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Abstract: This paper reports the filamentation of hollow Gaussian beams of the first, second, third,
and fourth orders during propagation in a cubic and quintic nonlinear medium. Due to spatial
modulation instability, the hollow Gaussian beams split to form either co-centric circular filaments or
ultrashort pulses. It is found that the properties of the nonlinear medium used for propagation have
a strong influence on certain characteristics of the formed filaments, such as peak intensity and pulse
width. This correlation between the system parameters of the medium and filament characteristics
represents a method for calculating the system parameters of the medium. This investigation can be
helpful in the development of a hollow Gaussian beam-based artificial intelligence system that can be
used to measure the system parameters of the studied nonlinear medium.
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1. Introduction

Filamentation is a process by which a spatiotemporal or spatial optical pulse splits to
form ultrashort pulses called filaments. This process occurs due to modulation instability in
a nonlinear medium. A delicate balance among the effects of linear dispersion or between
diffraction and nonlinear effects is necessary for the generation of filaments. Ultrashort
laser pulses can undergo filamentation to form optical filaments in transparent media with
different states, examples of which include gases, solids, and liquids [1]. Investigations
determining the influence of air turbulence on femtosecond laser filamentation have re-
ported that the formed optical filaments are robust in terms of beam-pointing accuracy
and survival when moving through turbulent air [2]. The ellipticity of the input beam can
induce multiple filamentation processes [3]. The ability to observe filamentation and the
generation of a supercontinuum during the propagation of optical vortices in a nonlinear
medium with self-focusing nonlinearity has been investigated previously [4]. Analyses
of the impact of nonlinear Landau damping on the temporal growth rate of modulation
instability and filament formation show that the amplification of stationary-state filaments
is highly influenced by the amplitude of ultra-relativistic electromagnetic waves [5]. More-
over, the peak value of the growth rate of filamentation instability can be further enhanced
in the presence of a nonlinear Landau damping term. The number of annular solitons
formed as a result of the modulation instability of a vortex beam in a nonlinear meta-
material can be enhanced by increasing the topological charge or azimuthal index of the
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vortex [6]. Laser filamentation may be useful for applications related to atmospheric remote
sensing [7].

On the other hand, the recent literature on optical beam dynamics indicates that the
propagation of hollow Gaussian beams is worthy of study. Hollow Gaussian beams can be
generated using various methods. The most popular methods include the nonlinear inter-
action of photons with orbital angular momentum [8], phase-only filtering [9], and Fresnel
diffraction of the Gaussian beam using a spiral zone plate [10]. By adopting polynomial
expansion, hollow Gaussian beams can be mathematically stated as a vector sum of a series
of Laguerre–Gaussian modes [11]. The tight-focused beam formed during the self-trapping
of hollow Gaussian beams in a material with a negative index may be useful for trapping
nano-sized particles [12]. A mathematical expression to describe the intensity distribution
of hollow Gaussian beams propagating in a spherically aberrated lens has been derived
by adopting the Collins formula [13]. Optically tunable hollow Gaussian beams with
controllable profiles have been generated using the reflection of a TEM00 Gaussian beam
in a metal thin film [14].

In this paper, we report on the filamentation that occurs due to modulation instability
in a non-Kerr nonlinear medium with cubic and quintic nonlinearity. We consider hollow
Gaussian beams of the first, second, third, and fourth orders. A medium with both cubic
and quintic nonlinearities supports the stable dynamics of the laser beam and the existence
of stable stationary radially symmetric modes [15]. Numerical studies on the propagation
characteristics of cosh-Gaussian laser beams show that in a Kerr medium the beams collapse,
whereas in a defocusing quintic nonlinear medium the beams transform into sech, Gaussian,
or flat-top beams depending upon the optical power of the input [16]. We found that
filamentation occurs and forms a stable soliton-like structure as hollow Gaussian beams
propagate in a medium. Tailored filaments or intense lattice solitons with controllable
and regulated parameters can be formed by tuning the lattice parameters of the periodic
waveguide array [17]. Similarly, we found that the properties of a propagating nonlinear
medium have a strong influence on the parameters of formed filaments, such as the peak
intensity and pulse width. This correlation between the system parameters of the medium
and the filament characteristics provides a way to estimate the system parameters of the
medium. We believe that this investigation can be helpful for the development of a hollow
Gaussian beam-based artificial intelligence system that can be used to measure the system
parameters of the studied nonlinear medium.

