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Abstract: An analysis is performed in this research to obtain the natural frequencies of a graphene-
platelet-reinforced composite plate at nanoscale. To this end, the nonlocal elasticity theory is applied.
A composite laminated plate is considered where each layer is reinforced with GPLs. The amount of
GPLs may be different between the layers, which results in functionally graded media. To establish
the governing equations of the plate, a quasi-3D plate model is used, which takes the non-uniform
shear strains as well as normal strain through the thickness into account. With the aid of the Hamilton
principle, the governing equations of the plate are established. For the case of a plate that is simply
supported all around, natural frequencies are obtained using the well-known Navier solution method.
The results of this study are compared with the available data in the open literature, and, after that,
novel numerical results are provided to explore the effects of different parameters. It is depicted that,
with the introduction of GPLs in the matrix of the composite media, the natural frequencies of the
plate enhance. Also, a proper graded pattern in GPL-reinforced composite plates, i.e., an FG-X pattern,
results in the maximum frequencies of the plate. In addition, the introduced quasi-3D plate theory is
accurate in the estimation of the natural frequencies of thick nanocomposite plates at nanoscale.

Keywords: graphene platelet; nonlocal theory; quasi-3D plate model; Navier method
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1. Introduction

Technology’s insatiable thirst to provide materials with greater and greater strength-
to-weight ratios is what has drawn attention to GPL-reinforced composites. In recent
years, graphene platelet has taken the place of its rival at the top of the table of optimal
reinforcements due to its larger load-transfer surface and significant advantages in the
nanocomposite manufacturing process compared to another pioneering reinforcement,
e.g., carbon nanotube (CNT). For instance, Rafiei et al. [1], in their experimental work,
highlighted that GPL-reinforced composites may exhibit 10 times the strength and also
1.3 times the Young’s modulus when compared to CNT-reinforced composites. On the other
hand, functionally graded materials (FGMs), owing to their controllability over mechanical
properties in the required directions, are evaluated as the state-of-the-art materials. Today,
the combination of two concepts of GPL-reinforced composite materials and functionally
graded material, namely functionally graded graphene-reinforced composite (FG-GPLRC)
materials, have unanimously been considered as one of the most promising and most
interesting research topics [2].

On the basis of the first-order shear deformation theory, Song et al. [3] presented the
free and forced vibration analysis on functionally graded GPL-reinforced plates. The vibra-
tion frequencies of FG-GPLRC plates were investigated by Guo et al. [4] by employing the
element-free IMLS-Ritz method. Zhao et al. [5] proposed an FEM-based analysis around the
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free vibration and bending behavior of composite trapezoidal plates made of GPLRC layers.
The bending response of functionally graded reinforced graphene nanoplatelet (GNP) quadri-
lateral plates was obtained by Guo el al. [6] with the aid of the element-free IMLS-Ritz method.
Gholami and Ansari [7] took the von Karman-type nonlinearity into account to investigate the
nonlinear stability and free vibration of FG-GPLRC plates subjected to compressive in-plane
mechanical loads. Wu et al. [8] presented a numerical study on the parametric instability of
FG-GPLRC plates under periodic uniaxial mechanical load and a uniform thermal load via
the generalized quadrature method. Reddy et al. [9] used the finite element model on the
basis of first-order shear deformation theory assumptions to probe the vibratory features of
thin/moderately thick/thick composite plates made of GPL-reinforced plies. Gao et al. [10]
estimated the effective elastic modulus of the GPL-reinforced composite media with the
accordance of the assumption of closed-cell cellular solids under Gaussian random field
scheme to obtain the vibration frequency of functionally graded GPL-reinforced porous
plates. Yang et al. [11] employed the Chebyshev-Ritz solution method to derive buckling
loads and natural frequencies of porous GPL-reinforced laminated plates modeled with
FSDT assumptions. Functionally graded GPL-reinforced laminated composite plate that
was undergoing in-plane excitations and electrical voltage was subjected to free vibration
and nonlinear aeroelastic analysis by Lin et al. [12] in a high-order shear deformation
model. Gholami and Ansari [13] developed a numerical analysis around the nonlinear
vibration behavior of thick and moderately thick FG-GPLRC rectangular plates on the basis
of assumptions of a higher-order shear deformation model. By employing Mindlin’s plate
model and the phase-field approach, Torabi and Ansari [14] studied the vibration behavior
of graphene-platelet-reinforced multilayer composite plates with the consideration of sta-
tionary crack. Within a higher-order shear deformation model, the analysis of variance on
the natural frequencies of composite plates made of GPL-reinforced plies was presented
by Pashmforoush [15]. Ansari et al. [16] proposed a numerical approach on the basis of
variational differential quadrature (VDQ) and the finite element method (FEM) to study the
postbuckling response and free vibration of buckled FG-GPLRC plates in an HSDT model.
Zhao et al. [17] adopted the small parameter perturbation method to obtain the free/forced
vibration response of rotating FG-GPLRC plates under the action of rub-impact and thermal
shock. Thai and Phung-Van [18] employed a moving Kriging (MK) using a naturally stabi-
lized nodal integration (NSNI) within the framework of a higher-order shear deformation
model to obtain the free vibration characteristics of functionally graded GPL-reinforced
plates of complicated shapes. Exploiting a quasi-3D plate model, Jafari and Kiani [19]
highlighted the free vibration characteristics of thick composite plates made of function-
ally graded GPL-reinforced materials. Shi et al. [20] performed static and free vibration
investigation of functionally graded porous skew plates with GPL reinforcements, utilizing
a three-dimensional elasticity model. Through a Ritz formulation, Kiani and Zur [21]
planned a frequency analysis on functionally graded graphene-platelet-reinforced skew
plates resting on point supports. Regarding the assumptions of the first-order shear defor-
mation theory (FSDT) and the modified couple stress theory (MCST), Abbaspour et al. [22]
formulated active control of vibration of GPL-reinforced composite micro-plates with
piezoelectric face sheets.

