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Abstract: In this paper, we prove that if a Gorenstein toric Fano variety (X,−KX) is asymptotically
Chow semistable, then it is Ding polystable with respect to toric test configurations (Theorem 3).
This extends the known result obtained by others (Theorem 2) to the case where X admits Gorenstein
singularity. We also show the additivity of the Mabuchi constant for the product toric Fano varieties
in Proposition 2 based on the author’s recent work (Ono, Sano and Yotsutani in arxiv:2305.05924).
Applying this formula to certain toric Fano varieties, we construct infinitely many examples that
clarify the difference between relative K-stability and relative Ding stability in a systematic way
(Proposition 1). Finally, we verify the relative Chow stability for Gorenstein toric del Pezzo surfaces
using the combinatorial criterion developed in (Yotsutani and Zhou in Tohoku Math. J. 71 (2019),
495–524.) and specifying the symmetry of the associated polytopes as well.
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1. Introduction

Let (X, L) be a polarized projective variety of complex dimension n. One of the
outstanding problems in Kähler geometry is to distinguish whether the first Chern class
c1(L) contains a Kähler metric ω with constant scalar curvature (cscK metric). A parallel
reasoning question in algebraic geometry is to study an appropriate notion of stability of
(X, L) in the sense of Geometric Invariant Theory (GIT). This leads us to investigate various
notions of GIT stability and study the relations among them. For example, Ross-Thomas
clarified the following implications among GIT stability in their paper [1]:

Asymptotic Chow stability ⇒ Asymptotic Hilbert stability
⇒ Asymptotic Hilbert semistability ⇒ Asymptotic Chow semistability

⇒ K-semistability.

In [2], Mabuchi proved that Chow stability and Hilbert stability asymptotically co-
incide. We remark that, for a fixed positive integer i ∈ Z+, Chow stability for (X, L⊗i)
implies Hilbert stability for (X, L⊗i) (i.e., not necessarily an asymptotic stability case) by
the classical result due to Forgaty [3]. See also ([4] Corollary 3.4) for more combinatorial
description of this result in terms of GIT weight polytopes.

In order to describe our issue more precisely, we first recall that a complex normal
variety X is said to be Fano if its anticanonical divisor −KX is ample. It is called Gorenstein
if −KX is Cartier. Suppose that X is a smooth Fano variety (i.e., a Fano manifold) with a
Kähler metric

ω =
√
−1gi j̄dzi ∧ dz̄j ∈ 2πc1(X).

We recall that ωϕ = ω +
√
−1∂∂̄ϕ is Kähler–Einstein if and only if ϕ is a critical point of

either the K-energy νω or the Ding functionalDω , where both functionals are defined on the
space of Kähler potentialsHω = {ϕ ∈ C∞(X)|ωϕ > 0}. It is known that these functionals
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satisfy the inequality Dω 6 νω , which shows that the Ding invariant is less than or equal to
the Donaldson–Futaki (DF) invariant [5]. In the case where X is toric, Yao gave an explicit
description of the inequality between the Ding invariant and the DF invariant in terms
of the associated polytope ([6] Proposition 4.6). In particular, Ding polystability implies
K-polystability for a toric Fano manifold. Moreover, the converse direction has been proven
in [7] for (not necessarily toric) Fano manifolds.

Theorem 1 (Fujita). Let X be a Fano manifold. Then, Ding semistability is equivalent to K-
semistability. Furthermore, Ding polystability (resp. Ding stability) is also equivalent to K-
polystability (resp. K-stability).

On the one hand, from a differential-geometrical point of view, Theorem 1 corre-
sponds to the fact that cscK metrics in the anticanonical classes of Fano manifolds are
Kähler–Einstein metrics. Recall that for a compact Kähler manifold X with a fixed Kähler
class [ω], ϕ is a critical point of νω if and only if ωϕ is a cscK metric. On the other hand,
we conclude that if a Fano manifold X is asymptotically Chow semistable, then it is Ding
semistable according to the previous argument. In the case where X is a toric Fano manifold,
it is known that X is K-semistable if and only if it is K-polystable [5,8,9]. Summing up these
arguments, we have the following.

Theorem 2 (Berman, Ono, Yao). Let (X,−KX) be a smooth toric Fano variety. If (X,−KX) is
asymptotically Chow semistable with respect to toric test configurations, then it is Ding polystable
with respect to toric test configurations.

In this article, we show a more general result via a combinatorial proof.

Theorem 3. Let (X,−KX) be a Gorenstein toric Fano variety. If (X,−KX) is asymptotically
Chow semistable with respect to toric test configurations, then it is Ding polystable with respect to
toric test configurations.

Essentially, the proof of Theorem 3 is based on the Ehrhart reciprocity law and the fact
that any toric Fano variety is K-polystable if and only if the barycenter of the associated
reflexive polytope ∆ ⊆ MR is the origin. As mentioned above, another advantage of our
combinatorial approach is that X may admit Gorenstein singularity (i.e., not necessarily
smooth) in our main theorem. However, it does not work for a Q-Gorenstein toric variety
since the corresponding polytope ∆ contains not only the origin, but also other lattice
points. It also should be noted that we only assume (X,−KX) to be asymptotically Chow
semistable and do not assume (X,−KX) to be asymptotically Chow polystable in Theorem 3.

In the following Section 4, we discuss the relative stability of the toric Fano variety.
Recently, we found that there are at least four examples of smooth toric Fano varieties that
clarify the difference between relative K-stability and relative Ding stability in [10]. In order
to discover these four examples of a relatively K-polystable toric Fano variety, but which is
relatively Ding unstable, we focused on the geometrical description such that they are all
P1-bundles over Pm. In particular, we consider the case of Picard number one projective
toric varieties. Based on a recent argument discussed in [11], we systematically construct
such examples in arbitrary dimension.

Proposition 1 (See Corollary 4). Fixing a positive integer r, we consider an extremal smooth
toric Fano variety Xk with the associated polytope ∆k, for 1 6 k 6 r. Suppose θ∆k (xk) to be the
potential function of ∆k defined in (10) with 1

r 6 θ∆k < 1. For the product polytope ∆ = ∏r
k=1 ∆k,

the associated smooth toric Fano variety (X∆,−KX∆) is relatively K-polystable, but it is relatively
Ding unstable.

In order to prove Proposition 1, we shall use the following additive property of the
Mabuchi constant MX∆ for the products of toric Fano varieties.
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Proposition 2 (See Corollary 3). For the product polytope ∆ of reflexive polytopes ∆k for
k = 1, . . . , r, let MX∆ and MX∆k

be the Mabuchi constant defined in (18). Then, we have the
equality

MX∆ = MX∆1
+ · · ·+ MX∆r

.

We give a purely combinatorial proof of Proposition 2 in Section 4.3. In the following
Section 4.4, we classify Gorenstein toric del Pezzo surfaces in terms of (asymptotic) relative
Chow polystability. We use the criteria (12) to verify the asymptotic relative Chow stability
of the polarized toric variety. However, it is very difficult to verify the asymptotic relative
Chow stability of a given polarized toric variety because we have to prove that there
exists ti ∈ R satisfying the equality in (12) for any positive integer i. In order to solve this
difficulty, we consider the symmetry of the associated polytopes ∆ ⊂ MR, which works very
well for two-dimensional reflexive polygons (16 types). Adapting the symmetry of reflexive
polygons and a combinatorial criterion (12) investigated by Zhou and the author in [12],
we verify the relative Chow stability of each Gorenstein toric del Pezzo surface.

Proposition 3 (See Proposition 6). Among all 16 isomorphism classes of Gorenstein toric del
Pezzo surfaces, there are 5 isomorphism classes of asymptotically relatively Chow polystable surfaces
and 4 isomorphism classes of asymptotically relatively Chow unstable surfaces. The remaining
7 classes are relatively Chow polystable with respect to the anticanonical polarization.

