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Abstract: With the advancement in information and communication technologies (ICTs), the widespread
dissemination and sharing of digital images has raised concerns regarding privacy and security. Tra-
ditional methods of encrypting images often suffer from limitations such as a small key space and
vulnerability to brute-force attacks. To address these issues, this paper proposes a novel eighth-order
hyperchaotic system. This hyperchaotic system exhibits various dynamic behaviors, including hy-
perchaos, sub-hyperchaos, and chaos. The encryption scheme based on this system offers a key
space larger than 22338. Through a comprehensive analysis involving histogram analysis, key space
analysis, correlation analysis, entropy analysis, key sensitivity analysis, differential attack analysis,
and cropping attack analysis, it is demonstrated that the proposed system is capable of resisting
statistical attacks, brute force attacks, differential attacks, and cropping attacks, thereby providing
excellent security performance.

Keywords: chaos; hyperchaos; image encryption; information security; symmetric encryption

MSC: 37M25

1. Introduction

The increasing importance of digital images across various domains has been propelled
by the rapid progress of information and communication technologies (ICTs). However,
the widespread dissemination and sharing of digital images on a large scale have given
rise to apprehensions surrounding issues of privacy and security. In order to mitigate these
concerns, image encryption technology is widely employed to ensure the confidentiality
and integrity of images on diverse devices [1], such as medical, military, satellite, and Inter-
net of Things applications [2]. As a result, addressing these issues has become a critical and
urgent challenge in these fields [3].

In recent decades, numerous symmetric image encryption methods have been pro-
posed [4]. Specifically, image encryption techniques based on the Data Encryption Standard
(DES) and Advanced Encryption Standard (AES) have been extensively researched and
implemented in the field of symmetric encryption. Nevertheless, the security of traditional
symmetric encryption algorithms is increasingly being challenged due to the continuous
enhancement of computing power and the constant development of cryptanalysis tech-
nology. Research indicates that symmetric encryption suffers from drawbacks such as a
limited key space and vulnerability to brute force attacks [5].

To overcome these limitations, researchers have turned to chaotic systems that ex-
hibit desirable properties such as high ergodicity, aperiodicity, and sensitivity to initial
values [3]. Due to the fact that it is crucial to deliver messages with complete security and
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to execute them online [6], it is possible to employ chaotic systems to safeguard the security
of data transfer and advance the “industrial 4.0 revolution” being developed [7]. Chaotic
systems have also been found to be efficient and effective in image encryption. For instance,
the Lorenz chaotic system has been applied to image encryption [8], providing strong secu-
rity and high resistance against common attacks [9]. Another example is the 2D-SCL map,
which exhibits good ergodicity and hyperchaotic behavior [10]. However, most existing
chaotic systems are traditional chaotic systems that encounter issues such as a small key
space and a lack of capability to resist brute force attacks, statistical attacks, and differential
attacks. Particularly in light of the developing deep learning landscape [11–13], the capacity
to analyze complex issues has grown. Therefore, the pursuit of more secure and efficient
encryption schemes is an appealing research direction [14].

A hyperchaotic system is characterized by having at least two positive Lyapunov
exponents, indicating that its dynamics expand in more than one direction and give rise
to a more complex attractor [15]. By increasing the system dimension and incorporating
nonlinear terms, the dynamics of a hyperchaotic system become more complex and unpre-
dictable. Compared to traditional chaotic systems, hyperchaotic systems exhibit higher key
sensitivity, unpredictability, and pseudo-random properties [16].

In order to establish a more secure system, this work proposes an image encryption
algorithm based on a novel eighth-order hyperchaotic system. Dynamic analysis demon-
strates that the hyperchaostic system has extremely rich dynamical behaviors, including
hyperchaotic, sub-hyperchaotic, chaotic, and limit cycle attractors. On this basis, the im-
age encryption scheme based on this algorithm fully guarantees the confidentiality and
integrity of the image by utilizing two different states of the hyperchaotic system [1]. Addi-
tionally, it incorporates steps such as row scrambling, column scrambling, and diffusion to
enhance security at a higher level. Furthermore, through various analyses of the encryption
scheme, including key sensitivity, key space, image histogram, pixel correlation, and other
indicators, it has been demonstrated that the proposed algorithm possesses a high level of
security and robustness.

The rest of this paper is organized as follows: Section 2 introduces the novel eighth-
order hyperchaotic system and analyzes its dynamic characteristics. Section 3 provides an
overview of the encryption and decryption schemes based on this system. The experimental
results and detailed security analysis are presented in Section 4. Finally, Section 5 concludes
the paper.