Conducting experimental studies on nanoscale structures is not economically justified
and is very difficult. Mathematical modeling is a way to overcome this issue. Molecular
dynamics (MD) and continuum mechanics (CM) approaches are the most widely used
types of mathematics-based modeling. Although MD modeling is much more accurate, its
limitations, i.e., computationally expensive costs and time-consuming simulation, present
it as a non-optimal choice for practical applications, and this is the point on which the
reason and justification for more adoption of CM modeling, despite its lower accuracy, are
based on.

When it comes to studying nanostructures, the limitation of classical CM models in
considering size effects produces significant errors. For this reason, various size-dependent
models have been released so far. Eringen’s nonlocal theory [23] is one of the well-known
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and popular continuum mechanics theories that has the ability to include nano-scale effects
with appropriate accuracy. Employing Eringen’s nonlocal theory can enable researchers to
predict the static/dynamic behavior of a nanostructure without exploiting a large number
of equations. By correlating nonlocal theory with different plate theories, such as the
classical plate theory (CPT), first-order shear deformation theory (FSDT) [24], and higher-
order shear deformation theory (HSDT) [25,26], various nonlocal models for nanoplate
analyses have been extended.

For instance, in the framework of Kirchhoff and the Mindlin plate theories, behaviors
of isotropic nanoplates are probed by Lu et al. [27] through a size-dependent nonlocal
model. References [28-31] refer to more development of this model via analytical ap-
proaches. Karami et al. [32-34] investigated the dynamic behavior of functionally graded
graphene-nanoplatelet-reinforced doubly curved polymer composite nanoshells based on
a nonlocal model. Wave dispersion was also discussed in detail. Furthermore, Pradhan
and Phadikar [35] dealt with free vibration analysis of nano-plates on the basis of a couple
of classical plate theory (CLPT) and nonlocal FSDT models. This model was also employed
in studies highlighted in [36,37]. Panyatong et al. [38] developed a second-order shear
deformation model to perform an analytical study on the free vibration characteristics of the
functionally graded (FG) nanoplates surrounded by an elastic medium based on Eringen’s
nonlocal elasticity. In the framework of a nonlocal four-variable plate model, Barati and
Shahverdi [39] used the homotopy perturbation method to present new numerical solu-
tions of nonlinear vibration of a porous nanoplate rested on a nonlinear elastic foundation.
Further, Aghababaei and Reddy [40] obtained analytical solutions of free vibration of a
simply supported nanoplate with the accordance of the assumptions of a nonlocal third-
order shear deformation model. In this regard, based on a higher-order shear deformation
theory of plates, Daneshmehr et al. [41] utilized the generalized differential quadrature
method (GDQM) to calculate the free vibration frequencies of nanoplates, considering
small scale effects with the aid of the nonlocal model. An isogeometric-based finite element
method was implemented by Natarajan et al. [42] to compute the fundamental frequency of
nanoplates made of functionally graded materials. Size dependency was considered via a
nonlocal model. Cutolo et al. [43] formulated free vibrations and buckling of a functionally
graded thick nanoplate placed on a Winkler-Pasternak foundation based on third-order
shear deformation theory and nonlocal elasticity formulation. Based on the assumptions of
simple inverse hyperbolic shear deformation theory and nonlocal elasticity theory, Pun-Van
et al. [44] mathematically modeled the isogeometric approach on free vibrations of GPLRC.
Xie et al. [45] proposed a novel nonlocal higher-order theory to obtain accurate vibration
properties of 2D functionally graded nanoplates.

As the literature survey demonstrates, the vibrational behavior of functionally graded
GPL-reinforced multilayer thick nanoplates through a nonlocal quasi-3D model has not
been explored so far, and this is what motivated us to plan the current research. To perform
a numerical study, effective mechanical properties of GPLRC layers are estimated based on
a modified Halpin—Tsai micromechanical model and the rule of mixtures. In order to obtain
the effects of non-uniform shear strains through the thickness, thickness stretching effects,
and size-dependent effects, governing equations are derived via a nonlocal quasi-3D model
and are solved with extending a Navier solution method. Comparative studies confirm
the accuracy of the results and provide the credibility to perform parametric studies.
The rest of the article is allocated to parametric studies around the effects of number of
layers, nonlocal parameters, length-to-thickness ratio, GPL weight fraction, and distribution
pattern of GPLs.

2. Problem Statement

In this section, the basics of the GPLRC nanoplate are provided. The methods of
the evaluation of the material properties are provided, and, also, the functionally graded
patterns of the GPLs are introduced.
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Herein, an N -layer functionally graded graphene-reinforced nanoplate with a-length,
b-width, and h-height is under free vibration study. To evaluate the deformations, a right-
handed coordinate system that has its origin at the corner of the plate is located in the
middle surface of the plate so that the axes x, y, and z are through the length, width, and
thickness directions. Figure 1 provides the schematic of the plate.

I— —
h—r-y
{

7

X

Figure 1. Configuration and coordinates of the FG-GPLRC nanoplate.

The volume fraction of GPLs through the k-th layer, which is highly dependent on
the scattering patterns of GPL across the thickness direction of the nanoplate, plays a
key role in estimating the mechanical properties of the k-th layer. The impacts of GPLs
distribution pattern on the free vibration characteristics of multilayer FG-GPLRC nanoplate
are evaluated by considering four patterns of GPLs distribution, which are achieved by
functionally arranging the layers reinforced with different values of GPL’s volume fraction.
Figure 2 provides the patterns.

FG-U FG-O

FG-X FG-V

Figure 2. Dispersion patterns of GPLs.

