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Abstract: Motivated by the application of high-density data storage technologies, Cassuto and
Blaum introduced codes for symbol-pair read channels in 2011, and Yaakobi et al. generalized
the coding framework to that for b-symbol read channels where b ≥ 2 in 2016. In this paper, we
establish a b-sphere-packing bound and present a recurrence relationship for the b-weight enumerator.
We determine all parameters of linear perfect b-symbol e-error-correcting codes over Fq for e < 2b and
show that for 2b ≤ e < 3b, there exist at most finite such codes for a given b, e, and q. We construct a
family of linear perfect b-symbol b-error-correcting codes over Fq using constacyclic codes.
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1. Introduction

Motivated by the application of high-density data storage technologies, Cassuto and
Blaum [1] proposed a new coding framework for symbol-pair read channels in 2011. In this
framework, the reading from the channel is performed as overlapping pairs of symbols
due to physical limitations, and the design object is to protect against pair errors rather
than symbol errors.

Construction and decoding for symbol-pair codes and bounds on their sizes were
further studied in [2–4]. Chee et al. [5,6] established a Singleton-like bound on symbol-pair
codes and constructed some MDS symbol-pair codes meeting this bound from Mendel-
sohn designs. More MDS symbol-pair codes were constructed by Kai et al. [7] based on
constacyclic codes.

Yaakobi et al. [8] generalized symbol-pair codes to b-symbol codes where b ≥ 2 and
provided extensions of some concepts and results in 2016. Subsequently, many MDS b-
symbol codes were constructed in [9–14] through constacyclic codes, repeated-root cyclic
codes, and projective geometry. Yang et al. [15] established a Plotkin-like bound and
constructed some b-symbol codes on irreducible cyclic codes and constacyclic codes meeting
this bound.

The symbol-pair sphere-packing bound was first presented in [1]. Cassuto and Lit-
syn [2] showed that cyclic binary Hamming codes are perfect symbol-pair codes. In [9], a
constacyclic [q2 + q + 1, q2 + q− 2, 5]q Hamming symbol-pair code was constructed and
shown to be both MDS and perfect.

In 2018, Song et al. [16] established the sphere-packing bound and Gilbert–Varshamov
bound for b-symbol codes. Chen [17] studied the covering radii of linear codes in the
b-symbol metric, and many cyclic and algebraic-geometric codes were proved non-perfect
in the b-symbol metric.

In this paper, we continue the investigation of perfect b-symbol codes. We establish a
b-sphere-packing bound for linear b-symbol codes and study the existence of linear perfect
b-symbol e-error-correcting codes over Fq for e < 3b. We determine all parameters of linear

Mathematics 2023, 11, 4128. https://doi.org/10.3390/math11194128 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194128
https://doi.org/10.3390/math11194128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0670-1361
https://doi.org/10.3390/math11194128
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194128?type=check_update&version=2


Mathematics 2023, 11, 4128 2 of 13

perfect b-symbol e-error-correcting codes over Fq for e < 2b and show that for 2b ≤ e < 3b,
there exist at most finite such codes for a given b, e, and q. In particular, we construct a
family of linear perfect b-symbol b-error-correcting codes over Fq using constacyclic codes.

This paper is organized as follows. Section 2 gives some preliminaries concerning
b-symbol codes. The sphere-packing bound on b-symbol codes and the enumeration of
b-spheres are presented in Section 3. In Section 4, we study the existence of linear perfect
b-symbol e-error-correcting codes over Fq for e < 3b. Section 5 is the conclusion.

2. Preliminaries

Basic concepts and propositions related to linear codes over finite fields, the Hamming
distance, and the Hamming weight can be found in Chapter 1 of [18].

Let Σ be an alphabet consisting of q elements and b ≥ 2 be an integer. For a vector
x = (x0, x1, . . . , xn−1) ∈ Σn, the b-symbol read vector of x is defined as

πb(x) = ((x0, x1, . . . , xb−1), (x1, x2, . . . , xb), . . . , (xn−1, x0, . . . , xb−2)) ∈ (Σb)n.