2. A Novel Eighth-Order Hyperchaotic System and Its Basic Properties
2.1. Equations of a Novel Eighth-Order Hyperchaotic System

Nowadays, some researchers propose low-dimensional chaotic systems to gener-
ate pseudo-random sequences to encrypt the original image [17], which means that the
encrypted scheme has a small key space and is vulnerable to attacks. Therefore, a higher-
dimensional chaotic system is required. Ref. [18] proposed an nth-order chaotic system
with hyperbolic sine:

ẋ1 = x2 − x1

ẋ2 = x3 − x2

. . .

ẋn−3 = xn−2 − xn−3

ẋn−2 = xn−1

ẋn−1 = xn

ẋn = −xn − f (xn−1)− nxn−2 − nxn−3 − . . .− 1
2n

x1

(1)



Mathematics 2023, 11, 4099 3 of 29

The nonlinear function in this system is f (xn−1), which is defined by f (xn−1) =
ρ sinh(φxn−1), where ρ = 1.2× 10−6 and φ = 1

0.026 . Based on Equation (1), the eighth-order
chaotic system with hyperbolic sine is described by

ẋ1 = x2 − x1

ẋ2 = x3 − x2

ẋ3 = x4 − x3

ẋ4 = x5 − x4

ẋ5 = x6 − x5

ẋ6 = x7

ẋ7 = x8

ẋ8 = −x8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)−
x1

16

(2)

where ρ, φ are control parameters. When (ρ, φ) = (1.2× 10−6, 1
0.026 ) and the initial conditions

are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), system (2) has a chaotic attractor, as shown in Figure 1
and the corresponding Lyapunov exponents of this chaotic attractor are (0.49, 0, − 0.60,
−0.74, −0.99, −1.16, −1.38, −1.63). Moreover, system (2) has a unique stable equilibrium
O(0, 0, 0, 0, 0, 0, 0, 0).

Figure 1. Chaotic attractor of system (2) with (ρ, φ) = (1.2× 10−6, 1
0.026 ): (a) x1 − x2 − x3 phase

plane; (b) x2 − x3 − x4 phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6 phase plane;
(e) x5 − x6 − x7 phase plane; (f) x6 − x7 − x8 phase plane.

By coupling a few nonlinear terms, like trigonometric and exponential functions and
system (2) to increase the complexity, the following 8D chaotic system is derived:

ẋ1 = x2 − x1 − ε(exp(φx7)) + aρ tanh(x8)

ẋ2 = x3 − x2 + b sin(x1)

ẋ3 = dx4 − x3 + sin(x5)

ẋ4 = x5 − x4 + sin(e(x7 + x8))

ẋ5 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7))

ẋ6 = x7

ẋ7 = x8 + f sin(x5)

ẋ8 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)−
x1

16

(3)
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where c ∈ [0.65, 4]; d is the constant parameter; a, b, e, and f are the coupling parameters; c,
ρ, and φ are control parameters. When (a, b, c, d, e, f , ρ, φ) = ( 1

2 , 3, 1, 2, 1
2 , 2, 1.2× 10−6, 1

0.026 ),
system (3) has a unique stable equilibrium O(−0.18, −0.18, −0.35, −0.01, −0.33, 0.43, 0,
0.65) and the corresponding eight Lyapunov exponents are (0.36, 0, −0.58, −0.93, −1.04,
−1.16, −1.26, 1.39). The chaotic attractor of system (3) is shown in Figure 2.

Figure 2. Chaotic attractor of system (3) with (a, b, c, d, e, f , ρ, φ) = ( 1
2 , 3, 1, 2, 1

2 , 2, 1.2× 10−6, 1
0.026 ):

(a) x1− x2− x3 phase plane; (b) x2− x3− x4 phase plane; (c) x3− x4− x5 phase plane; (d) x4− x5− x6

phase plane; (e) x5 − x6 − x7 phase plane; (f) x6 − x7 − x8 phase plane.

By coupling a few linear terms and system (3) to control the scope of variables in the
system and further improve the complexity [19], a novel eighth-order hyperchaotic system
is proposed: 

ẋ1 = x2 − x1 − ε(exp(φx7)) + aρ tanh(x8)

ẋ2 = x3 − x2 + b sin(x1)− gx1

ẋ3 = dx4 − x3 + sin(x5) + hx7

ẋ4 = x5 − x4 + sin(e(x7 + x8))

ẋ5 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7)) + ix7

ẋ6 = x7 + ix8 + jx4

ẋ7 = x8 + f sin(x5) + kx5 + lx6

ẋ8 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)

(4)

where c ∈ [0.65, 4]; d is the constant parameter; a, b, e, f , g, h, i, j, k, and l are the coupling
parameters; c, ρ, and φ are control parameters, determining the sub-hyperchaotic and
hyperchaotic behaviors of the system [20]. Therefore, controllers c, ρ, and φ and coupling
parameters a, b, e, f , g, h, i, j, k, and l cause the classical 8D chaotic system (2) to become a
novel eighth-order hyperchaotic system (4) with two positive Lyapunov exponents [21],
having eight Lyapunov exponents.