All the results are listed in Table 1. We also refer the reader to Table 2, specifying the
symmetry of each reflexive polygon ∆ ⊂ MR.

This paper is organized as follows. Section 2 is a brief review of Gorenstein toric
Fano varieties, Ding stability and asymptotic Chow stability. The proof of Theorem 2 is
given in Section 3. Section 4 collects the results of relative algebro-geometric stability. In
Sections 4.1 and 4.2, we recall the criteria of relative Chow stability of polarized toric vari-
eties investigated by the author and B. Zhou in [12]. We prove Proposition 2 in Section 4.3
by applying the product formulas regarding convex polytopes, which were also used in [11].
See Lemma 3 and the proof of Proposition 5 for further details. Section 4.4 is devoted to
verifying the asymptotic relative Chow stability of Gorenstein toric del Pezzo surfaces. All
the results and practical values of invariants are summarized in Proposition 6 and Table 1.

Table 1. Relative Chow stability of Gorenstein toric del Pezzo surfaces.

Label in [13] Stability t1 in (12)

3 (CP2) Asymptotically relatively Chow polystable No need

4A (CP1 ×CP1) Asymptotically relatively Chow polystable No need

4B (dP8) Relatively Chow polystable with respect to OX(−KX) −65/828

4C Relatively Chow polystable with respect to OX(−KX) −5/72

5A (dP7) Relatively Chow polystable with respect to OX(−KX) 69/665

5B Asymptotically relatively Chow unstable –

6A (dP6) Asymptotically relatively Chow polystable No need

6B Relatively Chow polystable with respect to OX(−KX) −259/1944

6C Asymptotically relatively Chow unstable –

6D Asymptotically relatively Chow unstable –

7A Relatively Chow polystable with respect to OX(−KX) −409/2646

7B Asymptotically relatively Chow unstable –

8A Asymptotically relatively Chow polystable No need
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Table 1. Cont.

Label in [13] Stability t1 in (12)

8B Relatively Chow polystable with respect to OX(−KX) −33/200

8C Relatively Chow polystable with respect to OX(−KX) −3/19

9 Asymptotically relatively Chow polystable No need

Table 2. Combinatorial data and the delta invariant of Gorenstein toric del Pezzo surfaces.

Label ∆ ⊆ MR in [13] Symmetry of ∆

3 conv{
(
−1
1

)
,
(

2
1

)
,
(
−1
−2

)
} No need

4A conv{
(
−1
1

)
,
(
−1
−1

)
,
(

1
−1

)
,
(

1
1

)
} No need

4B conv{
(

0
1

)
,
(

1
1

)
,
(

1
0

)
,
(
−1
−1

)
}

(
0 1
1 0

)
4C conv{

(
−1
1

)
,
(

1
0

)
,
(
−1
−1

)
}

(
1 0
0 −1

)
5A conv{

(
−1
−1

)
,
(

0
−1

)
,
(

1
0

)
,
(

0
1

)
,
(
−1
0

)
}

(
0 1
1 0

)
5B conv{

(
−1
0

)
,
(

1
−2

)
,
(

0
1

)
,
(
−1
1

)
} –

6A conv{
(

1
0

)
,
(

0
1

)
,
(
−1
1

)
,
(
−1
0

)
,
(

0
−1

)
,
(

1
−1

)
} No need

6B conv{
(
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1

)
,
(

0
1

)
,
(

1
0

)
,
(

0
−1

)
,
(
−1
−1

)
}

(
1 0
0 −1

)
6C conv{

(
−1
−1

)
,
(

0
−1

)
,
(

1
1

)
,
(
−1
1

)
} –

6D conv{
(
−1
1

)
,
(
−1
−2

)
,
(

1
1

)
} –

7A conv{
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0
1

)
,
(

1
0

)
,
(

1
−1

)
,
(
−1
−1

)
,
(
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1

)
}

(
0 1
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)
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(
1
0
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,
(

1
1

)
,
(
−3
−1
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,
(

0
−1

)
} –

8A conv{
(

1
0
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(

0
1
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(
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(

0
−1

)
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−1
2
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2
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(

0
−1
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0
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(
0 1
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2
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1
0
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(
1 0
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)
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1
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0
1

)
,
(
−1
−1

)
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2. Preliminaries
2.1. Gorenstein Toric Fano Varieties

We first recall the standard notation and basic definitions of Gorenstein toric Fano
varieties, as can be found in [14].

Let N ∼= Zn be a lattice of rank n, while M = Hom(N,Z) is the Z-dual of M. Let
P ⊆ NR ∼= Rn be a lattice polytope with 0 ∈ Int(P). We assume that all vertices of P are
primitive elements in N. For a subset S of NR, we denote the positive hull of S by pos(S),
i.e., pos(S) = ∑v∈S R>0v. Then,

ΣP := {pos(F)|F is a face of P}

forms the fan, which is often called the normal fan of P. It is well known that the fan
Σ = ΣP associates a toric variety XΣ with the complex torus TN := Spec C[M] action. Here
and hereafter, we denote the associated toric variety by X for simplicity. Recall that the
anticanonical divisor of X is given by −KX = ∑ρ Dρ, where Dρ is the torus invariant Weil
divisor corresponding to a ray ρ ∈ Σ(1). Then, the dual polytope of P (with respect to
−KX) is defined by

∆ = {y ∈ MR| ≺ x, y �≥ −1 for all x ∈ P}

which is also an n-dimensional (rational) polytope in MR with 0 ∈ Int(∆). Then, ∆ is called
reflexive if it is a lattice polytope. There is a bijective correspondence between isomorphism
classes of reflexive polytopes and isomorphism classes of Gorenstein toric Fano varieties.
For a fixed dimension n, there are only finitely many isomorphism classes of n-dimensional
reflexive polytopes [15,16]. They found 1, 16, 4319 and 473800776 isomorphism classes for
n = 1, 2, 3 and 4. Throughout the paper, we assume that a (toric) Fano variety X admits at
worst Gorenstein singularities.

2.2. Ding Stability for Fano Varieties

In this section, we briefly review the notion of Ding stability; see [5–7] for more details.
Let (X, ω) be an n-dimensional Fano manifold with a Kähler metric ω ∈ 2πc1(X). We

set V to be the volume V :=
∫

X
ωn of the given Fano manifold X. Recall that the Ding

functional Dω : Hω → R is given by

Dω := − 1
V

∫ 1

0

∫
X

ϕ̇t(1− eρωt )ωn
t dt,

where ϕt is a smooth path inHω joining 0 with ϕ and ρω is the function that satisfies

Ric(ω)−ω =
√
−1∂∂̄ρω and

∫
X
(eρω − 1)ωn = 0. (1)

Then, we readily see that ϕ is a critical point ofDω if and only if ωϕ is a Kähler–Einstein metric.
Next, we recall the notion of a test configuration. A test configuration for a Fano variety

(X,−KX) is a polarized scheme (X ,L) with

• a C×-action and a C×-equivariant proper flat morphism π : X → C, where C× acts
on the base by multiplication;

• a C×-equivariant line bundle L → X , which is ample over all fiber Xz := π−1(z) for
z 6= 0, and (X,−KX) is isomorphic to (Xz,Lz) with Lz = L|Xz .

Taking a Hermitian metric h0 on OX(−KX) with positive curvature, we can construct the
Phong–Sturm geodesic ray ht that emanates from h0 in Hω [17]. In [5], Berman defined
the Ding invariant as the asymptotic slope of the Ding functional along the geodesic rays.
Moreover, he showed that

DF(X ,L) = lim
t→∞

1
V

dDω(ht)

dt
+ q
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where the error term q is non-negative and DF(X ,L) is the Donaldson–Futaki invariant.
Then, the Ding invariant Ding(X ,L) is given by

Ding(X ,L) = lim
t→∞

1
V

dDω(ht)

dt
.