For b-symbol vectors

←→
u(i) = ((u(i)

11 , u(i)
12 , . . . , u(i)

1b ), (u
(i)
21 , u(i)

22 , . . . , u(i)
2b ), . . . , (u(i)

n1 , u(i)
n2 , . . . , u(i)

nb )) ∈ (Σb)n

where i = 1, 2, the b-distance between
←→
u(1) and

←→
u(2) is defined as

Db(
←→
u(1),
←→
u(2)) = |{1 ≤ i ≤ n : (u(1)

i1 , u(1)
i2 , . . . , u(1)

ib ) 6= (u(2)
i1 , u(2)

i2 , . . . , u(2)
ib )}|,

where (u(1)
i1 , u(1)

i2 , . . . , u(1)
ib ) = (u(2)

i1 , u(2)
i2 , . . . , u(2)

ib ) if u(1)
ij = u(2)

ij for all 1 ≤ j ≤ b.
For notational aesthetics, we have

Db(x,←→u ) , Db(πb(x),
←→u ), Db(x, y) , Db(πb(x), πb(y)),

where x, y ∈ Σn. As in the Hamming case, Σn with the b-distance is a metric space.
The b-weight of x ∈ Σn is defined as

wtb(x) = Db(x, 0).

Throughout this paper, we consider Σ to be the finite field Fq, with q a prime power,
and C ⊆ Fn

q to be a linear code of length n and dimension k over Fq.

Proposition 1. For all x, y ∈ Fn
q , Db(x, y) = wtb(x− y).

Proposition 2 ([12]). For all x ∈ Fn
q such that 0 < wtH(x) ≤ n− (b− 1),

wtH(x) + b− 1 ≤ wtb(x) ≤ b · wtH(x).

The minimum b-distance of a code C is defined as

db = min {Db(x, y) : x, y ∈ C, x 6= y}.

Since C is linear, we have

Proposition 3. db = min {wtb(x) : x ∈ C, x 6= 0}.

Referring to these propositions, we have
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Corollary 1. For a linear code C over Fq with dH(C) > 0,

min{dH(C) + b− 1, n} ≤ db(C) ≤ b · dH(C).

Let x ∈ Fn
q . In the b-symbol sense, a b-symbol vector←→u ∈ (Fb

q)
n is the result of an

e-error from x if Db(x,←→u ) ≤ e. A code C is an e-error-correcting code if no←→u is the result
of an e-error from both x and y for some x 6= y ∈ C.

Proposition 4. A code C is an e-error-correcting code if and only if db ≥ 2e + 1.

Proof. This follows from the fact that Fn
q with the b-distance is a metric space.

3. Sphere-Packing Bound and b-Spheres

Let x ∈ Fn
q . We define the b-sphere Sn,b,q

r (x) of radius r as the set of all y ∈ Fn
q such

that Db(x, y) = r and the b-ball Bn,b,q
r (x) of radius r as the set of all y ∈ Fn

q such that
Db(x, y) ≤ r.

Since x is in Fn
q , |Sn,b,q

r (x)| and |Bn,b,q
r (x)| do not rely on the selection of x. Hence, we

denote |Sn,b,q
r (x)| = f b,q

r (n) and |Bn,b,q
r (x)| = gb,q

r (n).
For a linear b-symbol e-error-correcting code C of length n and dimension k over Fq,

since there are qk disjoint b-balls of radius e, we can establish a b-sphere-packing bound if
we can enumerate gb,q

r (n).

Definition 1. For a word x ∈ Fn
q , suppose that wtH(x) = l. The remaining n − l indices

{i : xi = 0} can be uniquely partitioned into a union of its subsets such that each subset consists of
consecutive numbers j, j+ 1, . . . , j+ h− 1 modulo n for some j, h, and xj−1, xj+h 6= 0. Suppose that
there are ci of these subsets in the partition with an exact cardinality of i for i = 1, 2, . . . , b− 2, and
c of them have a cardinality of no less than b− 1. Then, we say that x is an (l; c1, . . . , cb−2, c)-word,
in the b-symbol sense.

Now, we calculate the b-weight of an (l; c1, . . . , cb−2, c)-word.

Proposition 5. Suppose that x is an (l; c1, . . . , cb−2, c)-word; then, we have

wtb(x) = l +
b−2

∑
i=1

ici + (b− 1)c.

Proof. By the definition of the b-weight,

wtb(x) = n− |{0 ≤ i ≤ n− 1 : xi = xi+1 = . . . = xi+b−1 = 0}|,

where the indices may wrap around modulo n. The indices of b consecutive zeros must
belong to one of the c subsets which have a cardinality of no less than b− 1 in the partition
of zeros of x. On the other hand, each Aj of these c subsets contributes |Aj| − (b− 1) of
indices i such that xi = xi+1 = . . . = xi+b−1 = 0. Hence, we have

wtb(x) =n− |{0 ≤ i ≤ n− 1 : xi = xi+1 = . . . = xi+b−1 = 0}|

=n−
c

∑
j=1

[|Aj| − (b− 1)]

=n−
c

∑
j=1
|Aj|+ (b− 1)c

=l +
b−2

∑
i=1

ici + (b− 1)c.
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For example, the word x = (0, 1, 2, 0, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0) ∈ F14
3 is a (6; 1, 3)-word in

the three-symbol sense, and wt3(x) = 6 + 1 · 1 + 2 · 3 = 13. The following theorem shows
how many (l; c1, . . . , cb−2, c)-words there are.