Based on the first pattern, the volume fraction of GPLs is considered the same in all
layers, besides in the cases of the non-uniform pattern; the highest volume fraction of GPLs
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is allocated to the outer layers, the middle layer, and the upper layer, respectively, whose
mathematical expressions in terms of the total volume fraction of GPLs across the plate,
Vi pp, take the following form:

V((EI;)L = Verr FG-U
V((;I;J)L =2Vepr |2k7]\I>ILL71\ FG - X
Vi =2Vgp (1- B) FG -0 @
v® e 2k FG_V

GPL — YGPL N[
For the k-th layer, which is reinforced with randomly oriented and uniformly dispersed

GPLs, the effective Young’s modulus based upon the modified Halpin-Tsai scheme can be
read as follows [4]

E() —

(k) (k)
En (3”5”“(’,3“ 5”“’”‘”;’;%) (k=1,2,...,Np) @)

1
8
1=nLVepr 1_’7TVéPL

where Vé];)L is the volume fraction of GPLs in k-th layer. Moreover, E;; stands for the
Young’s modulus of the polymer matrix and #; and #r are defined as

Egp _q Egpr _
T N = 3)
- EGPL o EGPL
En + ‘:L Em + gT

Egpr denotes the elasticity modulus of the GPLs, and the effects of the size and
geometry of the nanoscale reinforcements are included in ¢; and {1 according to the
following relations

Er :ZZZUGPL @)

lepL
= 27
L hepr

hGpr
In Equation (4), Igpr, wgpr, and hgpp symbolize the average length, width, and
thickness of the GPLs, respectively.
On the basis of rule of mixtures, the effective mass density (0(¥)) and Poisson’s ratio
(v(®)) are acquired as
k k
V(k) = VUm (1 — V((}I}L) + VGPLV(%P)L
©)
k k
oM = pyy (1 - V((;P)L) + PGPLV((;P)L
It is worth highlighting that the parameters related to matrix and GPLs are separated
by applying subscripts m and GPL.

3. Displacements and Strains

In this study, a quasi-3D plate model is utilized to investigate the free vibration of the
arbitrary thick FG-GPLRC nanoplates. Adopting such a model provides the possibility to
consider thickness stretching and also non-uniform transverse shear strain components as
well as satisfying the condition of traction-free at bottom and top surfaces. Based upon this
theory, displacement field may be written as [19]:

u=1ug+zuy + F(2)® (6)

With the following definitions:

u uop wo,x f(Z) 0 0
u—{v},uo—{vo},ul——{woly},}"(z)— [ 0 f(z) O
w wo 0 0 0 f(2)
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where u is displacement vector of a material point located at (x, y, z), ug is the displacement
of a material point located at mid-plane, and © is rotation vector. Moreover, based on
Reddy third-order plate theory (TPT), f(z) = z(1 — ;%)
In Equation (7), differentiation with respect to a parameter is symbolized with () .
The nonzero strain components in terms of displacement components can be evaluated
as follows:

{exx, 5yyf€xy}T =" —zk" + f(2)K°

{exz 62} = fak 8)

€22 = f2202

In which

" = {uo,x, 00, (Hoy + Vo) /Z}T
K™ = {Wo xx, Wo,yy, Wo,xy } !
K0 = {0, 0y, (Ony +0y) 12}
kS = {0z + 05,02y + 0,

where, in Equation (9), ™ indicates the mid-surface strains and k™ stands for the curvatures.
Also, higher-order curvatures are denoted by k? and refined shear strains are «°.

)

4. Local Constitutive Relations

Considering 3D case of stress, the 3D constitutive equations of the k-th layer can be
written as
o) =cke (10)

According to the mathematical expression presented in Equation (5), the stress vec-
T
tor, ok = {Oxx(k),o’yy(k),(Tzz(k),(fxz(k),(fyz(k),O’Xy(k)} is achieved by the strain vector,

&£ = {exx, €yys €22, 26xz, 26z, 2£xy}T left-multiplied by the stiffness matrix, C® which has
the following definition:

Qun Qpr Qi 0 0 0

Q21 Q» Qs 0 0 0

cl— |Q1 Qa2 Qi O 0 0

0 0 0 Qu O 0

0 0 0 0 Qs O
0 0 0 0 0 O

(11)

Qi]-’ s(i=1,2,...,6and j =1,2,...,6) are the elastic components, of which the nonzero
ones are obtained according to the following relations:

E®) (1—p(k)
Qll - QZZ - Q33 - (1+U(k)() (1_21))([())
Qi = Qa1 = Qi3 = Q1 = Q23 = Q0 = iy oy (12)

E()

Qa4 = Q55 = Qo = 2(1100)

5. Nonlocal Model

Herein, to perform a more accurate numerical investigation on nanoscale structures,
the nano-scale effects are considered by adopting the nonlocal elasticity theory first pro-
posed by Eringen [23]. The concept behind this theory is that the stress at a point in an
elastic continuum has dependency on the strains at points located throughout the contin-
uum, unlike classical theories in which the stress evolution at one point is assumed to be
unrelated to the strains at other points. Eringen [23] developed a mathematical relation
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b aNL
ou = fo fo kgl

h
Iné

between local stress tensor 0;; and nonlocal stress tensor #;; by introducing the nonlocal
parameter y, whose simplified differential form can be approximated as follows:

tij = (1 — yV2>U,-]- (13)

where V2 = (622 + (’932> signifies to the second Laplace operator. Furthermore, the

nonlocal parameter is defined as y = (eya NL)Z, in which e is a material constant and ay is
an internal characteristic length, which are material dependent parameters that should
be determined through experimental research or simulation of atomistic dynamics. The
nonlocal stress—strain relation for the k-th layer of the FG-GPLRC nanoplate is established
in following form:

k
9= (1-pv2)o" = e (14)

6. Governing Equations of Motion
The governing equations of motion are derived with the aid of the variation form of
Hamilton’s principle:
t
/ (6U — 6K)dt = 0 (15)
0

The components of the Hamilton principle, the variation of strain energy (dU) and
kinetic energy (JK), are calculated through the following expressions [19]:

(Uxx(k)dexx + Uyy(k)ésw + 0.0 6, + 20xy(k>exy + 20y, (k)ésxz + ZUyz(k)dsyz) dzdxdy

(16)

N
oK = [7 & kg i, (o {idic + 0% + b}y ) dadxdy

By substituting Equations (7) and (10) into Equation (16), introducing Equation (16) into
Equation (15), applying the nonlocal relations of Equation (14), and performing the integra-
tions over the thickness domain and also relieving the virtual displacements by applying
the Green—Gauss theorem, the motion equations of the FG-GPLRC nanoplates are obtained
from Hamilton’s principle expressed in Equation (17)

ity :  Niwx + Niyy = Liig — by + 16— V? (]1710 — Jato,x + ]4éx)