A Gorenstein Fano variety X is said to be Ding semistable if, for any test configuration (X ,L)
for (X,−KX), we have Ding(X ,L) > 0. Moreover, X is said to be Ding polystable if X is
Ding semistable and Ding(X ,L) = 0 if and only if (X ,L) is equivariantly isomorphic to
(X×C, p∗1(−KX)), where p1 : X×C→ X is the projection.

Now, we consider the toric case. Let X be an n-dimensional toric Fano variety and
∆ ⊆ MR the corresponding reflexive polytope with the coordinates x = (x1, . . . , xn).
Recall that a piecewise linear convex function u = max{ f1, . . . , f`} on ∆ is called rational
if fk = ∑ ak,ixi + ck with (ak,1, . . . , ak,n) ∈ Qn and ck ∈ Q for k = 1, . . . , `. A toric test
configuration for (X,−iKX), introduced by Donaldson [18], is a test configuration associated
with a rational piecewise linear convex function u on ∆, so that iQ is a lattice polytope in
MR ×R ∼= Rn+1. Here, Q is given by

Q = {(x, t)|x ∈ ∆, 0 6 t 6 R− u(x)}

and R is an integer such that u 6 R. Then, iQ defines the n + 1-dimensional polarized toric
variety (X ,L) and a flat morphism X → CP1. Hence, the family restricted to C gives a
torus equivariant test configuration (X ,L) for (X,−iKX).

The toric geodesic ray ht associated with a toric test configuration was described by
Song-Zeldich [19]. In [6], Yao detected an explicit description of the Ding invariants of toric
Fano varieties.

Theorem 4 (Yao). Let (X,−KX) be a Gorenstein toric Fano variety with the associated reflexive
polytope ∆. Let u be a piecewise linear convex function. The Ding invariant of the toric test
configuration associated with u is given by

Ding(X ,L) = lim
t→∞

1
vol(∆)

dDω(ht)

dt

= −u(0) +
1

vol(∆)

∫
∆

u(x) dv =: I∆(u).
(2)

Then, a reflexive polytope ∆ ⊆ MR is said to be Ding polystable if I∆(u) > 0 for all
convex piecewise linear functions u and the equality holds if and only if u is affine linear.
One can observe that I∆(u) is invariant when we add affine linear functions to convex
piecewise linear functions. Hence, it suffices to consider normalized convex piecewise linear
functions u on ∆ for our purpose, i.e., u(x) > u(0) = 0. The following observation was
given by Yao [6], and we provide the details for the reader’s convenience.

Proposition 4 (Yao). If ∆ is a reflexive polytope, then the associated Gorenstein toric Fano variety
(X,−KX) is Ding polystable if and only if the barycenter of ∆ is 0.

Proof. Suppose that ∆ is Ding polystable. Hence,

1
vol(∆)

∫
∆

u(x) dv > 0 (3)

for any normalized convex piecewise linear function u. Applying (3) to linear functions,
i.e., u = ±xi for i = 1, . . . , n, we conclude

∫
∆ x dv = 0.
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Conversely, we assume that
∫

∆ x dv = 0. Then, for any normalized convex piecewise
linear function u, Jensen’s inequality implies that∫

∆
u(x) dv > u(

∫
∆

x dv) = u(0) = 0.

Hence, ∆ is Ding polystable.

2.3. Asymptotic Chow Stability of Toric Varieties

In this section, let us briefly recall the notion of Chow stability; see [20,21] for more
details.

Let X ⊂ CPN be an n-dimensional irreducible complex projective variety of degree
d > 2. Recall that for a projectively embedded n-dimensional complex subvariety X ⊂ CPN ,
the degree d of X is a number of intersection of X with a linear subspace L in a general
position, such that n + dim L = N. Let us denote the Grassmann variety by G(k,CPN). We
define the associated hypersurface of X ⊂ CPN by

ZX := {L ∈ G(N − n− 1,CPN)|L ∩ X 6= ∅}.

Remark that the construction of ZX can be regarded as an analog of the projective dual
varieties as in ([22] Chapter1) . In fact, it is well known that ZX is an irreducible divisor
in G(N − n− 1,CPN) with deg ZX = d in the Plücker coordinates. Therefore, there exists
RX ∈ H0(G(N − n − 1,CPN),OG(d)) such that ZX = {RX = 0}. We call RX the X-
resultant. Since there is a natural action of SL(N + 1,C) on H0(G(N− n− 1,CPN),OG(d)),
we define GIT stability for the X-resultant RX as follows.

Definition 1. Let X ⊂ CPN be an n-dimensional irreducible complex projective variety. X
is said to be Chow semistable if the closure of the SL(N + 1,C)-orbit of the X-resultant RX
does not contain the origin. X is said to be Chow polystable if the orbit SL(N + 1,C) · RX is
closed. We call X Chow unstable if it is not Chow semistable.

Definition 2. Let (X, L) be a polarized projective variety. For i� 0, we denote the Kodaira
embedding by Ψi : X → P(H0(X, L⊗i)∗). (X, L) is said to be asymptotically Chow semistable
(resp. polystable) if there is an i0 such that Ψi(X) is Chow semistable (resp. polystable)
for each i > i0. (X, L) is called asymptotically Chow unstable if it is not asymptotically
Chow semistable.

Next, we will give a brief review of Ono’s necessary condition for the Chow semista-
bility of polarized toric varieties. Let ∆ be an n-dimensional lattice polytope in MR ∼= Rn.
The Euler–Maclaurin summation formula for polytopes provides a powerful connection be-
tween the integral over a polytope ∆ and the summation of lattice points in ∆. More
specifically, for any polynomial function φ on Rn, we would like to see how the summation

∑
a∈∆∩(Z/i)n

φ(a) =: I(φ, ∆)(i)

will behave for a positive integer i. If we take φ to be 1, I(φ, ∆)(i) is the so-called Ehrhart
polynomial, which counts the number of lattice points in the i-th dilation of a polytope ∆:

I(1, ∆)(i) = #(∆ ∩ (Z/i)n).

Recall that the Ehrhart polynomial has the expression

E∆(t) := I(1, ∆)(t) = vol(∆)tn +
vol(∂∆)

2
tn−1 + · · ·+ 1
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where ∂∆ is the boundary of a lattice polytope ∆. Similarly, if we take φ to be the coordinate
functions x = (x1, . . . , xn), then I(φ, ∆)(i) counts the weight of lattice points in the i-th
dilation of a polytope ∆:

I(x, ∆)(i) = ∑
a∈∆∩(Z/i)n

a. (4)

Similar to the Ehrhart polynomial, it is also known that (5) gives the Rn-valued polynomial
satisfying

s∆(t) := I(x, ∆)(t)

= tn
∫

∆
x dv +

tn−1

2

∫
∂∆

x dσ + · · ·+ c, s∆(i) = ∑
a∈∆∩(Z/i)n

a (5)

for any positive integer i. We call s∆(t) the lattice points sum polynomial. The following
necessary condition of the Chow semistability of projective toric varieties was obtained
in [20].

Theorem 5 (Ono). Let ∆ be a lattice polytope, E∆(t) the Ehrhart polynomial and s∆(t) the lattice
points sum polynomial. We fix a positive integer i ∈ Z+. If the associated toric variety X with
respect to L⊗i is Chow semistable, then the following equality holds:

s∆(i) =
E∆(i)

vol(∆)

∫
∆

x dv. (6)

Suppose that a projective polarized toric variety (X, L) associated with a lattice poly-
tope ∆ is asymptotically Chow semistable. Then, there is an i0 ∈ Z+ such that (6) holds
for any positive integer i > i0. On the other hand, we observe that E∆(t) and s∆(t) are
(Rn-valued) polynomials. Hence, the polynomial identity theorem gives the following (see
also ([20] Theorem 1.4).

Lemma 1. Let ∆ be a lattice polytope. If the associated projective polarized toric variety (X, L) is
asymptotically Chow semistable, then (6) holds for any (not necessarily positive) integer i ∈ Z.