When (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 , 3, 0.75, 2, 1

2 , 2, −1, 1, −0.01, −3, 1, 1
2 ,

1.2× 10−6, 1
0.026 ) and the initial conditions are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), sys-

tem (4) exhibits a hyperchaotic attractor in Figure 3, and the corresponding eight Lyapunov
exponents are (0.34, 0.05, 0, −0.77, −0.96, −1.14, −1.32, −1.96).
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Figure 3. Hyperchaotic attractor observed from system (4) with (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 , 3,

0.75, 2, 1
2 , 2, −1, 1, −0.01, −3, 1, 1

2 , 1.2× 10−6, 1
0.026 ): (a) x1 − x2 − x3 phase plane; (b) x2 − x3 − x4

phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6 phase plane; (e) x5 − x6 − x7 phase plane;
(f) x6 − x7 − x8 phase plane.

When (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 , 3, 0.945, 2, 1

2 , 2, −1, 1, −0.01, −3, 1, 1
2 ,

1.2× 10−6, 1
0.026 ) and the initial conditions are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), system (4)

exhibits a sub-hyperchaotic attractor in Figure 4, and the corresponding eight Lyapunov
exponents are (0.25, 0, 0, −0.80, −0.96, −1.09, −1.36, −1.98).

When the novel eighth-order hyperchaotic system is applied to image encryption,
it is necessary to define the default values of the constant parameter and the coupling
parameters of the hyperchaotic system (a, b, d, e, f , g, h, i, j, k, l) as ( 1

2 , 3, 2, 1
2 , 2, −1, 1, −0.01,

−3, 1, 1
2 ). The hyperchaotic system is as follows:

ẋ1 = x2 − x1 − ε(exp(φx7)) +
ρ

2
tanh(x8)

ẋ2 = x3 − x2 + 3 sin(x1)− x1

ẋ3 = 2x4 − x3 + sin(x5) + x7

ẋ4 = x5 − x4 + sin
(

x7 + x8

2

)
ẋ5 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7)) +

x7

2
ẋ6 = x7 − x8 × 10−2 − 3x4

ẋ7 = x8 + 2 sin(x5) + x5 +
x6

2
ẋ8 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)

(5)

where the control parameters are ρ = 1.2× 10−6, φ = 1
0.026 , ε = 6× 10−9, c ∈ [0.65, 4],

and the initial conditions are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
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Figure 4. Sub-hyperchaotic attractor observed from system (4) with (a, b, c, d, e, f , g, h, i, j, k, l, ρ, φ) = ( 1
2 ,

3, 0.75, 2, 1
2 , 2, −1, 1, −0.01, −3, 1, 1

2 , 1.2× 10−6, 1
0.026 ): (a) x1 − x2 − x3 phase plane; (b) x2 − x3 − x4

phase plane; (c) x3 − x4 − x5 phase plane; (d) x4 − x5 − x6 phase plane; (e) x5 − x6 − x7 phase plane;
(f) x6 − x7 − x8 phase plane.

2.2. Observation of Hyperchaos and Complex Dynamics

The Lyapunov exponent of a dynamical system is a quantity that characterizes the
rate of separation of infinitesimally close trajectories. Over time, two sets of initially close
conditions will gradually separate due to the chaotic nature of the system. The Lyapunov
exponent quantifies this exponential separation [22]. By analyzing Lyapunov exponents,
valuable insights can be gained regarding a system’s sensitivity to its initial conditions,
thereby aiding in the understanding and prediction of the behavior of complex systems [23].

Table 1 shows the properties of the Lyapunov exponent for an ordinary differential
dynamical system.

The Lyapunov exponent spectrum of the system is shown in Figure 5 for c ∈ [0.65, 4].
Figure 5 shows a Lyapunov exponent spectrum, in which the eight colored lines represent
the eight Lyapunov exponents, the red line represents the first Lyapunov exponent, and
the green line represents the second Lyapunov exponent. When the first two Lyapunov
exponents are greater than 0 and the third Lyapunov exponent is equal to 0, the system
exhibits a hyperchaotic attractor. When the first Lyapunov exponent is greater than 0
and the second Lyapunov exponent is equal to 0, the system exhibits a chaotic attractor.
The system exhibits hyperchaotic behavior, with the Lyapunov exponents having the
signs (+, +, 0, − , −, −, −, −) when c ∈ [0.65, 1] [24]. In individual intervals, a few sub-
hyperchaotic regions such as c ∈ [0.69, 0.695] and c ∈ [0.94, 0.945] can be observed, which
have the sign of Lyapunov exponents as (+, 0, 0, −, −, −, −, −). In the region of c ∈ [1, 3.3],
the system exhibits chaotic behavior, with the Lyapunov exponents having the signs (+, 0,
−, −, −, −, −, −). In c ∈ [3.3, 4], the majority of regions exhibit periodic behavior.