500+ Nyyy+ Nayx = o — Ity + 1ady— V2 (Jao — oo,y + Jaby)

dwy : Muyxxx + Myyyy +2Myy gy = Lo + I (ilox + Do,y) —

B (@00,0x + 0,y) + I (Bx,5 + By ) 176z — V2 (Jrdio + Ja o, + o) -

J3 (o xx + Woyy) + J5 (éx,x + éy,y) +]7éz) 17)
80y —Ruys+ Py + Pryy = Lyitg — Istvg x + I6fx— V> (]4510 — J5wo,x + ]6éx)

80, © —Ryz+ Py + Pyyy = lado — Istvoy + leby — V2 (Jabo — Jstbo, + Jsby )
80+ —Sat Ruzx+ Ryy = by — bz~ (Jyibo — Jsb)

By performing integration over the thickness domain, the classical and higher-order stress
resultants and local and nonlocal inertia parameters are determined with the following relations:
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Pyy
Pyy
Pyy

{ RXZ
Ryx

Apip A 0 { Ug,x } Byy Bz O ] { Wo,xx }
Axn Axn 0 Vo +| B Bn O wo,yy
0 0 Ag (uo,y +vox) 0 0 B 20 vy
Cin C O O x 0 0 D3 0,
Cy Cxp 0 ] { ey,y } + 10 0 Doy { 0, }
0 0 Ce (ex,y + 9y,x> 0 0 0 0
Bin Bz O ] { Ug,x } Eyn Epp O ] Wo,xx }
Byy By O Voy +| En Ex O wo,yy
0 0 Beg (uofy + ZJO,X) 0 0 Eeg 2w0,xy

+

Fn Fo 0 O x 0 0 Gz 0.
F1 F» O Gy,y + 10 0 Gps 0,

Cn Cip O g x Fi Fo 0 ] woxx (18)
Cxy Cp O Doy + | 1 Fn 0 wo,yy
0 0 Ces (M(),y + Uo/x) 0 0 Fe | wo,xy

Hy Hip 0 O x 00 Jizs|( 6
+ H21 sz 0 Gy,y + 0 0 ]23 0,
0 0 He (Oxy + 6y,x) 00 0]LO

Ox + 0

_ | L O ,

Szz = Dislgx + D23vo,y — G13wo,xx — G3wo,yy + J136xx + J230y,y + P330-

(I, I, I3, 14, I5, I, I7, I3)

Ji = ul;

N I
= L 0O (L2 f2f f e 22 ) e

In Equation (18), A;;
and are calculated as

ij» Bij, Cij, Dij, Eij, Fij, Gij, Hij, Jij, Lij, and P; are stiffness components

( 1]r 1]/Cz]r ijr 1]/ z]rG1]rH1]/]1]/ ijs )_

fhkl (1fozz’z zf, Zfzz/f2 ffzz/fz /fzz> (19)

7. Analytical Solution

In the current study, the motion equations of an FG-GPLRC nanoplate subjected to
simply supported at all edges are solved exploiting Navier’s solution technique. Aiming to
implement this technique, compatible with the simply supported boundary conditions and
derived governing equations, the unknown displacement functions are expanded as the
following formula:

ug(xy,t) = f E Uppne'!t cos(ax) sin(By)
n=1m=1

vo(xy,t) = E E Vinne'@* sin(ax) cos(By)
n=1m=1

wo(xy,t) = ofj OZo) Wine! sin(ax) sin(By)

no:ol mo:ol ' (20)
Or(xy,t) = ¥ ¥ Xmune'“cos(ax)sin(By)

n=1m=1

Oy(xy,t) = ¥ L Yune'“'sin(ax)cos(By)
n=1m=1

0.(xy,t) = ¥ ¥ Zune ! sin(ax) sin(By)
n=1m=1

In above, « = mm/a and B = n7r/b and w signify to the frequency of the FG-GPLRC
nanoplate, which endures m and n as half waves through the length and width of it.
Moreover, U, Viin, Winn, Ximn, Yin, and Z,,;, are the unknown coefficients that should to
be determined.
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Applying the above-stated expansions to the governing equations, one can obtain
T
(K=@™™M){Unn Vir W Xom Yo Zon}' =0 @1

where stiffness and inertia matrices are symbolized with K and M, respectively, and have
the following nonzero elements:

Ky = Aja? + AgeP?
Ky = (A12 + Age)a;
Ki3 = —[By;0° + (Byy + 2Bgs)ap?]

Ky = Cria? + Coop%

K5 = (Clz + C66)0€,3;

Kij6 = —Dy3a

Ky = Aest® + App%;

Ko = —[By,B° + (B + 2Bes) p’l;

Koy = (Cyp + Ces)aB;

Ky = C66062 + szﬁz,'

K6 = —Day3p;

K33 = E110(4 + E22,84—|—(2E12 + 4E66)0‘2,82;

K3y = —[Fy;0° + (Fyy + 2Fe6)af?];

K35 = —[Fpp® + (Fyy + 2Fee) pa”];

K6 = Gi3a® + Go3p%;

Kyy = Hy10? + Hep? + Lss;

Kys = (Hyp + Hes)af;

Ky = (L55 - ]13)“; (22)
Kss5 = Hgat® + HopB? + Lyg;

Ksg = (Lyy — J23)B;

K¢ = L55(X2 + L44,52 + P33

M = I + J1(a? + B2);

Mz = —a(l + 2(a® + B?));

My = Iy + Jo(a? + B2);

My, = I + J1(a? + B2);

Mz = —B(L + o (a® + B2));

Mps = Iy + Jo(a? + B2);

Mz = I + J1 (a2 + B2 +(a® + B2) (I3 + J3(a2 + B2));

Msy = —a(ls + J5(a® + B?));

= —B(Is + J5(a® + B%));

Mse = I7 + J7(a® + B?);

My = I+ Jo(a® + B2

=
|

(a );
Mss = Is + Jo(a* + B%);
Mgs = I7 + J7(a® + B?)
Mge = Is + Jg(a? + B?)

7

7

Finally, non-trivial solution of Equation (21) will be the frequencies, and, based upon
them, the responding mode shapes are achieved.