Theorem 1. The number of (l; c1, . . . , cb−2, c)-words (l > 0) in Fn
q is

n
l

(n− l −
b−2
∑

i=1
ici − (b− 1)c + c− 1

c− 1

)( b−2
∑

i=1
ci + c

c1, c2, . . . , cb−2, c

)( l
b−2
∑

i=1
ci + c

)
(q− 1)l .

Proof. We prove the theorem by the following five steps:

(1) We sort all these (l; c1, . . . , cb−2, c)-words into several classes such that x and y are in
the same class if and only if for some j, xi = yi+j for all i = 0, 1, . . . , n− 1. For each of
these classes, whether or not the cardinality is n, the exact l/n of the words in the class
satisfy x0 6= 0. Hence, the exact l/n of all (l; c1, . . . , cb−2, c)-words satisfies x0 6= 0. For
example, the two words (1, 0, 1, 0) and (0, 1, 0, 1) form a class, and 2/4 of them, i.e.,
(1, 0, 1, 0), satisfy x0 6= 0.

(2) By Proposition 5, the c subsets A1, A2, . . . , Ac, which have a cardinality of no less
than b − 1 in the partition of zeros of an (l; c1, . . . , cb−2, c)-word x, contribute all
n − wtb(x) = n − l − ∑b−2

i=1 ici − (b − 1)c indices i such that xi = xi+1 = . . . =
xi+b−1 = 0. Consider the number of non-negative integer solutions (X1, X2, . . . , Xc) =
(|A1| − (b− 1), |A2| − (b− 1), . . . , |Ac| − (b− 1)) of the equation

X1 + X2 + . . . + Xc = n− l −
b−2

∑
i=1

ici − (b− 1)c,

or, equivalently, the number of positive integer solutions (X′1, X′2, . . . , X′c) = (X1 +
1, X2 + 1, . . . , Xc + 1) of the equation

X′1 + X′2 + . . . + X′c = n− l −
b−2

∑
i=1

ici − (b− 1)c + c.

The latter is obviously (
n−l−∑b−2

i=1 ici−(b−1)c+c−1
c−1 ).

(3) We then consider the order of the ∑b−2
i=1 ci + c subsets in the partition. Since we

suppose that x0 6= 0, no subset wraps around modulo n, and the number is simply

( ∑b−2
i=1 ci+c

c1,c2,...,cb−2,c).

(4) Now that the cardinalities and the order of these subsets have been determined, we
just need to choose ∑b−2

i=1 ci + c from these l non-zeros and insert corresponding zeros
after each of them. The number of possible choices is ( l

∑b−2
i=1 ci+c).

(5) Each of the l non-zeros has (q− 1) possible values.
Now, by the rule of product, the number of (l; c1, . . . , cb−2, c)-words is

n
l

(n− l −
b−2
∑

i=1
ici − (b− 1)c + c− 1

c− 1

)( b−2
∑

i=1
ci + c

c1, c2, . . . , cb−2, c

)( l
b−2
∑

i=1
ci + c

)
(q− 1)l .



Mathematics 2023, 11, 4128 5 of 13

Corollary 2. The number of (l; c)-words (l > 0) in Fn
2 is

n
l

(
n− l − 1

c− 1

)(
l
c

)
.

Proof. Take b = 2 and q = 2 in Theorem 1.

This corollary coincides with Theorem 8 in [1]. By these results, we can determine the
size of b-spheres and b-balls.

Proposition 6. The cardinality f b,q
r (n) of a b-sphere Sn,b,q

r (x) (r > 0) is

∑
l+∑b−2

i=1 ici+(b−1)c=r

n
l

(
n− r + c− 1

c− 1

)( b−2
∑

i=1
ci + c

c1, c2, . . . , cb−2, c

)( l
b−2
∑

i=1
ci + c

)
(q− 1)l .

The cardinality gb,q
r (n) of a b-ball Bn,b,q

r (x) is 1 + ∑r
i=1 f b,q

i (n).

Finally, we establish the following bound.

Theorem 2 (b-Sphere-Packing Bound). For a linear b-symbol e-error-correcting code C of length
n and dimension k over Fn

q , we have

gb,q
e (n) ≤ qn−k,

where gb,q
e (n) = 1 + ∑e

r=1 f b,q
r (n) and f b,q

r (n) =

∑
l+∑b−2

i=1 ici+(b−1)c=r

n
l

(
n− r + c− 1

c− 1

)( b−2
∑

i=1
ci + c

c1, c2, . . . , cb−2, c

)( l
b−2
∑

i=1
ci + c

)
(q− 1)l .