3. Proof of Theorem 3
3.1. Ehrhart Reciprocity Law for Polynomial Functions

Let ∆ be an n-dimensional lattice polytope in MR ∼= Rn and φ a polynomial function
on Rn. As in Section 2.3, we consider

I(φ, ∆)(i) = ∑
a∈∆∩(Z/i)n

φ(a)

and
I(φ, Int(∆))(i) = ∑

a∈Int(∆)∩(Z/i)n
φ(a)

for a positive integer i. Remark that I(1, Int(∆))(i) = #(Int(∆) ∩ (Z/i)n). The classical
result of the Ehrhart reciprocity law says that the following equality holds for any positive
integer i ∈ Z+:

I(1, Int(∆))(i) = (−1)n I(1, ∆)(−i).

Brion and Vergne gave the following beautiful generalization of this reciprocity law [23].

Theorem 6 (Brion–Vergne). Let ∆ be an n-dimensional lattice polytope. If φ is a homogeneous
polynomial function of degree d on ∆, then the following reciprocity law

I(φ, Int(∆))(i) = (−1)n+d I(φ, ∆)(−i) (7)
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holds for any positive integer i ∈ Z+.

We use this result to prove the following.

Lemma 2. Let ∆ be an n-dimensional reflexive polytope in MR. Let E∆(t) be the Ehrhart polyno-
mial and s∆(t) the lattice point sum polynomial. Then, we have

E∆(−1) = (−1)n and s∆(−1) = 0.

Proof. We note that Int(∆) ∩ Zn = {0} since ∆ is a reflexive polytope. Taking φ = 1 and
i = 1 in (7), we have

E∆(−1) = (−1)n · #(Int(∆) ∩Zn) = (−1)n.

Similarly, if we take φ = x and i = 1, then (7) becomes

s∆(−1) = (−1)n+1 · ∑
a∈Int(∆)∩Zn

a = 0.

3.2. A Combinatorial Proof

Now, we prove Theorem 3.

Proof of Theorem 3. If a Gorenstein toric Fano variety (X,−KX) is asymptotically Chow
semistable, then (6) holds for any integer i ∈ Z, by Lemma 1. Taking i = −1 in (6), we have∫

∆
x dv = 0

by Lemma 2. Thus, Proposition 4 implies that (X,−KX) is Ding polystable. This completes
the proof.

3.3. Conclusion of the Proof of Theorem 3

If ∆ is a simple reflexive polytope, then the corresponding toric Fano variety (X,−KX)
may admit only orbifold singularities. Combining Theorem 3 and the result of [24,25], we
conclude the following.

Corollary 1. Let X be a toric Fano orbifold. If (X,−KX) is asymptotic Chow semistable, then X
admits a Kähler–Einstein metric in c1(−KX).

We finish this section with the following example, which illustrates the combinatorial
proof of Theorem 3 by using a Gorenstein toric del Pezzo surface.

Example 1. Let ∆ be the polygon in MR ∼= R2 whose vertices are given by

{
(

1
0

)
,
(

0
1

)
,
(
−1
−1

)
},

which is the polytope labeled with 9 in Table 2. Then, the associated polarized toric variety
(X, L) is the cubic surface

X = {[x : y : z : w] ∈ P3|xyz = w3}

with the anticanonical line bundle L = OX(−KX). It is known that (X, L⊗i) is Chow
polystable for any integer i > 0 by Theorem 1.2 (3) in [26]. Thus, (X,−KX) is asymptotically
Chow semistable.
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Let us compute the R2-valued polynomial function s∆(t). Firstly, straightforward
computation shows that ∫

∆
x dv =

(
0
0

)
for the standard volume form dv = dx ∧ dy of MR. Secondarily, we shall compute

∫
∂∆ xdσ

(which is equal to the second leading coefficient of s∆(t) ) as follows: the polygon ∆ has
three facets Fi = {x ∈ ∆|`i(x) = 0} for i = 1, 2, 3 whose defining equations are given by

`1(x) = 1− x− y, `2(x) = 1 + 2x− y, and `3(x) = 1− x + 2y,

respectively. Then, the boundary measure dσi on each facet Fi is determined by

dv = ±dσi ∧ d`i. (8)

Thus, (8) shows that we can take

dσ1 = −dx, dσ2 = −dx, and dσ3 =
1
2

dx

as the boundary measures on ∂∆. Consequently, the x-coordinate of the barycenter of each
facet Fi is given by ∫

F1

x dσ1 =
∫ 0

1
x(−dx) =

1
2

,
∫

F2

x dσ2 =
∫ 0

−1
x dx = −1

2

and
∫

F3

x dσ3 =
1
2

∫ 1

−1
x dx = 0,

respectively. By the symmetry of ∆, we find that

∫
∂∆

x dσ =

(
1
2
1
2

)
+

(
− 1

2
0

)
+

(
0
− 1

2

)
=

(
0
0

)
.

Hence, s∆(t) has the form of

s∆(t) =
(

0
0

)
t2 +

(
0
0

)
t +
(

c1
c2

)
(9)

for some constants c1 and c2. See (5). In order to determine c1 and c2, we plug the value of

s∆(1) =
(

0
0

)
into (9), which yields that c1 = c2 = 0. Thus, we see that s∆(t) ≡ 0 and this is

consistent with the Ehrhart reciprocity law

s∆(−1) = (−1)3 · ∑
a∈Int(∆)∩Z2

a =

(
0
0

)
.

Moreover, we already see that
∫

∆ x dv =

(
0
0

)
in the above computation. Consequently,

(X,−KX) is Ding polystable by Proposition 4.

4. Relative Algebro-Geometric Stability

In order to deal with the existence problem of extremal Kähler metrics, the definition
of K-stability was extended by Székelyhidi in [27] to Kähler classes with a non-vanishing
Futaki invariant, which was called relative K-stability. Analogously, we can extend the
notion of Chow stability to relative Chow stability, which has been also investigated by many
researchers [28,29].
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In this section, we study the relative Chow/K-stability of toric Fano varieties, which
were dealt with in [10,12]. The product formulas for potential functions θ∆ and the addi-
tivity of the constant MX∆ defined in (18) are discussed in Section 4.3. Then, in Section 4.4,
we verify the (asymptotic) relative Chow stability of Gorenstein toric del Pezzo surfaces,
by applying our combinatorial criterion of relative Chow stability (see Corollary 2) in
the toric setting, and we list the results in Table 1. In Section 4.5, we systematically con-
struct examples of relatively K-polystable toric Fano manifolds, but which are relatively
Ding unstable, building upon the works of [10,11]. See Corollary 4 and Example 2 for
more details.

4.1. Fundamental Results on Relative Chow stability

Firstly, we quickly review the notion of relative Chow stability and related results.
See [12] for more details.

Let us consider a reductive complex algebraic group G with Lie algebra g. Suppose
that G acts linearly on a finite-dimensional complex vector space V. This induces a natural
G-action on P(V). We will abbreviate v ∈ P(V) and its representatives in V. Let T be a
torus in G with Lie algebra t. We assume that T fixes the point v. Using an inner product
〈 , 〉 and the Lie bracket [ , ], we define the subalgebras of g by

gT = {α ∈ g|[α, β] = 0 for all β ∈ t},
gT⊥ = {α ∈ gT |〈α, β〉 = 0 for all β ∈ t}.

Then, the corresponding Lie group of gT (resp. gT⊥ ) is denoted by GT (resp. GT⊥ ). Following
classical GIT (see Section 2.3), we call v ∈ P(V) semistable relative to T if the closure of the
GT⊥ orbit OGT⊥

(v) does not contain the origin. v is polystable relative to T if OGT⊥
(v) is a

closed orbit. v is said to be unstable relative to T if it is not semistable relative to T.
Let us consider the relative stability of the Chow form. For an irreducible complex

projective variety X ⊂ CPN , we choose G = SL(N + 1,C) and T to be the C×-action
induced by the extremal vector field.