The remaining sections of this article are divided as follows: in Section 2, the theoretical
model of the problem is presented; a numerical analysis and discussion is provided in
Section 3; and our conclusions are described in Section 4.

2. Theoretical Formulation

In this study, we consider high-intensity electromagnetic pulse propagation in a
nonlinear metamaterial with a negative index . We assume that free charges and free
current flow are absent in the material. Moreover, the nonlinear waveguide possesses third-
order and fifth-order nonlinear susceptibilities. Hence, the nonlinear electric polarization
of the material can be represented as

PNL = ε0χ
(3)
E |E|

2 E + ε0χ
(5)
E |E|

4 E, (1)

where χ
(3)
E and χ

(5)
E are third-order and fifth-order susceptibilities, respectively, and ε0

is the permittivity of the free space. Taking the influence of third-order and fifth-order
susceptibilities into consideration, the nonlinear Schrödinger equation, which describes
the propagation of electromagnetic waves in the cubic and quintic nonlinear medium, is
derived, as expressed by the following nonlinear partial differential equation [18–20]:

∂Q
∂z

= i
1
2
∇2
⊥Q + iρ1|Q|2 Q + iρ2|Q|4 Q, (2)
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where Q(x, y, z) is the normalized complex amplitude of the wave, ∇2
⊥ = ∂2

∂x2 +
∂2

∂y2 is the
transverse Laplace operator, z is the propagation distance of the beam, and ρ1 and ρ2 are the
self-phase modulation and quintic nonlinear coefficients, respectively. Now, we consider
the propagation of a hollow Gaussian beam with the following form in the metamaterial
modeled using Equation (2):

Q(z, x, y) = Θ(z)((
x

τη1(z)
)2 + (

y
τη2(z)

)2)m

eiθ(z)e
−(( x

τη1(z)
)2+(

y
τη2(z)

))2

, (3)

where τ is a constant, m = 1, 2, 3, . . . is the order of the hollow Gaussian beams , Θ(z) is
the peak amplitude of the propagating beam, η1(z) and η2(z) are beam width parameters,
and τ is a constant that determines the width of the beam. Equation (3) represents light
beams with a dark hollow spatial intensity distribution, which are depicted in Figure 1
for m = 1, 2, 3 and 4. Now, we numerically solve the nonlinear Schrödinger model in
Equation (2). We consider the initial beam profile as a hollow Gaussian beam with the form
denoted by Equation (3) . We adopt the Crank–Nicholson method for the linear portion and
the fourth-order Runge–Kutta method for the nonlinear portion. Compared to the forward–
backward difference Euler method , the Crank–Nicholson method is unconditionally stable
and has a higher order of accuracy. Additionally, the fourth-order Runge–Kutta method
provides improved accuracy. After considering the numerical stability and accuracy of
these methods, we have chosen to use them in our numerical simulation experiments.

(a) m = 1 (b) m = 2 (c) m = 3

(d) m = 4

Figure 1. Hollow Gaussian beams with order m = 1, 2, 3, and 4.

To solve the linear portion of Equation (2), we sample the resulting partial differ-
ential equation at a point (i, j n + 1

2 ) corresponding to the propagation distance (z) and
two traverse coordinates (x and y), then apply the difference approximations to obtain

[DzQ]n+
1
2 = θ[α(DxDxQ + DyDyQ)]n+1 + (1− θ)[α(DxDxQ + DyDyQ)]n, (4)

which leads to
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(Qn+1
i,j −Qn

i,j)

∆z
= αθ

(Qn+1
i−1,j − 2Qn+1

i,j + Qn+1
i+1,j)

∆x2 + αθ
(Qn+1

i,j−1 − 2Qn+1
i,j + Qn+1

i,j+1)

∆y2 + α(1− θ)

(
(Qn

i−1,j − 2Qn
i,j + Qn

i+1,j)

∆x2 ) + α(1− θ)(
(Qn

i,j−1 − 2Qn
i,j + Qn

i,j+1)

∆y2 ), (5)

where α =
√
−1, θ = 1/2, xi = i ∆x with i = 1, 2, 3 . . . . . . Nx, yj = i ∆y, with

j = 1, 2, 3 . . . . . . Ny being equally spaced mesh points, and Qn
i,j represents the mesh function.