Proof. The qk b-balls, each with a cardinality gb,q
e (n), are disjoint and contained in Fn

q ;

hence, qkgb,q
e (n) ≤ qn.

The e-error-correcting code meeting this bound is called a perfect code, as in the
Hamming case.

We set Wb,q
n (x) = 1 + ∑n

r=1 f b,q
r (n)xr to be the b-weight enumerator of all words in Fn

q ;
then, for a linear perfect b-symbol code C, the following equation holds:

∑
x∈C

∑
y∈Bb,q

e (x)

xwtb(y) = Wb,q
n (x).

Before studying the existence of perfect codes, we present another way to calculate f b,q
r (n).

Note that for a given b and q, f b,q
r (n) is a polynomial of n, by the expression in Theorem 2.

Proposition 7. For n > b, we have

f b,q
r (n) = f b,q

r (n− 1) + (q− 1)
b

∑
i=1

f b,q
r−i(n− i)− (q− 1)

b−1

∑
i=1

f b,q
r−i(n− 1− i).

Proof. For r ≤ b, the equation holds trivially. Now, we consider r > b.
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For each x ∈ Fm
q and wtb(x) = r − i(i = 0, 1, . . . , b), we have wtH(x) ≥ 1. Suppose

that

x0 = x1 = . . . = xi−1 = 0, xi 6= 0,

xm−1 = xm−2 = . . . = xm−j = 0, xm−j−1 6= 0

for some non-negative integers i, j. Then, we define α(x) = i and β(x) = j.
For each x ∈ Fm

q and wtb(x) = r, we have wtH(x) ≥ 2. Suppose that

xm−1 = xm−2 = . . . = xm−j = 0, xm−j−1 6= 0,

xm−j−2 = xm−j−3 = . . . = xm−j−k−1 = 0, xm−j−k−2 6= 0

for some non-negative integers j, k. Then, we define γ(x) = k.
For example, if x = (0, 1, 0, 0, 1, 0, 0, 1), then α(x) = 1, β(x) = 0 and γ(x) = 2.
We divide the set Sn,b,q

r (0) into four parts:

A = {x ∈ Sn,b,q
r (0) : β(x) ≥ 1, α(x) + β(x) ≥ b}

B = {x ∈ Sn,b,q
r (0) : β(x) ≥ 1, α(x) + β(x) < b, γ(x) < α(x)}

C = {x ∈ Sn,b,q
r (0) : β(x) ≥ 1, α(x) + β(x) < b, γ(x) ≥ α(x)}

D = {x ∈ Sn,b,q
r (0) : β(x) = 0}

We divide the set Sn−1,b,q
r (0) into four parts:

A′ = {x ∈ Sn−1,b,q
r (0) : α(x) + β(x) ≥ b− 1}

B′ = {x ∈ Sn−1,b,q
r (0) : β(x) ≥ 1, α(x) + β(x) < b− 1, γ(x) < α(x)}

C′ = {x ∈ Sn−1,b,q
r (0) : β(x) ≥ 1, α(x) + β(x) < b− 1, γ(x) ≥ α(x)}

D′ = {x ∈ Sn−1,b,q
r (0) : β(x) = 0, α(x) < b− 1}

For 1 ≤ i ≤ b− 1, we divide the set Sn−i,b,q
r−i (0) into four parts:

Ei = {x ∈ Sn−i,b,q
r−i (0) : α(x) ≥ i, β(x) ≥ 1, α(x) + β(x) ≥ b}

Bi = {x ∈ Sn−i,b,q
r−i (0) : α(x) ≥ i, β(x) ≥ 1, α(x) + β(x) < b}

Ci = {x ∈ Sn−i,b,q
r−i (0) : α(x) ≤ i− 2}

Di = {x ∈ Sn−i,b,q
r−i (0) : α(x) ≥ i, β(x) = 0 or α(x) = i− 1}

For i = b, we divide the set Sn−b,b,q
r−b (0) into two parts:

Cb = {x ∈ Sn−b,b,q
r−b (0) : α(x) ≤ b− 2}

Db = {x ∈ Sn−b,b,q
r−b (0) : α(x) ≥ b− 1}

For 1 ≤ i ≤ b− 1, we divide the set Sn−1−i,b,q
r−i (0) into four parts:

E′i = {x ∈ Sn−1−i,b,q
r−i (0) : α(x) ≥ i, α(x) + β(x) ≥ b− 1}

B′i = {x ∈ Sn−1−i,b,q
r−i (0) : α(x) ≥ i, β(x) ≥ 1, α(x) + β(x) < b− 1}

C′i = {x ∈ Sn−1−i,b,q
r−i (0) : α(x) ≤ i− 2}

D′i = {x ∈ Sn−1−i,b,q
r−i (0) : α(x) ≥ i, β(x) = 0, α(x) < b− 1 or α(x) = i− 1}



Mathematics 2023, 11, 4128 7 of 13

We construct several maps:

φ :(x0, x1, . . . , xn−1) 7→ (x0, x1, . . . , xn−2)

ψ :(x0, x1, . . . , xn−1) 7→ (x0, x1, . . . , xn−2−β(x)−γ(x), xn−β(x), xn−β(x)+1, . . . , xn−1)

σ :(x0, x1, . . . , xn−1) 7→ (x0, x1, . . . , xn−2−α(x)−β(x))

τ :(x0, x1, . . . , xn−1) 7→ (x0, x1, . . . , xn−2−min{α(x),γ(x),b−1})

For example, if we set b = 3, then

φ(0, 0, 1, 2, 0, 1, 0) = (0, 0, 1, 2, 0, 1),

ψ(0, 1, 0, 1, 2, 1, 0) = (0, 1, 0, 1, 2, 0),

σ(0, 1, 0, 2, 0, 1, 0) = (0, 1, 0, 2),

τ(0, 1, 0, 2, 0, 0, 1) = (0, 1, 0, 2, 0).

It is not hard to prove that

φ : A→ A′,

φ : Ei → E′i , i = 1, 2, . . . , b− 1

are all well-defined one-to-one maps, and

ψ : B→
b−1⋃
i=1

Bi, ψ : B′ →
b−1⋃
i=1

B′i ,

σ : C →
b⋃

i=1

Ci, σ : C′ →
b−1⋃
i=1

C′i ,

τ : D →
b⋃

i=1

Di, τ : D′ →
b−1⋃
i=1

D′i

are all well-defined (q− 1)-to-1 maps. Thus, we have

|A| = |A′|,
|Ei| = |E′i |, i = 1, 2, . . . , b− 1,

|B| = (q− 1)
b−1

∑
i=1
|Bi|, |B′| = (q− 1)

b−1

∑
i=1
|B′i |,

|C| = (q− 1)
b

∑
i=1
|Ci|, |C′| = (q− 1)

b−1

∑
i=1
|C′i |,

|D| = (q− 1)
b

∑
i=1
|Di|, |D′| = (q− 1)

b−1

∑
i=1
|D′i |.

Note that

f b,q
r (n) = |A|+ |B|+ |C|+ |D|,

f b,q
r (n− 1) = |A′|+ |B′|+ |C′|+ |D′|,

f b,q
r−i(n− i) = |Ei|+ |Bi|+ |Ci|+ |Di|, i = 1, 2, . . . , b− 1,

f b,q
r−b(n− b) = |Cb|+ |Db|,

f b,q
r−i(n− 1− i) = |E′i |+ |B′i |+ |C′i |+ |D′i |, i = 1, 2, . . . , b− 1.
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Putting all these together, we have

f b,q
r (n) = f b,q

r (n− 1) + (q− 1)
b

∑
i=1

f b,q
r−i(n− i)− (q− 1)

b−1

∑
i=1

f b,q
r−i(n− 1− i).

The relationship between f b,q
r (n) gives a relationship between Wb,q

n (x).

Theorem 3. Suppose b ≥ 2. For n > b, we have

Wb,q
n (x) = qWb,q

n−1(x) + (q− 1)
b

∑
i=1

xi−1(x− 1)Wb,q
n−i(x).

Proof. Comparing the coefficients of xr, the equation holds by Proposition 7.

For example, we take b = 3 and q = 3. By this theorem, we have W3,3
5 (x) = 212x5 +

20x4 + 10x3 + 1; hence, f 3,3
1 (5) = f 3,3

2 (5) = 0, f 3,3
3 (5) = 10, f 3,3

4 (5) = 20, and f 3,3
5 (5) = 212.

The results coincide with Proposition 6.

4. Linear Perfect b-Symbol Codes for e < 3b

For linear perfect b-symbol codes, gb,q
e (n) = qn−k. So far, we know that gb,q

e (n) is the
sum of 1 and some f b,q

r (n), where each f b,q
r (n) is a polynomial of n. Now, we analyze the

expression of f b,q
r (n) more carefully. When e = n, we have gb,q

e (n) = qn and k = 0, and the
corresponding code is the trivial code. Hence, we suppose that e < n from now on.