8. Results and Discussion

Herein, based upon the proposed nonlocal quasi-3D model and developed solution
method, the natural frequencies of FG-GPLRC nonoplates with simply supported edges



Mathematics 2023, 11, 4109

10 0of 18

are studied. It is assumed that the graphene platelets with a length of 2.5 nm, a width
of 1.5 nm, a thickness of 0.3 nm, and with the mechanical properties provided in Table 1
reinforced the polymer nanoplate. The mechanical properties of the polymer matrix can
also be found in Table 1.

Table 1. Mechanical properties of the materials.

Property Name Epoxy GPLs
Modulus of elasticity (E) [GPa] 3 1010
Density (o) [kg/m3] 1200 1062.5
Poisson’s ratio (v) 0.34 0.186

This section is divided into two subsections: the first subsection is devoted to valida-
tion via comparative studies, and the parametric studies are provided in the next one.

8.1. Comparison Studies

As the first comparative case, consider a simply supported homogeneous square
nanoplate with the Poisson’s ratio v = 0.3. To check the accuracy and reliability of the
suggested plate model, the fundamental frequency parameter (Q* = wh/p/G) values
for various nonlocal parameters and various length-to-thickness ratios obtained using
the two-variable plate theory [46], four-variable 2D plate model [47], and four-variable
3D plate model [47] are tabulated in Table 2 and are compared with the results of the
present research. It can be observed that the present results are in good agreement with the
published ones obtained through the other higher-order plate theories.

Table 2. Comparison of fundamental frequency 2* of a homogeneous square nanoplate.

Two-Variable Four-Variable Four-Variable

alh # /a? Model 2D Model 3D Model Present
0 0.093029 0.093031 0.093228 0.093151

0.01 0.085016 0.085017 0.085197 0.085127

10 0.02 0.078771 0.078772 0.078939 0.078874
0.03 0.073726 0.073728 0.073884 0.073823

0 0.023864 0.023864 0.023895 0.023872

0.01 0.021808 0.021808 0.021837 0.021816

20 0.02 0.020206 0.020206 0.020233 0.020213
0.03 0.018912 0.018912 0.018937 0.018919

In the next validation study, which is presented in Table 3, the first non-dimensional
natural frequency (2 = wh/pw/En) of a square 10-layer FG-GPLRC nanoplate reinforced
with 1 percent by weight of GPLs for different values of length-to-thickness ratios, nonlocal
parameters, and distribution patterns of GPLs is provided and compared with that reported
by Phung-Van et al. [44]. It is easy to see that an excellent agreement exists between the
results of the present research and that obtained by the nonlocal isogeometric model
proposed by Phung-Van et al. [44].

8.2. Parametric Studies

After gaining confidence in the validity of the results, which was achieved with
the aid of comparative studies in the previous subsection, in this subsection, novel data
are provided to perform parametric studies around the effects of number of layers, non-
local parameter, thickness ratio, and weight fraction of GPL, considering four types of
GPL distribution patterns. Hereafter, the material properties of the constituents are as-
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sumed in accordance with those provided in Table 1 and dimensionless nonlocal parameter
and dimensionless frequency are used with the following definitions:

Q = wh\/pm/En 23

A= y/a2

Firstly, the first six frequency parameters and the associated mode numbers of the square
FG-GPLRC nanoplates reinforced with 1 percent by weight of GPLs are provided in Table 4.
In addition, to better grasp the variation in fundamental frequency as a function of number
of layers, Figure 3 is provided. Square platforms with a/h = 5 are assumed, and the
non-dimensional nonlocal parameter is set equal to 0.05. It is worth mentioning, according
to the symmetry of the geometry and the boundary conditions, that it is obvious to obtain
the repetitive frequencies, but filling the cells of Table 4 with repeated frequency has been
avoided. It can be seen in the provided data in the rows and columns of Table 4 that
the number of layers and distribution patterns of GPLs have significant effects on the
frequencies of the nanoplates. Except for the U-GPLRC nanoplate, in which, due to the
same properties of individual layers, increasing the number of layers does not affect the
frequency of the nanoplate, increasing the number of layers leads to a variation in the
frequencies of the nanoplates, which causes an increasing trend in the X-GPLRC nanoplate
and a decreasing trend in the V- and O-GPLRC nanoplates. Moreover, the effects of
this increase on the higher frequencies of the nanoplate are evaluated stronger than the
lower frequencies. It should be noted that the highest rate of change is observed in the
X model, and the lowest in the V model. Considering that, with models with more than
ten layers, natural frequency changes become very slow, as an important inference from
this observation, a ten-layer model can be employed as a promising optimal candidate
instead of a single-layer plate with continuous variation in material properties. A similar
conclusion is reported by [48,49].

Table 3. Comparison of fundamental frequency parameter (2 in GPLRC plate with Wgpp = 1%.

o Pattern wa®>=0 ula® = 0.01 ula® = 0.03 ula® = 0.05
Present [44] Present [44] Present [44] Present [44]
Pure 0.2143 0.2132 0.1959 0.1948 0.1698 0.1690 0.1520 0.1513
UD 0.2296 0.2285 0.2099 0.2088 0.1820 0.1811 0.1629 0.1621
5 FG-X 0.2345 0.2326 0.2143 0.2126 0.1858 0.1843 0.1663 0.1650
FG-O 0.2244 0.2241 0.2051 0.2048 0.1779 0.1776 0.1592 0.1590
FG-V 0.2293 0.2281 0.2096 0.2085 0.1817 0.1808 0.1627 0.1618
Pure 0.0585 0.0584 0.0535 0.0534 0.0464 0.0463 0.0415 0.0415
UD 0.0627 0.0626 0.0573 0.0572 0.0497 0.0496 0.0445 0.0444
10 FG-X 0.0644 0.0641 0.0589 0.0585 0.0511 0.0508 0.0457 0.0454
FG-O 0.0609 0.0611 0.0557 0.0559 0.0483 0.0484 0.0432 0.0434
FG-V 0.0626 0.0625 0.0572 0.0571 0.0496 0.0495 0.0444 0.0443
Pure 0.0024 0.0024 0.0022 0.0022 0.0019 0.0019 0.0017 0.0017
UD 0.0026 0.0026 0.0024 0.0024 0.0021 0.0021 0.0018 0.0019
50 FG-X 0.0027 0.0027 0.0024 0.0024 0.0021 0.0021 0.0019 0.0019
FG-O 0.0025 0.0025 0.0023 0.0023 0.0020 0.0020 0.0018 0.0018
FG-V 0.0026 0.0026 0.0024 0.0024 0.0021 0.0021 0.0018 0.0019
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Table 4. First five parameters (2 of an FG-GPLRC square nanoplate for various values of number of
layers with § =5, Wgpr = 1%, and A = 0.05.