Grouping the unknowns of Equation (5) on the left-hand side, we have

Qn+1
i,j − θ(Fx(Qn+1

i−1,j − 2Qn+1
i,j + Qn+1

i+1,j))− θ(Fy(Qn+1
i,j−1 − 2Qn+1

i,j + Qn+1
i,j+1)) =

(1− θ)(Fx(Qn
i−1,j − 2Qn

i,j + Qn
i+1,j)) + (1− θ)(Fy(Qn

i,j−1 − 2Qn
i,j + Qn

i,j+1)) + Qn
i,j, (6)

where Fx = α∆z
∆x2 and Fy = α∆z

∆y2 are the Fourier numbers in the x and y directions, respectively.
Equation (6) represents a system of algebraic equations, which can be written as

Ac = b, (7)

where A is the coefficient matrix, c represents the vector of unknowns, and b represents
right-hand side of Equation (6). Now, we can solve Equation (7) for the vector of unknowns
by adopting the Thomas algorithm.

The nonlinear part of Equation (2) can be represented as

∂Q
∂z

= iρ1|Q|2 Q + iρ2|Q|4 Q = f (z, Q), (8)

which can be solved by adopting a fourth-order Runge–Kutta integration scheme. At the
propagation distance z = 0, the corresponding Q value is Q0, which can be found using
Equation (3). Now, we pick an appropriate step size h > 0 and define the parameters

Qn+1 = Qn +
h
6
(k1 + 2k2 + 2k3 + k4), (9)

where

k1 = f (zn, Qn), (10)

k2 = f (zn +
h
2

, Qn + h
k1

2
), (11)

k3 = f (zn +
h
2

, Qn + h
k2

2
), (12)

k4 = f (zn + h, Qn + hk3). (13)

Now, we choose ρ1 = 1 and ρ2 = 0.3 as the cubic and quintic nonlinear coefficients.
In addition, we consider the profile of the input beam to be a form of hollow Gaussian
beam, as shown in Equation (3). We consider hollow Gaussian beams of the first, second,
third, and fourth orders in our numerical experiment. The numerical experiment was
implemented using Python, and the obtained results are discussed in the following section.

3. Numerical Results

We now discuss the results obtained through our numerical experiments by consider-
ing the dynamic model in Equation (2). We consider a nonlinear medium with cooperating
cubic and quintic nonlinearities. A nonlinear medium with cooperating cubic and quintic
nonlinearities shows the phenomenon of vortex beam filamentation, whereas the compet-
ing cubic and quintic nonlinearities in the medium may not support splitting, and instead
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have the effect of stabilizing the dynamics [21]. As an illustrative example, we choose
ρ1 = 1 and ρ2 = 0.3 to be the cubic and quintic nonlinear coefficients. Here, all of the pa-
rameters are in normalized units, justifying the propagation model in Equation (2). Similar
works using normalized units have been reported, such as those using temporal splitting
in nonlinear metamaterials [22], breather generation of vortex light bullets [23], and gap
soliton formation in an optical metamaterial coupler [24], to mention only a few. Here, we
consider the profile of the input beam to be a form of hollow Gaussian beam, as shown in
Equation (3). Additionally, we consider hollow Gaussian beams of the first, second, third,
and fourth orders for our numerical experiments. In particular, we focus on the dependence
of the system parameters on the attributes of filaments formed via the filamentation of
hollow Gaussian beams in a cooperating cubic and quintic nonlinear medium.