For each word in Bb,q
e (0)\{0}, we have l ≥ c ≥ 1. Therefore, by Proposition 5, e ≥

l +(b− 1)c ≥ bc, or c ≤ b e
b c. Note that each polynomial f b,q

r (n) of n has a degree of no more

than c, and the sum gb,q
e (n) must be a polynomial of n with a degree of no more than b e

b c.
On the other hand, there does exist a word with c = 0 and l = e− (b− 1)c; hence, gb,q

e (n)
is a polynomial of n with degree b e

b c.

4.1. Linear Perfect b-Symbol Codes for 1 ≤ e ≤ b− 1

In this case, b e
b c = 0, and there is no possible c for a word in Bb,q

e (0)\{0}; hence,

gb,q
e (n) = 1 and k = n. The code C = Fn

q has a minimum b-distance b and is a perfect
e-error-correcting code if and only if e ≤ b b−1

2 c.

Theorem 4. For 1 ≤ e ≤ b− 1, linear perfect b-symbol e-error-correcting codes over Fq exist if
and only if 1 ≤ e ≤ b b−1

2 c. The parameters of these perfect codes are [n, n, b]q.

4.2. Linear Perfect b-Symbol Codes for e = b

In this case, b e
b c = 1. Hence, all words in Bb,q

e (0)\{0} satisfy l = c = 1 and ci = 0 for
i = 1, 2, . . . , b− 2, since l + ∑b−2

i=1 ici + (b− 1)c ≤ e.

By Proposition 6, gb,q
e (n) = 1 + (q − 1)n. Let 1 + (q − 1)n = qn−k; thus, we have

n = qr−1
q−1 and k = qr−1

q−1 − r. Before we construct the corresponding perfect codes, we need
the following lemma.

Lemma 1 ([7], the BCH Bound for Constacyclic Codes). Let C be an ω-constacyclic code of
length n over Fq with generating polynomial g(x), where ω is a primitive t-th root of unity. Let
δ be a primitive nt-th root of unity in an extension field of Fq such that δn = ω. If g(x) has the
elements {δ1+ti : i0 ≤ i ≤ i0 + d− 1} as its roots for some integer i0, then dH ≥ d + 1.

The basic idea of the following construction is from [12].
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Theorem 5. There exists a linear perfect [ qr−1
q−1 , qr−1

q−1 − r, 2b+ 1]q b-symbol b-error-correcting code
over Fq for any r ≥ b + 1.

Proof. Let n = qr−1
q−1 ; then, n > 1 + (r − 1)q ≥ 1 + bq ≥ 1 + 2b. Let ω be a primitive

element of Fq and δ be a primitive element of Fr
q such that δn = ω. Note that g(x) =

(x − δ)(x − δq) . . . (x − δqr−1
) ∈ Fq[x] divides xn − ω. Let C be the ω-constacyclic code

〈g(x)〉 ⊆ Fq[x]/(xn − ω). Then, C is a linear [ qr−1
q−1 , qr−1

q−1 − r, dH ]q code. By Lemma 1,
dH ≥ 3.

Let c(x) = ∑n−1
i=0 cixi be any non-zero codeword. If there exists a j such that

cj = cj+1 = . . . = cj+b−2 = 0, cj+b−1 6= 0,

where the indices are the reduced modulo n, then we consider the codeword c′(x) =
xn−j−b+1

c(x) = ∑n−1
i=0 c′ix

i. By the selection of j, we have

c′n−1 = c′n−2 = . . . = c′n−b+1 = 0, c′0 6= 0.

Suppose that
c′n−1 = c′n−2 = . . . = c′t+1 = 0, c′t 6= 0

for some t ≤ n− b. Since g(x) | c′(x), we have t ≥ r. Consider the set

I = {i : (c′i, c′i+1, . . . , c′i+b−1) 6= (0, 0, . . . , 0)},

where the indices are the reduced modulo n. The set I has at least 2b elements t− b + 1 ≤
i ≤ t and n − b + 1 ≤ i ≤ n, since t − b + 1 ≥ r − b + 1 > 0; n − b + 1 > n − b ≥ t;
and c′0 6= 0, c′t 6= 0. If |I| = 2b, then (c′i, c′i+1, . . . , c′i+b−1) = (0, 0, . . . , 0) for 1 ≤ i ≤ t− b,
which means that c′1 = c′2 = . . . = c′t−1 = 0 and contradicts dH ≥ 3. Hence, wtb(c(x)) =
wtb(c′(x)) = |I| ≥ 2b + 1.