The complexity of the attractor can be described by the Kaplan–Yorke dimension,
which can be calculated using the following formula:

DKY = D +
∑D

i=1 LEi

|LED|
(6)
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In the hyperchaotic region, which is defined as c ∈ [0.65, 1], the Kaplan–Yorke dimen-
sion falls within the approximate range of [3.25, 4.5]. However, for c ∈ [1, 4], the Kaplan–
Yorke dimension is mostly found within the range of [1.75, 3.25].

Table 1. Properties of Lyapunov exponents for ordinary differential dynamical systems.

Dimension and Lyapunov
Exponents Symbol State

1D (λ) + Divergent
1D (λ) − Stable fixed point

2D (λ1, λ2) (−, −) Stable fixed point
2D (λ1, λ2) (0, −) Limit cycle

3D (λ1, λ2, λ3) (−, −, −) Stable fixed point
3D (λ1, λ2, λ3) (0, −, −) Limit cycle
3D (λ1, λ2, λ3) (0, 0, −) 2D torus
3D (λ1, λ2, λ3) (+, +, 0) Unstable limit cycle
3D (λ1, λ2, λ3) (+, 0, 0) Unstable 2D torus
3D (λ1, λ2, λ3) (+, 0, −) Chaos, strange attractor

4D (λ1, λ2, λ3, λ4) (+, 0, −, −) Chaos, strange attractor
4D (λ1, λ2, λ3, λ4) (+, 0, 0, −) Sub-hyperchaos, strange attractor
4D (λ1, λ2, λ3, λ4) (+, +, 0, −) Hyperchaos, strange attractor

. . . . . . . . .
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (0, −, −, −, −, −, −, −) Limit cycle
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (0, 0, −, −, −, −, −, −) 2D torus
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (0, 0, 0, −, −, −, −, −) 3D torus
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (+, 0, −, −, −, −, −, −) Chaos, strange attractor
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (+, 0, 0, −, −, −, −, −) Sub-hyperchaos, strange attractor
8D (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) (+, +, 0,−, −, −, −, −) Hyperchaos, strange attractor

Obtaining the equilibrium points is a crucial step in evaluating a new chaotic system,
as it allows for the proper identification of the chaotic nature of the system [25].

Let ẋ1 = ẋ2 = ẋ3 = ẋ4 = ẋ5 = ẋ6 = ẋ7 = ẋ8 = 0, that is:

0 = x2 − x1 − ε(exp(φx7)) +
ρ

2
tanh(x8)

0 = x3 − x2 + 3 sin(x1)− x1

0 = 2x4 − x3 + sin(x5) + x7

0 = x5 − x4 + sin
(

x7 + x8

2

)
0 = x6 − x5 − cos(x3) + sin(x1)− ε(exp(ρx7)) +

x7

2
0 = x7 − x8 × 10−2 − 3x4

0 = x8 + 2 sin(x5) + x5 +
x6

2
0 = −cx8 − ρ sinh(φx7)− 8(x6 + x5 + x4 + x3 + x2)

(7)

When ρ = 1.2× 10−6, φ = 1
0.026 , ε = 6× 10−9, c = 0.75, the given equilibrium point (0.14,

0.17, −0.11, 0.13, −0.87, −0.18, 0.40, 2.48) has been obtained, and the Jacobian matrix can be
computed at these equilibrium points. The Jacobian matrix, denoted as f ′(x) , represents
the derivative of the multidimensional mapping:
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f ′(x) =
∂ f
∂x

=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x8

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x8

...
...

. . .
...

∂ f8
∂x1

∂ f8
∂x2

· · · ∂ f8
∂x8

 (8)

Figure 5. Lyapunov exponent map and Kaplan–Yorke dimension for a novel eighth-order hyper-
chaotic system.

The eight eigenvalues calculated based on the Jacobian matrix are

λ1 = (−0.36 + 13.15i),

λ2 = (−0.36− 13.15i),

λ3 = 0.52,

λ4 = (0.02 + 1.18i),

λ5 = (0.02− 1.18i),

λ6 = (−2.39 + 0.23i),

λ7 = (−2.39− 0.23i),

λ8 = −0.80.

(9)
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The eigenvalues corresponding to λ1 and λ2, λ4 and λ5, and λ6 and λ7 exhibit a
complex conjugate relationship, suggesting a characteristic oscillatory pattern. λ3 has a
positive real part, indicating divergence. λ8 has a negative real part, indicating convergence.