In a medium with cooperating cubic and quintic nonlinearities, the propagation
of high-intensity laser beams undergoes intrinsic collapse in two and three dimensions,
resulting in unstable dynamics. In a nonlinear medium with cooperating cubic and quintic
nonlinearities, a hollow Gaussian beam propagating with adequate optical power may
experience instability and become split into several uncorrelated light structures due to
the phenomenon of modulation instability, which results in the generation of optical
filaments. Figure 2 depicts filamentation resulting from the modulation instability of a first-
order hollow Gaussian beam in a nonlinear medium with cubic and quintic nonlinearities.
The parameters used for the simulation are ρ1 = 1 and ρ2 = 0.3, and the input for the
optical power is Θ = 2. It is clear from Figure 2 that when the light beam passes through a
nonlinear medium with cooperating cubic and quintic nonlinearities it breaks into filaments
after a certain distance. This transverse filamentation arises due to spatial modulation
instability, and results in the formation of soliton clusters. When the diffraction is balanced
with nonlinearities, spatial modulation instability occurs and the hollow Gaussian beam
splits to form solitons. During further propagation, the formed soliton clusters maintain
their shape and evolve tangentially relative to the input ring-shaped hollow Gaussian beam
profile. When the propagation distance is z = 1.17, a stable filament is generated; we found
that this propagates further without any additional changes in shape up to z = 2.25. When
it does propagate further, the filaments become unstable due to nonlinear focusing.

(a) z = 0.0 (b) z = 0.42 (c) z = 0.72

(d) z = 0.94 (e) z = 1.17

Figure 2. Filamentation of first-order hollow Gaussian beam in a nonlinear medium with cubic and
quintic nonlinearities when ρ1 = 1, ρ2 = 0.3, and Θ = 2.
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The filamentation of higher-order hollow Gaussian beams is depicted in Figures 3–5.
Figures 3–5 correspond to the filamentation of higher-order hollow Gaussian beams of the
second, third, and fourth orders, respectively. It can be observed that when the input power
is above a certain threshold the hollow Gaussian beam splits to form soliton clusters, which
is due to the fundamental phenomenon of modulation instability . In each case, the number
of solitons in the cluster and their attributes, such as maximum intensity and pulse width,
may differ.

(a) z = 0.0 (b) z = 0.43 (c) z = 0.92

(d) z = 1.18 (e) z = 1.42

Figure 3. Filamentation of second-order hollow Gaussian beam in a nonlinear medium with cubic
and quintic nonlinearities. The system parameters are ρ1 = 1, ρ2 = 0.3, and Θ = 2.

(a) z = 0.0 (b) z = 0.14 (c) z = 0.42

(d) z = 0.79 (e) z = 1.02

Figure 4. Filamentation of third-order hollow Gaussian beam in a nonlinear medium with cubic and
quintic nonlinearities. The system parameters are ρ1 = 1, ρ2 = 0.3, and Θ = 2.
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(a) z = 0.0 (b) z = 0.18 (c) z = 0.47

(d) z = 0.73 (e) z = 1.14

Figure 5. Filamentation of fourth-order hollow Gaussian beam in a nonlinear medium with cubic
and quintic nonlinearities. The system parameters are ρ1 = 1, ϑ = ρ2, and Θ = 2.

We found that the properties of a propagating nonlinear medium have a strong
influence on the characteristics of formed filaments, such as the peak intensity and pulse
width. When changing the system parameters that characterize the nonlinear medium,
we found them to have considerable influence on the attributes of the filaments. This
correlation between the system parameters of the medium and filament characteristics
provides a way of estimating the system parameters of the medium by measuring the
filament attributes. In general, our findings may be useful to estimate the system parameters
of any nonlinear medium using the known values of filament attributes. If this relationship
between the system parameters of the medium and filament characteristics is programmed
properly to detect and display the system parameters, then the findings of our study can
provide a means of developing a hollow Gaussian beam-based artificial intelligence system.
Hence, this investigation should be helpful in the development of a hollow Gaussian beam-
based artificial intelligence system for measuring the system parameters of the studied
nonlinear medium .

4. Conclusions

In this paper, we have investigated the filamentation and formation of soliton rings
from hollow Gaussian beams. We numerically studied the propagation of hollow Gaussian
beams of the first, second, third, and fourth orders in a nonlinear medium with cooperating
cubic and quintic nonlinearities. Due to the phenomenon of modulation instability, the hol-
low Gaussian beam splits to form either co-centric stable circular filaments or ultrashort
pulses. The stability of the formed filament was found to be a function of the system
parameters characterizing the medium. We found that the properties of the propagating
nonlinear medium highly influence the characteristics of the formed filaments, such as the
peak intensity and pulse width. This correlation between the system parameters of the
medium and the filament characteristics provides a way to estimate the system parameters
of the medium. Hence, this study reports a method for the development of a hollow
Gaussian beam-based artificial intelligence system to measure the system parameters of
the studied nonlinear medium.
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