Definition 3. A complex irreducible projective variety X ⊂ CPN is said to be relatively Chow
polystable (resp. semistable, unstable) if the X-resultant RX of X is SL(N + 1,C)-polystable
(resp. semistable, unstable) relative to T.

The definition of asymptotic relative Chow stability is analogous to Definition 2; hence,
we do not repeat the definition in this paper (see ([12] Definition 3.6)).

4.2. Toric Reduction of Relative Chow stability

We consider the toric case. In particular, we are interested in the case where X is
an n-dimensional Gorenstein toric Fano variety with the associated reflexive polytope
∆ ⊆ MR ∼= Rn. As in [6], the Ricci affine function `∆ associated with ∆ is the unique function
determined by

∫
∆ `∆u dv = u(0) for any affine linear function u—namely, one can solve

the linear system∫
∆
`∆(x) dv = 1,

∫
∆
`∆(x) · xi dv = 0 for i = 1, . . . , n

in order to find `∆(x) = ∑ aixi + c with ai and c. Let us define the potential function of ∆ by

θ∆ := 1− vol(∆)`∆. (10)

Then, we consider its average

θ̄∆ =
1

N + 1

N+1

∑
j=1

θ∆(aj),
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where {a1, . . . , aN+1} are lattice points in ∆. Denoting

d∆ = (1, . . . , 1), θ̃∆ = ((θ∆(a1)− θ̄∆), . . . , (θ∆(aN+1)− θ̄∆))

in RN+1, we can show the following.

Theorem 7 (Theorem 3.8 in [12]). Let Ch(∆) be the Chow polytope of an n-dimensional Goren-
stein toric Fano variety X∆ ⊂ CPN . Then, X∆ is relatively Chow polystable in the toric sense if
and only if there exists t ∈ R such that

(n + 1)!vol(∆)
N + 1

(d∆ + tθ̃∆) ∈ Int(Ch(∆)). (11)

Let θ̄i∆ = 1
E∆(i)

∑a∈∆∩(Z/i)n θ∆(
a
i ). Defining di∆ and θ̃i∆ by

di∆(a) = 1, θ̃i∆(a) =
θ∆(a)− θ̄i∆

i
, for a ∈ ∆ ∩ (Z/i)n,

we obtain a necessary condition for the associated polarized toric variety to be asymptoti-
cally relatively Chow semistable.

Corollary 2 (Corollary 3.11 in [12]). If (X∆,−KX∆) is asymptotically relatively Chow semistable,
then, for any i ∈ Z+, there exists ti ∈ R satisfying

∑
a∈∆∩(Z/i)n

ia + ti ∑
a∈∆∩(Z/i)n

θ̃i∆(a)a =
iE∆(i)
vol(∆)

∫
∆

x dv. (12)

4.3. Product Formulas for Potential Functions

Recently, Ono, Sano and the author proved that the only Bott manifolds such that
the Futaki invariant vanishes for any Kähler class are isomorphic to the products of the
projective lines [11]. The key to proving the main theorem in [11] is the analysis of the
product of two polytopes. By applying this technique to the potential functions in (10), we
derive the product formula in this section.

Now, let us discuss the product of two (or more) convex polytopes. For this, we
consider the full-dimensional polytopes ∆1 ⊆ Rn1 and ∆2 ⊆ Rn2 and define

∆1 × ∆2 := {
(

x
y

)
∈ Rn1+n2 |x = (x1, . . . , xn1) ∈ ∆1, y = (y1, . . . , yn1) ∈ ∆2}.

Setting ∆ = ∆1 × ∆2, we see that ∆ is a polytope of dimension n1 + n2(= n), whose any
nonempty face is given by the product of a nonempty face F of ∆1, and a nonempty face G
of ∆2. For i = 1, 2, let dvi be the standard volume form of Rni . Then, dv = dv1 ∧ dv2 defines
the volume form of ∆.

For a given arbitrary (not necessarily product) convex polytope P with dim P = n, we
consider the functional ℒP(u) defined by

ℒP(u) =
∫

∂P
u dσ−

∫
P

(
vol(∂P)
vol(P)

+ θP

)
u dv. (13)

Here, u is a convex function, θP is the potential function defined in (10) and dσ is the
(n− 1)-dimensional Lebesgue measure of ∂P, defined as follows: let `j(x) = 〈x, vj〉+ cj be
the defining equation of a facet Fj of P, where cj ∈ Z and vj is a primitive vector. Recall that
dv = dx1 ∧ · · · ∧ dxn is the standard volume form of Rn. On each facet Fj = {x ∈ P|`j(x) =
0} ⊂ ∂P, we define the (n− 1)-dimensional Lebesgue measure dσj of ∂P by

dv = ±dσj ∧ d`j. (14)
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Then, dσ is uniquely determined as the (n− 1)-dimensional Lebesgue measure of ∂P so
that dσj = dσ|Fj

, up to the sign.
Let us go back to the product polytope ∆ = ∆1 × ∆2. Let dσ1 (resp. dσ2) be the

(n1 − 1)-dimensional (resp. (n2 − 1)-dimensional) Lebesgue measure of ∂∆1 (resp. ∂∆2)
defined in (14). Since any nonempty face of ∆ is obtained by the product of a nonempty
face F � ∆1 and a nonempty face G � ∆2, we see that the boundary of ∆ is written as

∂∆ = ∂∆1 × ∆2 ∪ ∆1 × ∂∆2. (15)

Moreover, see (4.18) in [11]. In particular, we find the following equalities by direct computation.

Lemma 3. Let ∆ = ∆1 × ∆2 be the product of two polytopes ∆k with dim ∆k = nk for k = 1, 2.
Let x = (x1, . . . , xn1) and y = (y1, . . . , yn2) be the coordinates of ∆1 and ∆2, respectively. We
denote the volume form of ∆ (resp. ∆k) by dv (resp. dvk), and the volume form of ∂∆ (resp. ∂∆k) by
dσ (resp. dσk). For i = 1, . . . , n1 and j = 1, . . . , n2, we have

vol(∆) = vol(∆1)vol(∆2),∫
∆

xi dv = vol(∆2)
∫

∆1

xi dv1,
∫

∆
yj dv = vol(∆1)

∫
∆2

yj dv2,

vol(∂∆) = vol(∂∆1)vol(∆2) + vol(∆1)vol(∂∆2),

∫
∂∆

xi dσ = vol(∆2)
∫

∂∆1

xi dσ1 + vol(∂∆2)
∫

∆1

xi dv1, and∫
∂∆

yj dσ = vol(∆1)
∫

∂∆2

yj dσ2 + vol(∂∆1)
∫

∆2

yj dv2.

We finish this subsection with the following additive property of the potential func-
tions θ∆ and the Mabuchi constants MX∆ for the product polytopes.

Proposition 5. Let ∆ = ∆1 × ∆2 be the product of two polytopes as in Lemma 3. Then, the
potential function θ∆ defined in (10) satisfies the equality

θ∆(x, y) = θ∆1(x) + θ∆2(y).

Moreover, for the product ∆ = ∏r
k=1 ∆k, we see that θ∆(x1, x2, . . . , xr) = ∑r

k=1 θ∆k (xk).

Proof. As was described in [12] (p. 496), the potential function θ∆ is uniquely determined
by solving the n + 1-linear system

ℒ∆(1) = 0, ℒ∆(xi) = 0, ℒ∆(yj) = 0 for i = 1, . . . , n1, j = 1, . . . , n2, (16)

where ℒ∆(u) is the function defined in (13). Since θ∆k is the potential function of ∆k for
each k = 1, 2, we have

ℒ∆1(1) = ℒ∆2(1) = 0, ℒ∆1(xi) = 0, and ℒ∆2(yj) = 0. (17)

In order to prove our assertion, it suffices to show that θ∆(x, y) := θ∆1(x) + θ∆2(y) satisfies
the (n + 1)-equalities in (16) using our assumption (17).