Among the eight eigenvalues under consideration, it is observed that three of them
exhibit instability due to the presence of eigenvalues with positive real parts. This implies
that any perturbation introduced into the system will amplify over time, leading to a loss
of stability at the equilibrium point. Conversely, the remaining five eigenvalues exhibit
negative real components, indicating that any disturbance introduced into the system will
gradually diminish, thereby preserving the stability of the equilibrium point [26].

The divergence formula for this system is as follows:

∇ · F =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+ · · ·+ ∂ẋ8

∂x8
(10)

The divergence in this system is −5.74. Generally, the divergence of the hyperchaotic
system is found to be negative, indicating that the system is a dissipative system.

3. Encryption and Decryption Scheme

The encryption scheme uses two chaotic sequences generated by the novel eighth-
order hyperchaotic system Equation (5) when c = 1.5 and c = 1.4, which is used to enhance
the security of images. The proposed scheme in this study involves row scrambling, column
scrambling, and diffusing using chaotic sequence A (c = 1.5), as well as diffusing, column
scrambling, and row scrambling using chaotic sequence B (c = 1.4). The encryption
algorithm and decryption algorithm are shown in Algorithms 1 and 2.
Encryption Algorithm:

1. Calculate the chaotic sequence A according to the novel eighth-order hyperchaotic
system when c = 1.5 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

2. Calculate the Key by the average value of a matrix generated by original image.
3. Obtain the pixels of the original image and divide the original image into three

channels of R, G, B.
4. Calculate the index sA and cA from the chaotic sequence A with different keys, wheresi = x8(i)× 108 − bx8(i)× 108c

ci = mod
(

x3(i)× 105 − bx3(i)× 105c+
∣∣∣x3(i)× 108 − round(x3(i)× 108)

∣∣∣, 256
) (11)

5. Utilize the index sA based on 2×Key to perform row scrambling on the output images
of the three channels from Step 3.

6. Utilize the index sA based on 3× Key to perform column scrambling on the output
images of the three channels from Step 5.

7. Perform XOR operation on the index cA and the image pixel value from Step 6.
8. Calculate the chaotic sequence B according to the novel eighth-order hyperchaotic

system when c = 1.4 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
9. Calculate the index sB and cB from the chaotic sequence B with the same formula

from Step 4.
10. Perform XOR operation on the index cB and the image pixel value from Step 7.
11. Utilize the index sB based on 3× Key to perform column scrambling on the output

images of the three channels in Step 10.
12. Utilize the index sB based on 2×Key to perform row scrambling on the output images

of the three channels in Step 11.
13. Merge the encrypted images of the three channels to generate the final encrypted image.
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Algorithm 1 Encryption Algorithm
Input: Original Image (Org_Img), First initial conditions, Control parameters,
Output: Encrypted image (En_Img)

1: [m, n]← size(Org_Img)
2: Avg_pixel_value← mean2(Org_Img)× 10−9 . mean2 is a function that returns the

average value of a matrix
3: paraset(x1, x2, x3, x4, x5, x6, x7, x8) . First round of encryption
4: function SEQ(x1, x2, x3, x4, x5, x6, x7, x8, Runge− Kutta, Avg_pixel_value)
5: x1(1)← x1(1) + Avg_pixel_value
6: for i = 1 to 10×m× n do
7: [dx, dy, dz, du]← Runge-Kutta(x(i), y(i), z(i), u(i))
8: x1(i + 1)← x1(i) + dx1
9: x2(i + 1)← x2(i) + dx2

10: x3(i + 1)← x3(i) + dx3
11: x4(i + 1)← x4(i) + dx4
12: x5(i + 1)← x5(i) + dx5
13: x6(i + 1)← x6(i) + dx6
14: x7(i + 1)← x7(i) + dx7
15: x8(i + 1)← x8(i) + dx8
16: if mod(i, 10) = 0 then
17: si = x8(i)× 108 − bx8(i)× 108c
18: t =

∣∣x3(i)× 108 − round(x3(i)× 108)
∣∣

19: ci = mod
(
x3(i)× 105 − bx3(i)× 105c+ t, 256

)
20: end if
21: end for
22: return s, c
23: end function
24: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 2× Avg_pixel_value) .

Using chaotic sequence A
25: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 3× Avg_pixel_value)
26: c← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, Avg_pixel_value)
27: S_index_1← Sort(s1)
28: S_index_2← Sort(s2)
29: Org_per_row← confuse_row(Org_Img, S_index_1)
30: Org_per_col ← confuse_col(Org_per_row, S_index_2)
31: En_Img1← difuse(m, n, Org_per_col, c)
32:
33: paraset(x1, x2, x3, x4, x5, x6, x7, x8) . Second round of encryption
34: x1(1)← x1(1) + Avg_pixel_value
35: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 2× Avg_pixel_value) .