If there does not exist such a j, then wtb(c(x)) = n > 2b + 1.
Hence, we always have wtb(c(x)) ≥ 2b + 1 and db ≥ 2b + 1. On the other hand, the

b-error-correcting code C meets the b-sphere-packing bound. Thus, C is a perfect code,
and for the word (1, 1, 0, 0, . . . , 0), which has a b-weight b + 1, there must be a codeword
separated from it by a b-distance of no more than b. This codeword has a b-weight of no
more than 2b + 1, and hence db = 2b + 1.

Lemma 2 ([12], b-Singleton Bound). Let q ≥ 2 and b ≤ db ≤ n. If C is an (n, M, db)q b-symbol
code, then we have M ≤ qn−db+b.

Theorem 6. For e = b, linear perfect b-symbol e-error-correcting codes over Fq exist.
The parameters of all these perfect codes are [ qr−1

q−1 , qr−1
q−1 − r, 2b + 1]q, where r ≥ b + 1.

Proof. By the discussion at the beginning of this subsection and Theorem 5, the only detail
we need to prove is that r ≥ b + 1 must hold, which is exactly what the b-Singleton bound
tells us.

4.3. Linear Perfect b-Symbol Codes for b + 1 ≤ e ≤ 2b− 1

In this case, b e
b c = 1. Hence, all words in Bb,q

e (0)\Bb,q
b (0) satisfy c = 1 and l ≥ 2.

Theorem 7. For b + 1 ≤ e ≤ 2b− 1, gb,q
e (n) = 1 + qe−b(q− 1)n.
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Proof. By Proposition 6,

gb,q
e (n)− 1− (q− 1)n

=
e

∑
r=b+1

∑
l+∑b−2

i=1 ici=r−b+1

n
l

( b−2
∑

i=1
ci + 1

c1, c2, . . . , cb−2, 1

)( l
b−2
∑

i=1
ci + 1

)
(q− 1)l

=
e

∑
r=b+1

r−b+1

∑
l=2

∑
∑b−2

i=1 ici=r−b+1−l

( l − 1

c1, c2, . . . , cb−2, l − 1−
b−2
∑

i=1
ci

)
(q− 1)ln

For a fixed r and l, the number of ways to insert c1 1-consecutive zeros, c2 2-consecutive
zeros, . . . , cb−2 (b− 2)-consecutive zeroes into l non-zeros is ( l−1

c1,c2,...,cb−2,l−1−∑b−2
i=1 ci

). Note

that r− b+ 1− l ≤ 2b− 1− b+ 1− 2 = b− 2, and the number of ways to insert r− b+ 1− l
zeros into l non-zeros is exactly

∑
∑b−2

i=1 ici=r−b+1−l

( l − 1

c1, c2, . . . , cb−2, l − 1−
b−2
∑

i=1
ci

)
.

On the other hand, this number is (r−b+1−l+l−2
r−b+1−l ) = (r−b−1

l−2 ). Thus, we have

gb,q
e (n) =1 + (q− 1)n +

e

∑
r=b+1

r−b+1

∑
l=2

(
r− b− 1

l − 2

)
(q− 1)ln

=1 + (q− 1)n +
e

∑
r=b+1

qr−b−1(q− 1)2n

=1 + qe−b(q− 1)n.

Theorem 8. For b + 1 ≤ e ≤ 2b− 1, linear perfect b-symbol e-error-correcting codes over Fq do
not exist.

Proof. By Theorem 7, gb,q
e (n) ≡ 1 (mod q) and hence cannot meet the b-sphere-packing

bound.

4.4. Linear Perfect b-Symbol Codes for 2b ≤ e ≤ 3b− 1

We present a general result first. The following lemma is a classical result, and the
proof can be found in, for example, [19].

Lemma 3. Let f (x) be a polynomial with integer coefficients and at least two zeroes. When integer
x → +∞, we have P→ +∞, where P is the greatest prime factor of f (x).

Theorem 9. For e ≥ 2b, there exist infinite linear perfect b-symbol e-error-correcting codes over
Fq for a given b, e, and q only if gb,q

e (n) = (Kn + 1)b
e
b c for some integer K.

Proof. gb,q
e (n) is a polynomial with rational coefficients, and deg(gb,q

e (n)) = b e
b c ≥ 2.

Consider the equation gb,q
e (n) = qn−k; we can rewrite it as F(n) = Cqn−k such that F(n) is

a polynomial with integer coefficients and C is an integer. Since the greatest prime factor
of Cqn−k is a constant, the equation has infinite solutions only if F(n) = C0(a0n + b0)

b e
b c,

by Lemma 3.
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Taking n = 0, we have C = C0b
b e

b c
0 , since gb,q

e (0) = 1. Thus, gb,q
e (n) = ( a0

b0
n + 1)b

e
b c.