Firstly, we find that∫
∆

θ∆(x, y)dv =
∫

∆1

θ∆1(x)dv1 +
∫

∆2

θ∆2(y)dv2,

which equals 0, by our assumption ℒ∆1(1) = ℒ∆2(1) = 0.
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Secondly, for i = 1, . . . , n1, we prove that ℒ∆(xi) = 0. To see this, we compute that∫
∆

(
vol(∂∆)
vol(∆)

+ θ∆(x, y)
)

xi dv =
vol(∂∆)
vol(∆)

∫
∆

xi dv +
∫

∆

(
θ∆1(x) + θ∆2(y)

)
xi dv

=
vol(∂∆1)vol(∆2) + vol(∆1)vol(∂∆2)

vol(∆1)

∫
∆1

xi dv1 + vol(∆2)
∫

∆1

θ∆1(x)xi dv1.

By applying Lemma 3 into
∫

∂∆ xi dσ, we find that

ℒ∆(xi) = vol(∆2)ℒ∆1(xi) = 0,

where we use (17) for the last equality.
Finally, for j = 1, . . . , n2, we have ℒ∆(yj) = vol(∆1)ℒ∆2(yj) = 0 in the same manner

as the above computation. This completes the proof of θ∆(x, y) = θ∆1(x) + θ∆2(y).
In order to see the second assertion

θ∆(x1, x2, . . . , xr) =
r

∑
k=1

θ∆k (xk),

for the product polytope ∆ = ∏r
k=1 ∆k, we use the inductive argument. Hence, the assertion

is verified.

For later use, we consider the value of constant

MX∆ = max
x∈∆
{θ∆(x)}, (18)

which verifies the relative Ding stability of the corresponding toric (Fano) variety. See
Section 4.5 for further discussion. After posting this version of the paper on arXiv (ver-
sion 5, arXiv:1711.10113v5), the author found that the following additivity of the constant
MX∆ is mentioned by Mabuchi in ([30] Theorem 9.9) for general (not necessarily toric)
Fano manifolds. However, it is worth mentioning that we derive a direct combinatorial
proof for the case of toric Fano manifolds from Proposition 5 and (18).

Corollary 3. Let ∆ = ∏r
k=1 ∆k be the product of (reflexive) polytopes. Then, the constant of MX∆

has the additive property such that

MX∆ = MX∆1
+ · · ·+ MX∆r

. (19)

4.4. Asymptotic Relative Chow Stability of Gorenstein Toric Del Pezzo surfaces

As mentioned in Section 2.1, there are 16 isomorphism classes of Gorenstein toric del
Pezzo surfaces. See [13] for more details. On the one hand, the relative Ding stability of
Gorenstein toric del Pezzo surfaces has been verified in ([6] Example 5.14). On the other
hand, it is difficult to verify the asymptotic relative Chow stability of a polarized toric
variety because we have to show that there exists ti ∈ R satisfying (12) for any positive
integer i (cf. [26] for (not relative) Chow stability case). However, we can solve this difficulty
in the case of two dimensions by using the symmetry of the associated reflexive polytopes.
See Case 3 in the proof of Proposition 6 below. As a consequence, we verify the relative
Chow stability of each Gorenstein toric del Pezzo surface. We list all the results in Table 1.

Proposition 6. Among all 16 isomorphism classes of Gorenstein toric del Pezzo surfaces, there
are 5 isomorphism classes of asymptotically relatively Chow polystable surfaces and 4 isomorphism
classes of asymptotically relatively Chow unstable surfaces. The remaining 7 classes are relatively
Chow polystable with respect to the anticanonical polarization (i = 1).

Proof. Case 1. Note that any toric surface has at worst orbifold singularities. There are
5 isomorphism classes of Kähler–Einstein Gorenstein toric del Pezzo surfaces with the
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vanishing Futaki character, i.e., CP2,CP1 ×CP1, S6,CP1 ×CP1/Z2 and CP2/Z3. Hence,
the relative Chow stability coincides with Chow stability for these 5 classes of del Pezzo
surfaces. In particular, the vanishing Futaki character, i.e.,

∫
∆ x dv = 0, implies θ∆ ≡ 0.

This means θ̃i∆(a) = 0 for any i ∈ Z+ and a necessary condition of the asymptotic relative
Chow semistability of a polarized toric variety (12) becomes

∑
a∈∆∩(Z/i)n

ia =
iE∆(i)
vol(∆)

∫
∆

x dv

for all i ∈ Z+. Hence, we obtain the same equality in (6). Moreover,
∫

∆ x dv = 0 implies
that ∑a∈∆∩(Z/i)n ia = 0 for any i ∈ Z+. Remark that this is equivalent to the vanishing
of the obstruction for asymptotic Chow semistability defined in [31] (see [20] (p. 1385)).
Since X admits a Kähler–Einstein metric, it must be asymptotically Chow polystable for
X = CP2, CP1 ×CP1 and S6 due to the result in ([32] Main Theorem). Hence, we have
verified the assertion for these 3 classes.

For the remaining two orbifold cases X = CP2/Z3 (labeled 9 in Table 1) and CP1 ×
CP1/Z2 (labeled 8A in Table 1), asymptotic Chow polystability of (X,−KX) has been
verified in Theorem 1.2 (3) in [26]. We remark that the minimal embeddings of these del
Pezzo surfaces are given by

CP2/Z3 = {[z0 : z1 : z2 : z3] ∈ CP3|z3
0 − z1z2z3 = 0}

with three A2 singularities, and

CP1 ×CP1/Z2 = {[z0 : z1 : z2 : z3 : z4] ∈ CP4|z1z3 − z2
0 = 0, z2z4 − z2

0 = 0}

with four A1 singularities, respectively. See [33] for further details.
Case 2. Let X be a Goresntein toric del Pezzo surface labeled with 5B in Table 1. Then,

the associated reflexive polytope ∆ ⊆ MR is given by

∆ = conv{(−1, 0), (1,−2), (0, 1), (−1, 1)}.

We claim that X is asymptotically relatively Chow unstable by using Corollary 2. Hence,
it suffices to show that there is no t1 ∈ R satisfying (12) for i = 1. See Remark 3.12 and
Proposition 5.4 in [12]. We readily see that

E∆(i) =
5
2

i2 +
5
2

i + 1,
∫

∆
x dv =

(
−1

3
,−1

3

)
, ∑

a∈∆∩Z2

a = (−1,−1),

θ∆(x) = − 1
529

(1032x1 + 648x2 + 224) and θ̄∆ =
56

529
.

Therefore,

t1 ∑
a∈∆∩Z2

θ̃∆(a)a = −t1

(
872
529

,
1160
529

)
.

This yields that there is no t1 ∈ R satisfying (12).
Case 3. Let X be a weighted projective space CP(1, 1, 2). This is a Gorenstein toric del

Pezzo surface labeled with 8C in Table 1 and the corresponding reflexive polytope ∆ is

∆ = conv{(−1, 2), (1, 0), (−1,−2)}.
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We prove that (X,−KX) is relatively Chow polystable. Straightforward computation shows
that

E∆(i) = 4i2 + 4i + 1,
∫

∆
x dv =

(
−4

3
, 0
)

, ∑
a∈∆∩Z2

a = (−4, 0),

θ∆(x) = −3
2

x1 −
1
2

and θ̄∆ =
1
6

.

Taking i = 1 in (12), we find that t1 = −3/19 satisfies the equation

∑
a∈∆∩Z2

a + t1 ∑
a∈∆∩Z2

θ̃∆(a)a =
E∆(1)
vol(∆)

∫
∆

x dv.

Moreover, ∆ is invariant under unimodular transformation
(

1 0
0 −1

)
, which gives the

coordinate interchange x2 7→ −x2. By this symmetry, we conclude that there exists ti for
any i ∈ Z+ such that (12) holds.