Using chaotic sequence B
36: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 3× Avg_pixel_value)
37: c← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, Avg_pixel_value)
38: S_index_1← Sort(s1)
39: S_index_2← Sort(s2)
40: En_di f 1← difuse(m, n, En_Img1, c)
41: En_per_col1← confuse(n, m, En_dif1, S_index_2)
42: En_per_row1← confuse(m, n, En1_per_col1, S_index_1)
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Decryption Algorithm:

1. Calculate the chaotic sequence B according to the novel eighth-order hyperchaotic
system when c = 1.4 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).

2. Obtain the pixels of the original image and divide the original image into three
channels of R, G, B.

3. Calculate the index sB and cB from the chaotic sequence B with different keys.
4. Utilize the index sB based on 2× Key to perform row recovery on the output images

of the three channels from Step 2.
5. Utilize the index sB based on 3× Key to perform column recovery on the output

images of the three channels from Step 4.
6. Perform XOR operation on the index cA and the image pixel value from Step 5.
7. Calculate the chaotic sequence A according to the novel eighth-order hyperchaotic

system when c = 1.5 and initial values are (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1).
8. Calculate the index sA and cA from the chaotic sequence A with different keys.
9. Perform XOR operation on the index cA and the image pixel value from Step 6.
10. Utilize the index sA based on 3× Key to perform column recovery on the output

images of the three channels from Step 9.
11. Utilize the index sA based on 2× Key to perform row recovery on the output images

of the three channels from Step 10.
12. Merge the decrypted images of the three channels to generate the final decrypted image.

Algorithm 2 Decryption Algorithm
Input: Encrypted Image (En_Img), First initial conditions, Control parameters,
Avg_pixel_value of (Org_Img)
Output: Original image (Org_Img)

1: [m, n]← size(En_Img)
2: paraset(x1, x2, x3, x4, x5, x6, x7, x8) . First round of decryption
3: x1(1)← x1(1) + Avg_pixel_value
4: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 2× Avg_pixel_value) .

Using chaotic sequence B
5: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, 3× Avg_pixel_value)
6: c← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta2, Avg_pixel_value)
7: S_index_1← Sort(s1)
8: S_index_2← Sort(s2)
9: En_per_row← confuse_row(En_Img, S_index_1)

10: En_per_col ← confuse_col(En_per_row, S_index_2)
11: En_Img1← difuse(m, n, En_per_col, c)
12:
13: paraset(x1, x2, x3, x4, x5, x6, x7, x8) . Second round of decryption
14: s1 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 2× Avg_pixel_value) .

Using chaotic sequence A
15: s2 ← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, 3× Avg_pixel_value)
16: c← SEQ(x1, x2, x3, x4, x5, x6, x7, x8, m, n, Runge-Kutta1, Avg_pixel_value)
17: S_index_1← Sort(s1)
18: S_index_2← Sort(s2)
19: En_di f 1← difuse(m, n, En_Img1, c)
20: En_per_col1← confuse_col(En_dif1, S_index_2)
21: Org_Img← confuse_row(En1_per_col1, S_index_1)

The steps of the encryption and decryption scheme are shown in Figures 6 and 7.
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Figure 6. Scheme of image encryption.

Encryption time, particularly for chaos-based encryption algorithms, determines
whether they can be employed in practice [27]. On a computer running Matlab 2022 and
equipped with a 3.2 GHz Core R7-5800 U CPU, the speed of the proposed method is
evaluated. This test uses a 512 × 512-pixel Lena image. Scrambling and diffusion have
running times of 3.0608 and 3.1810 s, respectively. The chaotic sequence generation takes
3.0403 s to complete, while one round of encryption takes 9.5131 s. Since the proposed
encryption scheme employs a serial encryption method and has a large key space, which
takes longer than other references, a significant amount of effort is required to convert
a serial approach to a parallel one and fully utilize the enormous processing power of
GPUs [28]. The result of the experiment is that it is evident that there is still room for
improvement in the encryption algorithm.
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Figure 7. Scheme of image decryption.

4. Experiments with Related Security Analysis
4.1. Experimental Results

The following is an experimental analysis of the image encryption algorithm proposed
in this paper. The experiment involves the use of eight color images, each consisting of
512 × 512 pixels, as depicted in Figure 8. The original images are shown in (a). The en-
crypted images are shown in (b)–(e), and the decrypted images are shown in (f)–(i).

The result of encrypting a gray image (512× 512 Lena) is shown in Figure 9, indicating
that the image encryption algorithm is also effective for gray images.