Distribution Pattern N o4 (0]} 03 (oA s
4 0.16290(1,1) 026997(2,1) 0.32713(2,2) 0.35315(3,1) 0.38218(3,2)
6 016290(1,1) 0.26997(2,1) 0.32713(2,2) 0.35315(1,3)  0.38218(2,3)
FG.U 8  0.16290(1,1) 026997(2,1) 032713(2,2) 0.35315(1,3) 0.38218(2,3)
10 0.16290(1,1) 0.26997(1,2)  0.32713(2,2)  0.35315(3,1)  0.38218(2,3)
12 0.16290(1,1) 0.26997(2,1) 0.32713(2,2) 0.35315(3,1)  0.38218(3,2)
14 0.16290(1,1) 0.26997(1,2)  0.32713(2,2)  0.35315(3,1)  0.38218(3,2)
4 0.16557(1,1)  0.27267(2,1)  0.32912(2,2)  0.35462(1,3)  0.38291(3,2)
0.16608(1,1)  0.27323(2,1)  0.32960(2,2)  0.35503(1,3)  0.38323(2,3)
. 8  0.16626(1,1) 0.27343(2,1) 0.32977(2,2) 0.35518(1,3)  0.38336(3,2)
10 0.16634(1,1) 0.27353(2,1)  0.32986(2,2)  0.35526(1,3)  0.38342(2,3)
12 0.16639(1,1) 0.27358(1,2) 0.32990(2,2) 0.35530(3,1)  0.38345(2,3)
14 0.16642(1,1) 027361(2,1) 0.32993(2,2) 0.35533(1,3)  0.38347(3,2)
4 0.16008(1,1)  0.26690(2,1)  0.32464(2,2)  0.35112(1,3)  0.38083(3,2)
0.15950(1,1)  0.26619(1,2)  0.32397(2,2)  0.35049(1,3)  0.38027(2,3)
FG-O 8 0.15930(1,1)  0.26593(2,1)  0.32371(2,2)  0.35025(3,1)  0.38005(3,2)
10 0.15921(1,1)  0.26581(2,1)  0.32360(2,2)  0.35014(3,1)  0.37995(3,2)
12 0.15915(1,1) 0.26575(2,1)  0.32353(2,2)  0.35008(1,3)  0.37989(3,2)
14 0.15912(1,1) 026571(1,2) 0.32349(2,2) 0.35004(3,1)  0.37985(3,2)
4 0.16271(1,1)  0.26970(2,1)  0.32685(2,2)  0.35287(3,1)  0.38190(3,2)
0.16270(1,1)  0.26968(1,2)  0.32682(2,2)  0.35284(1,3)  0.38188(3,2)
FG-V 8 0.16269(1,1)  0.26967(2,1)  0.32681(2,2)  0.35283(3,1)  0.38187(2,3)
10 0.16269(1,1) 0.26967(2,1)  0.32681(2,2)  0.35282(1,3)  0.38186(3,2)
12 0.16269(1,1) 0.26966(2,1) 0.32681(2,2) 0.35282(3,1)  0.38186(3,2)
14 0.16269(1,1) 0.26966(1,2)  0.32680(2,2) 0.35282(1,3)  0.38186(3,2)
0.168
FG-X
o166f e ottt
[
0.164¢ 1
FG-U
§ ——---¢g-----¢g---~~-~g--~-"---¢------8
0162} FG-V :
S
0.16¢ . 1
" FG0T T
0.158r 1
0.156¢ 1
4 6 é 1‘0 1‘2 14
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Figure 3. First frequency parameters (2; of an FG-GPLRC square nanoplate for various values of
number of layers with £ =5, Wgpy = 1%, and A = 0.05.

Another deduction can be stated that, due to the fact that, in X model, GPL-rich layers
are located at a greater distance from the middle layer, X-GPLRC nanoplates have greater
flexural rigidity and, as a result, higher frequencies [50-54]. On the other hand, in the
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O-GPLRC plate, the arrangement of the GPL-rich and GPL-poor layers is the opposite of
the X model, as a result of which the lowest flexural rigidity is obtained, and that is why we
see the lowest frequencies in association with the O model. Based on the grading function,
the two models, V and O, achieve an intermediate level of flexural rigidity compared to
the X and O models, and, for this reason, their frequencies are lower than the X model and
higher than the O model.

As the second case study, the first six dimensionless frequencies of an FG-GPLRC
nanoplate reinforced with 0.5% weight fraction of GPLs distributed based on four types
of grading patterns are computed and listed in Table 5 for several values of the non-
dimensional nonlocal parameter. In addition, to better obtain the variation in fundamental
frequency as a function of nonlocal parameter, Figure 4 is provided. A 10-layer square
nanoplate with a/h = 5 is considered. One can see clearly that, when the nonlocal
parameter is included, the frequencies drop in general. According to Table 5, the growth in
dimensionless nonlocal parameter causes a reduction in the frequencies of the nanoplates,
and this decrease occurs with the same rate for all four models. It should be noted that
the rate of frequency changes with variation in the non-local parameter is greater for
frequencies associated with higher modes. As the last tip inferred from Table 5, it should
be highlighted that the mode sequence of the frequencies may be affected by variation in
the value of the nonlocal parameter. For an example, in X model, with A = 0.01, fourth
frequency is associated with a vibration mode of (2,2), while, for A = 0.03, it belong to a
vibration mode of (3,1).