Next, we verify (11). For t = −3/19, we readily see that the left-hand side of (11) is
given by p := 4

19 (11, 14, 17, 14, 11, 11, 11, 11, 14). On the other hand, the Chow polytope
Ch(∆) is the 6-dimensional polytope in R9 with 296 vertices. In particular, Ch(∆) (we
used package TOPCOM for the computation) is determined by three defining equations
fi(x) = 0 (i=1,2,3) and 26 defining inequalities hj(x) > 0 (j = 1, . . . , 26) in R9. By direct
computation, one can see that fi(p) = 0 and hj(p) > 0 hold for all i, j. This implies
p ∈ Int(Ch(∆)) and the assertion is verified. Other cases are similar and further details are
left to the reader.

Remark 1.

1. Using the symmetry of polytopes, one can verify the existence of ti for i� 0 satisfying (12) for
each case (4B, 4C, 5A, 6B, 7A, 8B and 8C in Table 1). We mention that this is only a necessary
condition for (X, L) to be asymptotically relatively Chow semistable (Corollary 2).

2. On the other hand, Ch(i∆) will be a huge number of vertices in a multidimensional Euclidean
space if i > 0 is a sufficiently large positive integer. Hence, it is generally impossible to verify
the condition

in(n + 1)! vol(∆)
E∆(i)

(di∆ + ti θ̃i∆) ∈ Int(Ch(i∆))

for arbitrary positive integer i. See [4,22] for more combinatorial descriptions of Ch(∆).

4.5. Relative Ding/K-Stability

In [10], we found that there are several examples of toric Fano manifolds that clarify
the difference between relative K-stability and relative Ding stability. More specifically, we
verified that if X is either

• a toric Fano 3-fold B1 = PP2(O ⊕O(2)), or
• toric Fano 4-folds (which are all P1-bundles over P3) B1 = PP3(O ⊕ O(3)), B2 =

PP3(O ⊕O(2)), L1 = PP3(O ⊕O(1, 1, 1)),

then (X,−KX) is relatively K-polystable, but it is relatively Ding unstable. In order to prove
that these four examples (B1, B1, B2 and L1) admit extremal Kähler metrics in their first
Chern classes, which in turn are relatively K-polystable, we focused on their geometric
structures, such as projective bundles, Bott structures, etc. [34–37]. On the one hand, the
relative Ding stability of toric Fano manifolds is determined by the value of constant MX∆
defined in (18) being larger than 1 or not, due to the work of Yao [6]. On the other hand,
Proposition 5 implies that the products of (higher-dimensional) toric extremal manifolds
are more likely to be relatively Ding unstable, by the additive property of MX∆ (see (19)
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and Corollary 4). In this section, we systematically construct examples of a relatively
K-polystable toric Fano manifold, but it is relatively Ding unstable.

Let us quickly review the notions of relative K-stability and relative Ding stability for
a (smooth) toric Fano variety. Remark that we only consider a toric (or T-equivariant) test
configuration for the definitions of relative Ding/K-stability. This is because, for polarized
toric varieties, it suffices to check only toric test configurations of relative Ding/K-stability
as in [38] and [39]. We refer the reader to Section 2 in [10], for more details.

Let ∆ ⊆ MR be an n-dimensional reflexive Delzant polytope. In this case, the average
of the scalar curvature, i.e., S = vol(∂∆)/vol(∆), is equal to n, and hence the functional
defined in (13) will be

ℒ∆(u) =
∫

∂∆
u dσ−

∫
∆
(n + θ∆)u dv,

where u is a convex function of ∆. A convex function u : ∆→ R is called rational PL convex
if u has the form of

u(x) = max{ f1(x), . . . , fm(x)}

with each fk a rational affine function. The associated anticanonically polarized smooth
toric Fano variety (X∆,−KX∆) is relatively K-polystable if ℒ∆(u) > 0 for any rational PL
convex function u, and the equality holds if and only if u is affine linear. Let MX∆ be
the Mabuchi constant defined in (18). (X∆,−KX∆) is relatively Ding polystable if MX∆ 6 1.
Conversely, it is called relatively Ding unstable if MX∆ > 1. See [6] and ([10] Proposition 1.2)
for further details.

On the other hand, Corollary 3 implies that X∆ is more likely to be relatively Ding
unstable if the dimension of X∆ becomes higher and higher. Meanwhile, for given extremal
Kähler manifolds (Xk, gk) with 1 6 k 6 r, the product manifold X = ∏r

k=1 Xk admits the
product extremal Kähler metric ∏r

k=1 gk. Thus, (X,−KX) must be relatively K-polystable.
In particular, X is Fano. From this observation, one can expect that there are more examples
of toric Fano manifolds that clarify the difference between relative K-stability and relative
Ding stability. As a consequence of (19), we systematically construct infinitely many
examples of relatively K-polystable extremal toric Fano manifolds that are relatively Ding
unstable.

Corollary 4. For 1 6 k 6 r, let Xk be an extremal toric Fano manifold with the associated polytope
∆k and let θ∆k (xk) be the potential function of ∆k satisfying 1

r 6 θ∆k < 1. Let ∆ be the product
of polytopes ∆k for 1 6 k 6 r. Then, the associated anticanonically polarized toric Fano manifold
(X∆,−KX∆) is relatively K-polystable, but it is relatively Ding unstable.

Using Table 3 in [10], we obtain the following examples.

Example 2. Let dP9−i denote a smooth del Pezzo surface with degree (9− i), which is
obtained by the blow-up of P2 at i points. Fixing a positive integer r, we denote a copy
of dP8 by Xk for 1 6 k 6 r. It is known that Xk admits an extremal Kähler metric in every
Kähler class [40], and this yields that X = ∏r

k=1 Xk also admits the extremal Kähler metric
in its first Chern class. Hence, (X,−KX) is relatively K-polystable for any positive integer r.

On the other hand, direct computation shows that MXk = 5/11. See ([10] Table 1 ,
No.3). Thus, we conclude that MX = 5r/11 by (19). Consequently, (X,−KX) is relatively
(uniform) Ding polystable if r = 2, whereas it is relatively Ding unstable if r > 3. We note
that the toric Fano 4-fold dP8 × dP8 is denoted by L7 (No. 55) in ([10] Table 3). In particular,
there are other examples, such as Q10 = dP7 × dP8 (No. 93) and dP7 × dP7 (No. 119) in the
four-dimensional case.

Funding: This work was partially supported by JSPS KAKENHI, Grant Numbers JP18K13406,
JP22K03316, and the Kagawa University Research Promotion Program 2021 (KURPP).

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated or analyzed during the current study.



Mathematics 2023, 11, 4114 18 of 19

Acknowledgments: It is my pleasure to thank Yi Yao for his helpful e-mails and valuable comments.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Ross, J.; Thomas, R. A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebr. Geom. 2007, 16,

201–255. [CrossRef]
2. Mabuchi, T. Chow-stability and Hilbert-stability in Mumford’s Geometric Invariant Theory. Osaka J. Math. 2008, 45, 833–846.
3. Forgaty, J. Truncated Hilbert functors. J. Reine Angew. Math. 1969, 234, 65–88.
4. Kapranov, M.M.; Sturmfels, B.; Zelevinsky, A.V. Chow polytopes and general resultants. Duke Math. J. 1992, 67, 189–218.

[CrossRef]
5. Berman, R. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. Invent. Math. 2016, 203, 973–1025. [CrossRef]
6. Yao, Y. Mabuchi Solitons and Relative Ding Stability of Toric Fano Varieties. Int. Math. Res. Not. 2022, 24, 19790–19853.

[CrossRef]
7. Fujita, K. A valuative criterion for uniform K-stability of Q-Fano varieties. J. Reine Angew. Math. 2019, 751, 309–338. [CrossRef]
8. Blum, H.; Jonsson, M. Thresholds, valuations, and K-stability. Adv. Math. 2020, 365, 107062. [CrossRef]
9. Wang, X.J.; Zhu, X.H. Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 2004, 188, 87–103.