4.2. Histogram Analysis

A histogram is a visual representation that provides an estimation of the distribution
of numerical data. It involves plotting the number of pixels at each intensity level to
understand the distribution of pixels in an image [29]. To ensure resistance against statistical
attacks, the histograms of both the original images and encrypted images need to be
described [30].
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Figure 8. Image encryption and decryption results: (a) original image; (b–d) encrypted images of
three channels of R, G, B; (e) encrypted images of three channels combined; (f–h) decrypted images
of three channels of R, G, B; (i) decrypted images of three channels combined.

(a) (b) (c)

Figure 9. Gray image encryption and decryption results: (a) original image; (b) encrypted image;
(c) decrypted image.
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In order to quantitatively analyze histograms, the experiment uses variances of his-
tograms to assess the uniformity of the encrypted images. Lower variance values indicate a
higher level of uniformity in the encrypted images. The formula for calculating the variance
of the histograms is as follows [22]:

var(Z) =
1
n2

n

∑
i=1

n

∑
j=1

1
2
(zi − zj)

2 (12)

where Z is the variance of the histogram, and zi and zj are the number of pixels i and j in
a single channel. In the encryption experiment on the Lena image, the variance of the R
channel of the plain image is 770811 and the variance of the R channel of the encrypted
image is 262719; the variance of the G channel of the plain image is 490003 and the variance
of the G channel of the encrypted image is 262718; the variance of the B channel of the
plain image is 950821 and the variance of the B channel of the encrypted image is 262592,
the variance of the gray channel of the plain image is 578833 and the variance of the gray
channel of the encrypted image is 262698.

Figure 10 is the comparison of the original image and the encrypted image histogram.
Through the calculation of the variance and the analysis of the histogram, the his-

togram shows the distribution characteristics among the pixels. The encrypted image data
of an ideal encryption scheme should be uniformly distributed, which can effectively pre-
vent attackers from obtaining valid information from encrypted images [31], and effectively
resist statistical attacks.

4.3. Key Space Analysis

The utilization of a substantial key space has the capability to effectively thwart brute
force attacks, thereby mitigating the potential vulnerability of data decryption [32].

If the calculated resolution is 1015, for variable x1, the area of attraction domain
is x1 ∈ [−1.88,−0.98], there are 0.89× 1015 = 0.89× 1015 kinds of choices. There are
1.17× 1015 choices for x2, 1.95× 1015 choices for x3, 1.16× 1015 choices for x4, 2.62× 1015

choices for x5, 3.78× 1015 choices for x6, 1.04× 1015 choices for x7, and 1.41× 1016 choices
for x8. The size of the key space formed by the control variables is 0.89× 1015 × 1.17×
1015 × 1.95× 1015 × 1.16× 1015 × 2.62× 1015 × 3.78× 1015 × 1.04× 1015 × 1.41× 1016 =
3.45× 10123. Consider only one control variable c in Equation (5), the key space of the
system is 3.45× 10123 × 2.7× 1015 = 9.32× 10138. When only the first-order term with a
coefficient of 1 in the hyperchaotic equation is considered as the control variable, the key
space of the system is 8.2× 10351. Additionally, the proposed encryption scheme involves
two rounds of encryption based on the hyperchaotic system with different control variables,
thus the key space is 8.2× 10351 × 8.2× 10351 = 6.72× 10703 ≈ 22338. The actual key space
of this scheme will be extremely larger than that value.

4.4. Correlation Analysis

Correlation refers to a statistical association, regardless of causality, between two
random variables or sets of bivariate data. In the context of encryption algorithms, it is
desirable for encrypted images with low-pixel correlation to be resistant to cryptographic
attacks based on statistical analysis [33]. Therefore, a comprehensive understanding of
correlations is essential in order to enhance the robustness and effectiveness of image
encryption techniques [34].
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Figure 10. Comparison of the histograms of the original image and the encrypted image: (a,c,e,g) the
histogram of the R, G, B, gray channel of the original image; (b,d,f,h) the histogram of the R, G, B,
gray channel of the encrypted image.
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To calculate the correlation, the following formula is used [35]:

E(u) =
1
N

N

∑
i=1

ui

D(u) =
1
N

N

∑
i=1

(ui − E(u))2

cov(u, v) =
1
N

N

∑
i=1

(xi − E(u))(yi − E(v))

rxy =
cov(u, v)√
D(u) ·D(v)

(13)

In order to present the importance of correlation more intuitively, Table 2 below will
show the pixel value correlation analysis results of eight color images. Table 2 also displays
the correlation to a gray house image, indicating that the encryption algorithm still works
with gray images.

Table 2. Correlation coefficient of original images, the first round of encrypted images, and the second
round of encrypted images.

Image Original Image First Round of Encrypted Image Second Round of Encrypted Image

Horiz. Vert. Diag. Horiz. Vert. Diag. Horiz. Vert. Diag.