Table 5. First five frequency parameters (2 of an FG-GPLRC square nanoplate for various values of
dimensionless nonlocal parameter with a/h = 5 and Wgpp = 0.5%.

Distribution

0.03 0.17592(1,1)  0.30856(1,2)  0.38324(2,2
0.04 0.16594(1,1)  0.28179(2,1)  0.34494(2,2
0.05 0.15748(1,1)  0.26097(2,1)  0.31622(2,2

0.41787(31)  0.41787(1,3)
0.37388(1,3)  0.37388(3,1)
0.34137(1,3)  0.34137(3,1)

Pattern A 0 2, s Q4 s
0 022207(1,1)  048611(1,2)  056274(1,1)  0.7036(22)  0.83186(3,1)
0.01 0.20294(1,1)  039777(21)  051427(11)  052596(2,2)  0.59014(3,1)
U 0.02  0.18803(11) 0.34486(21) 043812(22) 047649(1,1)  0.48237(3,1)
0.03 0.17599(1,1) 0.30865(1,2) 0.38335(2,2) 0.41798(3,1) 0.41798(1,3)
0.04  0.16600(1,1) 028188(12) 03450422) 03739731)  0.37397(13)
0.05 0.15754(1,1)  0.26106(12) 0.31631(22) 0.34146(3,1)  0.34146(1,3)
0 0.22459(1,1) 0.48963(2,1) 0.56278(1,1) 0.70691(2,2) 0.83474(3,1)
0.01 020524(1,1)  0.40066(1,2)  0.51430(1,1)  0.52844(2,2)  0.59218(1,3)
o 0.02 0.19017(1,1)  0.34736(2,1)  0.4401822)  0.47652(1,1)  0.48405(3,1)
0.03 0.17799(1,1) 0.31089(2,1) 0.38515(2,2) 0.41943(1,3) 0.41943(3,1)
0.04  016789(1,1)  028393(12)  034667(22) 037527(13)  0.37527(3,1)
005  015933(1,1) 026295(12) 03178022) 034265(3,1)  0.34265(13)
0 0.21944(1,1) 0.48228(2,1) 0.56278(1,1) 0.69979(2,2) 0.82837(3,1)
0.01 0.20054(1,1)  0.39464(2,1)  0.51430(1,1)  0.5231122)  0.58766(3,1)
a0 0.02 0.18581(1,1)  0.34214(2,1)  0.43574(22)  0.47652(1,1)  0.48035(1,3)
003 017391(1,1) 03062221) 038127(22) 0.41622(31)  0.41622(13)
0.04 0.16404(1,1)  027966(21)  0.34317(22)  0.37240(31)  0.37240(1,3)
005  0.15568(1,1) 025900(12) 03146022) 0.340033,1)  0.34003(13)
0 0.22198(1,1)  0.48596(12)  0.56274(1,1)  0.7034022)  0.83164(3,1)
0.01 0.20286(1,1)  0.39765(12)  0.51427(1,1)  0.52581(22)  0.58998(3,1)
oy 002  0.18796(11)  0.34475(12)  043799(22)  047649(1,1)  0.48225(13)
)
)
)
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Figure 4. Fundamental frequency parameter (2; of an FG-GPLRC square nanoplate for various
values of dimensionless nonlocal parameter with a/h = 5 and Wgpp = 0.5%.

Next, with the aid of Table 6, the influence of GPL weight fraction on the frequencies of
FG-GPLRC nanoplates is investigated. Also, to better extract the variation in fundamental
frequency as a function of weight fraction of GPLs, Figure 5 is provided. Numerical results
are provided for U-, X-, O-, and V-GPLRC nanoplates with a/b = 1 and a/h = 5 by
applying the non-local dimensionless parameter of 0.05. As can be seen, adding more
GPL to the epoxy matrix leads to an increase in the elasticity modulus of each layer, and,
as a result, as the extensional, coupled, and flexural stiffness of the structure increase, this
results in an increase in frequencies. In fact, when added to composites or other materials,
graphene nanoparticles can considerably improve their mechanical characteristics. The
materials become stronger and more resilient thanks to their outstanding tensile strength
and stiffness [55]. From Table 6, one can see the rate of this increase is faster for X model
and slower for O model. Moreover, through the data presented in Table 6, the changes
in the sequence of modes can be detected due to the variation in the nonlocal parameter.
The fact that graphene may enhance the mechanical properties of reinforced composites is
highlighted in many works, such as [54].

Table 6. First six frequency parameters (2 of an FG-GPLRC square nanoplate for various values of
GPL weight fraction with a/h = 5, A = 0.05.

06  016075(1,1)  0.26510(12)  0.32025(2,2
08  016357(1,1)  026934(12)  0.32509(2,2
10 0.16634(1,1)  027353(2,1)  0.32986(2,2

0.34521(3,1) 0.37294(3,2)
0.35027(1,3) 0.37822(3,2)
0.35526(1,3) 0.38342(3,2)

Di;t;ﬂa;ﬁon WepL% (01 2, 23 2y 05
00  015204(1,1) 025192(12) 03052322) 0329493,1)  0.35656(2,3)
02 015426(1,1)  025560(1,2)  0.30970(2,2)  0.33432(13)  0.36178(2,3)
o 04  015645(11) 025925(2,1) 03141222) 033909(13)  0.36695(2,3)
06  015862(1,1) 026286(1,2) 031850(2,2)  0.34382(3,1)  0.37208(2,3)
08  0.16077(1,1)  026643(21)  032283(22) 0.34851(1,3)  0.37715(2,3)
10 0.16290(1,1)  0.26997(12)  0.32713(2,2)  0.35315(3,1)  0.38218(3,2)
00  015204(1,1) 025192(12) 03052322) 0329493,1)  0.35656(2,3)
02 015499(1,1) 025639(21) 03103322) 033483(13)  0.36212(2,3)
FG-X 0.4 0.15789(1,1) 0.26078(1,2) 0.31533(2,2) 0.34006(1,3) 0.36758(2,3)
)
)
)
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Table 6. Cont.

