,s(D,Ξ) = ‖∂

>
NPψ‖Wm

n,s(D,Ξ) = ‖∂
>
m NmPψ−Pm∂

>
m NmPψ‖Wm

n,s(D,Ξ)

≤ C5‖Pψ‖Wm
n,s(D,Ξ) ≤ C5C3‖ψ‖Wm

n,s(D,Ξ).
(57)

Since (∂N)> = N∂
>
= ∂

>
N and (∂

>
N)> = N∂ = ∂N. Use Equations (56) and (57), and by

choosing C = max{C3C4, C3C5}, the second and third inequality of Equation (55) follows.
Since

N = ∂∂
>

N2 + ∂
>

∂N2 = ∂N∂
>

N + ∂
>

N∂N.
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Equations (56) and (57) give

‖Nψ‖m/2(D) ≤ 2C2‖ψ‖2
m/2(D).

Theorem 9. Let X, D and Ξ be the same as Theorem 2. Then, ∀ 0 < m < m0 and N is bounded
from Wm/2

n,s (D, Ξ) to Wm/2
n,s (D, Ξ), where 0 ≤ s ≤ n − 1. Also, ∀ ψ ∈ Wm/2

n,s (D, Ξ), and one
obtains the following estimates:

‖Nψ‖W−m/2
n,s (D,Ξ) ≤ C‖ψ‖W−m/2

n,s (D,Ξ),

‖∂Nψ‖W−m/2
n,s (D,Ξ) ≤ C‖ψ‖W−m/2

n,s (D,Ξ),

‖∂>Nψ‖W−m/2
n,s (D,Ξ) ≤ C‖ψ‖W−m/2

n,s (D,Ξ).

Proof. With respect to the L2 norm, if S> is the adjoint map of S , one obtains

‖S f ‖Wm/2
n,s (D,Ξ) = sup

g∈L2

< S f , g >L2

‖g‖Wm/2
n,s (D,Ξ)

= sup
g∈L2

< f ,S>g >L2

‖g‖W−m/2
n,s (D,Ξ)

≤ ‖S>‖W−m/2
n,s (D,Ξ) ‖g‖Wm/2

n,s (D,Ξ).

(58)

Then, by using Theorem 9 and Equation (58), the proof follows.

7. Conclusions

Sobolev estimates for the ∂ and the ∂-Neumann operator on pseudoconvex manifolds
are fundamental results in complex analysis. They allow us to understand the behavior
of holomorphic functions and provide important tools for solving the ∂ equation. These
estimates have applications in various areas of mathematics, such as the study of complex
geometry and partial differential equations on pseudoconvex manifolds.
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