Taking n = 1, we know that a0
b0

is an integer K, since gb,q
e (1) is an integer. The statement of

the theorem follows.

From now on, we focus on the case 2b ≤ e ≤ 3b− 1. In this case, b e
b c = 2, and gb,q

e (n)
is a quadratic function of n.

Theorem 10. For 2b ≤ e ≤ 3b− 1, the coefficient of n2 in gb,q
e (n) is

1
2
[(e− 2b)qe−2b−1(q− 1)3 + qe−2b(q− 1)2].

Proof. In order to calculate the coefficient of n2, we only need to consider those words
satisfying c = 2. By Proposition 6, this coefficient is

e

∑
r=2b

∑
l+∑b−2

i=1 ici=r−2b+2

1
l

( b−2
∑

i=1
ci + 2

c1, c2, . . . , cb−2, 2

)( l
b−2
∑

i=1
ci + 2

)
(q− 1)l

=
1
2
(q− 1)2+

1
2

e

∑
r=2b+1

r−2b+2

∑
l=3

∑
∑b−2

i=1 ici=r−2b+2−l

(l − 1)
( l − 2

c1, c2, . . . , cb−2, l − 2−
b−2
∑

i=1
ci

)
(q− 1)l

Note that r− 2b + 2− l ≤ 3b− 1− 2b + 2− 3 = b− 2, and we have

∑
∑b−2

i=1 ici=r−2b+2−l

( l − 2

c1, c2, . . . , cb−2, l − 2−
b−2
∑

i=1
ci

)
=

(
r− 2b− 1

l − 3

)

by the same method we used to prove Theorem 7.
Thus, the coefficient is

1
2
(q− 1)2 +

1
2

e

∑
r=2b+1

r−2b+2

∑
l=3

(l − 1)
(

r− 2b− 1
l − 3

)
(q− 1)l

=
1
2
(q− 1)2 +

1
2

e

∑
r=2b+1

r−2b+2

∑
l=3

(l − 3)
(

r− 2b− 1
l − 3

)
(q− 1)l+

e

∑
r=2b+1

r−2b+2

∑
l=3

(
r− 2b− 1

l − 3

)
(q− 1)l

=
1
2
(q− 1)2 +

1
2

e

∑
r=2b+1

r−2b+2

∑
l=4

(r− 2b− 1)
(

r− 2b− 2
l − 4

)
(q− 1)l+

e

∑
r=2b+1

qr−2b−1(q− 1)3

=
1
2
(q− 1)2 +

e

∑
r=2b+1

[
1
2
(r− 2b− 1)qr−2b−2(q− 1)4 + qr−2b−1(q− 1)3]

=
1
2
[(e− 2b)qe−2b−1(q− 1)3 + qe−2b(q− 1)2]

Theorem 11. For 2b ≤ e ≤ 3b − 1, there exist at most finite linear perfect b-symbol e-error-
correcting codes over Fq for a given b, e, and q.
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Proof. By Theorems 9 and 10, we only need to consider the case gb,q
e (n) = (Kn + 1)2,

and hence
1
2
[(e− 2b)qe−2b−1(q− 1)3 + qe−2b(q− 1)2] = K2.

for some integer K.
If e = 2b, then 1

2 (q− 1)2 = K2, which is impossible.
If e = 2b + 1, then 1

2 (q− 1)2(2q− 1) = K2. Hence, 4q− 2 is a perfect square, which is
also impossible.

If e ≥ 2b + 2, then p | 1
2 [(e− 2b)qe−2b−1(q− 1)3 + qe−2b(q− 1)2], where q is a power

of prime p. Hence, p | K, and gb,q
e (n) = (Kn + 1)2 ≡ 1 (mod p), which contradicts

gb,q
e (n) = qn−k.

5. Conclusions

In this paper, we established a b-sphere-packing bound and presented a recurrence
relationship for the b-weight enumerator. We determined all parameters of linear perfect
b-symbol e-error-correcting codes over Fq for e < 2b and showed that for 2b ≤ e < 3b, there
exist at most finite such codes for a given b, e, and q. A family of linear perfect b-symbol
b-error-correcting codes over Fq was constructed using constacyclic codes.

So far, we have not found any perfect b-symbol e-error-correcting codes for b < e < n.
New conditions for perfect b-symbol codes besides the b-sphere-packing bound may need
to be established for a further study.

Most of our results stay true for a more general alphabet Σ, such as Zq with an
arbitrary q. However, the construction using constacyclic codes does need Σ to be a finite
field. Whether perfect b-symbol b-error-correcting codes exist for a q that is not a prime
power is also unknown.
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