Di;t:ﬂ::;gon WepL% (o)1 0, Q3 0y 05
00  015204(1,1) 025192(1,2) 0.30523(22) 0.329493,1)  0.35656(2,3)
02  015351(1,1) 025479(12)  030903(22) 0.33376(3,1)  0.36140(3,2)
reo 04  015496(1,1) 025761(12) 03127622) 0.33796(13)  0.36615(3.2)
0.6 0.15639(1,1) 0.26038(2,1) 0.31643(2,2) 0.34208(3,1) 0.37083(3,2)
08  015780(1,1) 02631121) 03200422) 034614(13) 037542(32)
1.0 0.15921(1,1) 0.26581(2,1) 0.32360(2,2) 0.35014(3,1) 0.37995(2,3)
0.0 0.15204(1,1) 0.25192(1,2) 0.30523(2,2) 0.32949(3,1) 0.35656(2,3)
02 015424(11) 0255592,1) 030968(22) 0.334303,1)  0.36177(23)
. 04  015641(1,1)  025919(1,2) 031406(22)  0.33903(3,1)  0.36690(3,2)
0.6  015854(1,1) 026274(12) 031837(22) 0.343703,1)  0.37195(3.2)
08  0.16063(1,1) 02662321) 032262(22)  0.34829(3,1)  0.37694(3.2)
10 016269(1,1) 026967(2,1)  0.32681(2,2) 0.35282(1,3)  0.38186(2,3)
0.17

0.1681

0.166¢

0.164f
0.162f
Q0161
0.158¢
0.156f

0.1541

0.152

0 01 02 03 04 05 06 07 08 09 1
Wep 9]

Figure 5. Fundamental frequency parameter (2; of an FG-GPLRC square nanoplate for various
values of GPL weight fraction with a/h = 5,A = 0.05.

The last parametric study is dedicated to the effect of length-to-thickness ratio on the
natural frequencies of functionally graded nanoplates reinforced with 0.5 percent by weight
of graphene platelets. The provided data around this study obtained with a dimensionless
nonlocal parameter of 0.04 is reported in Table 7. This table demonstrates the length-
to-thickness ratio is an effective parameter on the value of frequencies and their mode
sequences. Also, it can be highlighted that, for the four reinforcement distribution models,
with the increase in the length-to-thickness ratio, the frequencies decrease at almost the
same rate.

Table 7. First six frequency parameters (2 of an FG-GPLRC square nanoplate for various values of
length-to-thickness ratio with A = 0.04 and Wgpp = 0.5%.

Distribution Pattern alh (o]} 0, 03 (o1 05

2 0.731410(1,1) 1.051700(1,1) 1.052500(2,1) 1.193100(2,2) 1.289900(2,1)

FG-U 5 0.166000(1,1) 0.281880(1,2) 0.345040(2,2) 0.373970(3,1) 0.406340(3,2)

i 10 0.045327(1,1) 0.083897(1,2) 0.108900(2,2) 0.121660(1,3) 0.137130(2,3)

50 0.001874(1,1) 0.003627(1,2) 0.004897(2,2) 0.005604(1,3) 0.006530(2,3)

2 0.733050(1,1) 1.050200(2,1) 1.051700(1,1) 1.188800(2,2) 1.290000(2,1)

FG-X 5 0.167890(1,1) 0.283930(1,2) 0.346670(2,2) 0.375270(1,3) 0.407170(3,2)

- 10 0.045996(1,1) 0.084978(2,1) 0.110140(2,2) 0.122930(1,3) 0.138420(2,3)

50 0.001905(1,1) 0.003686(2,1) 0.004976(2,2) 0.005693(3,1) 0.006634(3,2)
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Table 7. Cont.

Distribution Pattern alh (N} 0, 03 Oy 05

2 0.729240(1,1) 1.051700(1,1) 1.054100(1,2) 1.196700(2,2) 1.290000(2,1)

FG.O 5 0.164040(1,1) 0.279660(2,1) 0.343170(2,2) 0.372400(3,1) 0.405220(3,2)

- 10 0.044647(1,1) 0.082784(2,1) 0.107610(2,2) 0.120320(1,3) 0.135770(3,2)

50 0.001844(1,1) 0.003568(2,1) 0.004818(2,2) 0.005514(1,3) 0.006425(3,2)

2 0.731240(1,1) 1.051300(1,1) 1.052300(1,2) 1.193000(2,2) 1.288700(1,2)

FG-V 5 0.165940(1,1) 0.281790(2,1) 0.344940(2,2) 0.373880(1,3) 0.406250(2,3)

- 10 0.045308(1,1) 0.083864(1,2) 0.108860(2,2) 0.121610(3,1) 0.137090(2,3)

50 0.001874(1,1) 0.003626(2,1) 0.004895(2,2) 0.005602(1,3) 0.006527(3,2)

9. Conclusions

In the present work, the nonlocal free vibration investigation of functionally graded
graphene-platelet-reinforced composite nanoplates has been carried out. By employing a
six-variable plate theory that is compatible with the kinematics of arbitrary thick plates,
the effects through thickness shear deformations and thickness stretching were taken into
account and also the traction free condition on top and bottom surfaces was satisfied. With
the accordance of the constraints of the simply supported edges of the nanoplate, a Navier
solution method was extended to obtain the inertia and stiffness matrices of the nano-
scale structure, and, having them, the frequencies and corresponding mode numbers were
calculated. By providing a number of comparison studies, the accuracy of the results was
confirmed. After that, parametric studies were planned to evaluate the effects of nonlocal
parameters, GPL weight fraction, length-to-thickness ratio, and number of layers on free
vibration characteristics. It is concluded that

e  with an acceptable accuracy, a ten-layer nanocomposite-laminated nanoplate model
can be treated as an FGM plate with continuous variation of material properties.
By considering the nonlocal elasticity, the frequencies are reduced.
It was clearly revealed that frequencies are highly affected by non-local parameter
changes and this effect is more significant for higher frequencies.

e  With the introduction of GPLs in the matrix of the composite nanoplate, frequencies
are enhanced.
FG-X and FG-O patterns have maximum and minimum frequencies of the plate.
The introduced quasi-3D plate model may serve as an excellent theory for estima-
tion of mechanical response of arbitrary thick plates made of GPLRCs at nano and
macro scales.
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