[CrossRef]
10. Nitta, Y.; Saito, S.; Yotsutani, N. Relative Ding and K-stability of toric Fano manifolds in low dimensions. Eur. J. Math. 2023, 9, 29.

[CrossRef]
11. Ono, H.; Sano, Y.; Yotsutani, N. Bott manifolds with vanishing Futaki invariants for all Kähler classes. arXiv 2023,

arXiv:2305.05924.
12. Yotsutani, N.; Zhou, B. Relative algebro-geometric stabilities of toric manifolds. Tohoku Math. J. 2019, 71, 495–524. [CrossRef]
13. Nill, B. Gorenstein toric Fano varieties. Manuscripta Math. 2005, 116, 183–210. [CrossRef]
14. Cox, D.A.; Little, J.B.; Schenck, H.K. Toric Varieties; Graduate Studies in Mathematics; American Mathematical Society: Providence,

RI, USA, 2011; Volume 124, pp. xxiv+841.
15. Kreuzer, M.; Skarke, H. Classification of reflexive polyhedra in three dimensions. Adv. Theor. Math. Phys. 1998, 2, 853–871.

[CrossRef]
16. Kreuzer, M.; Skarke, H. Complete classification of reflexive polyhedra in four dimensions. Adv. Theor. Math. Phys. 2000, 4,

1209–1230. [CrossRef]
17. Phong, D.H.; Sturm, J. Test configurations for K-stability and geodesic rays. J. Symplectic Geom. 2007, 5, 221–247. [CrossRef]
18. Donaldson, S.K. Scalar curvature and stability of toric varieties. J. Diff. Geom. 2002, 62, 289–349. [CrossRef]
19. Song, J.; Zelditch, S. Test configurations, large deviations and geodesic rays on toric varieties. Adv. Math. 2012, 229, 2338–2378.

[CrossRef]
20. Ono, H. A necessary condition for Chow semistability of polarized toric manifolds. J. Math. Soc. Japan. 2011, 63, 1377–1389.

[CrossRef]
21. Yotsutani, N. Facets of secondary polytopes and Chow stability of toric varieties. Osaka J. Math. 2016, 53, 751–765.
22. Gelfand, I.M.; Kapranov, M.M.; Zelevinsky, A.V. Discriminants, Resultants, and Multidimensional Determinants; Mathematics:

Theory & Applications; Birkhäuser Boston Inc.: Boston, MA, USA, 1994.
23. Brion, M.; Vergne, M. Lattice points in simple polytopes. J. Amer. Math. Soc. 1997, 10, 371–392. [CrossRef]
24. Collins, T.C.; Székelyhidi, G. Sasaki-Einstein metrics and K-stability. Geom. Topol. 2019, 23, 1339–1413. [CrossRef]
25. Shi, Y.; Zhu, X. Kähler-Ricci solitons on toric Fano orbifolds. Math. Zeit. 2012, 271, 1241–1251. [CrossRef]
26. Lee, K.-L.; Li, Z.; Sturm, J.; Wang, X. Asymptotic Chow stability of toric del Pezzo surfaces. Math. Res. Lett. 2019, 26, 1759–1787.

[CrossRef]
27. Székelyhidi, G. Extremal metrics and K-stability. Bull. Lond. Math. Soc. 2007, 39, 76–84. [CrossRef]
28. Hashimoto, Y. Relative stability associated to quantised extremal Kähler metrics. J. Math. Soc. Jpn. 2019, 71, 861–880. [CrossRef]
29. Seyyedali, R. Relative Chow stability and extremal metrics. Adv. Math. 2017, 316, 770–805. [CrossRef]
30. Mabuchi, T. Test Configurations, Stabilities and Canonical Kähler Metrics, Complex Geometry by the Energy Method; Springer Briefs in

Math; Springer: Singapore, 2021.
31. Mabuchi, T. An obstruction to asymptotic semistability and approximate critical metrics. Osaka J. Math. 2004, 41, 463–472.
32. Mabuchi, T. An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I. Invent. Math. 2005, 159,

225–243. [CrossRef]
33. Kikuchi, T.; Nakano, T. On the projective embeddings of Gorenstein toric del Pezzo surfaces. Ill. J. Math. 2009, 53, 1051–1059.

[CrossRef]
34. Apostolov., V.; Calderbank, M.J.; Gauduchon, P.; Tønnesen-Friedman, C.W. Hamiltonian 2-forms in Kähler geometry. III. Extremal

metrics and stability. Invent. Math. 2008, 173, 547–601. [CrossRef]
35. Boyer, C.P.; Calderbank, D.M.J.; Tønnesen-Friedman, C.W. The Kähler geometry of Bott manifolds. Adv. Math. 2019, 350, 1–62.

[CrossRef]

http://doi.org/10.1090/S1056-3911-06-00461-9
http://dx.doi.org/10.1215/S0012-7094-92-06707-X
http://dx.doi.org/10.1007/s00222-015-0607-7
http://dx.doi.org/10.1093/imrn/rnab226
http://dx.doi.org/10.1515/crelle-2016-0055
http://dx.doi.org/10.1016/j.aim.2020.107062
http://dx.doi.org/10.1016/j.aim.2003.09.009
http://dx.doi.org/10.1007/s40879-023-00617-0
http://dx.doi.org/10.2748/tmj/1576724790
http://dx.doi.org/10.1007/s00229-004-0532-3
http://dx.doi.org/10.4310/ATMP.1998.v2.n4.a5
http://dx.doi.org/10.4310/ATMP.2000.v4.n6.a2
http://dx.doi.org/10.4310/JSG.2007.v5.n2.a3
http://dx.doi.org/10.4310/jdg/1090950195
http://dx.doi.org/10.1016/j.aim.2011.12.025
http://dx.doi.org/10.2969/jmsj/06341377
http://dx.doi.org/10.1090/S0894-0347-97-00229-4
http://dx.doi.org/10.2140/gt.2019.23.1339
http://dx.doi.org/10.1007/s00209-011-0913-8
http://dx.doi.org/10.4310/MRL.2019.v26.n6.a7
http://dx.doi.org/10.1112/blms/bdl015
http://dx.doi.org/10.2969/jmsj/79947994
http://dx.doi.org/10.1016/j.aim.2017.06.031
http://dx.doi.org/10.1007/s00222-004-0387-y
http://dx.doi.org/10.1215/ijm/1290435338
http://dx.doi.org/10.1007/s00222-008-0126-x
http://dx.doi.org/10.1016/j.aim.2019.04.042


Mathematics 2023, 11, 4114 19 of 19

36. Guan, D. Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends. Trans. Amer. Math.
Soc. 1995, 347, 2255–2262.

37. Hwang, A.D. On existence of Kähler metrics with constant scalar curvature. Osaka J. Math. 1994, 31, 561–595.
38. Delcroix, T. Uniform K-stability of polarized spherical varieties. Épijournal GÉomÉtrie AlgÉbrique. 2023, 7, 9. [CrossRef]
39. Li, Y.; Li, Z. Equivariant R-test configurations of polarized spherical varieties. Peking Math J. 2023, 6, 559–607. [CrossRef]
40. Calabi, E. Extremal Kähler metrics. Seminar on Differential Geometry. Ann. Math. Stud. 1982, 102, 259–290.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.46298/epiga.2022.9959
http://dx.doi.org/10.1007/s42543-022-00054-0

	Introduction
	Preliminaries
	Gorenstein Toric Fano Varieties
	Ding Stability for Fano Varieties
	Asymptotic Chow Stability of Toric Varieties

	Proof of Theorem 3
	Ehrhart Reciprocity Law for Polynomial Functions
	A Combinatorial Proof
	Conclusion of the Proof of Theorem 3

	Relative Algebro-Geometric Stability
	Fundamental Results on Relative Chow stability
	Toric Reduction of Relative Chow stability
	Product Formulas for Potential Functions
	Asymptotic Relative Chow Stability of Gorenstein Toric Del Pezzo surfaces
	Relative Ding/K-Stability

	References