Mandrill R 0.9123 0.8625 0.8505 0.0097 0.0084 0.0085 0.0079 0.0113 0.0122
G 0.8628 0.7811 0.7496 0.0149 0.0108 0.0105 0.0097 0.0126 0.0126
B 0.8965 0.8712 0.8314 0.0100 0.0135 0.0129 0.0123 0.0131 0.0110

Lena R 0.9808 0.9898 0.9712 0.0093 0.0090 0.0140 0.0133 0.0103 0.0120
G 0.9695 0.9827 0.9561 0.0140 0.0095 0.0145 0.0109 0.0089 0.0091
B 0.9352 0.9591 0.9212 0.0109 0.0069 0.0153 0.0101 0.0107 0.0120

Peppers R 0.9650 0.9677 0.9582 0.0090 0.0115 0.0101 0.0132 0.0083 0.0117
G 0.9813 0.9819 0.9689 0.0106 0.0102 0.0098 0.0110 0.0127 0.0096
B 0.9668 0.9667 0.9483 0.0137 0.0017 0.0082 0.0105 0.0136 0.0091

House R 0.9552 0.9591 0.9252 0.0129 0.0098 0.0139 0.0118 0.0086 0.0136
G 0.9405 0.9445 0.8951 0.0135 0.0061 0.0102 0.0107 0.0059 0.0109
B 0.9728 0.9691 0.9456 0.0109 0.0090 0.0090 0.0136 0.0128 0.0112

Lake R 0.9574 0.9557 0.9440 0.0105 0.0120 0.0156 0.0131 0.0132 0.0121
G 0.9718 0.9666 0.9534 0.0140 0.0110 0.0129 0.0131 0.0119 0.0104
B 0.9713 0.9697 0.9534 0.0117 0.0097 0.0117 0.0118 0.0148 0.0080

Splash R 0.9938 0.9953 0.9898 0.0108 0.0077 0.0105 0.0103 0.0099 0.0090
G 0.9812 0.9872 0.9713 0.0105 0.0054 0.0137 0.0114 0.0110 0.0129
B 0.9826 0.9792 0.9653 0.0112 0.0029 0.0097 0.0137 0.0127 0.0115

San Diego R 0.8539 0.8395 0.7770 0.0108 0.0072 0.0113 0.0132 0.0139 0.0092
G 0.7933 0.7719 0.6943 0.0080 0.0098 0.0101 0.0108 0.0143 0.0086
B 0.7930 0.7728 0.7055 0.0094 0.0069 0.0121 0.0118 0.0140 0.0096

Jetplane R 0.9738 0.9593 0.9382 0.0132 0.0102 0.0112 0.0108 0.0126 0.0118
G 0.9596 0.9691 0.9356 0.0137 0.0135 0.0115 0.0104 0.0117 0.0105
B 0.9673 0.9431 0.9249 0.0121 0.0068 0.0139 0.0119 0.0110 0.0110

House (gray) 0.9503 0.9592 0.9172 0.0137 0.0086 0.0127 0.0100 0.0076 0.0104
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It is evident that the correlation value of the original image is close to 1, while the
horizontal, vertical, and diagonal correlations of the encrypted image are close to 0 [36].
These values indicate that the correlation between adjacent pixels of the encrypted image is
very weak.

Figure 11, Figure 12, and Figure 13, respectively, show the original image, the first
round of encrypted image, and the second round of encrypted image in the horizontal,
vertical, and diagonal directions of pixel correlation sex. It can be seen from Figure 11
that, since the pixels of the original image are highly correlated, most points in these three
directions align with the 45° line. Meanwhile, Figures 12 and 13 show that these points are
distributed in the whole area, reflecting the weak pixel correlation in the encrypted image.
Therefore, the algorithm proves that it is effective against attacks such as statistical attacks.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 11. Correlation analysis of the original image: (a,d,g) correlation between pixels in the
horizontal direction of the R, G, B channel of the original image; (b,e,h) correlation between pixels in
the vertical direction of the R, G, B channel of the original image; (c,f,i) correlation between pixels in
the diagonal direction of the R, G, B channel of the original image.

(a) (b) (c)

Figure 12. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 12. Correlation analysis of the first round of encrypted image: (a,d,g) correlation between
pixels in the horizontal direction of the R, G, B channel of the first round of encrypted image;
(b,e,h) correlation between pixels in the vertical direction of the R, G, B channel of the first round of
encrypted image; (c,f,i) correlation between pixels in the diagonal direction of the R, G, B channel of
the first round of encrypted image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 13. Correlation analysis of the second round of encrypted image: (a,d,g) correlation between
pixels in the horizontal direction of the R, G, B channel of the second round of encrypted image;
(b,e,h) correlation between pixels in the vertical direction of the R, G, B channel of the second round
of encrypted image; (c,f,i) correlation between pixels in the diagonal direction of the R, G, B channel
of the second round of encrypted image.
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4.5. Entropy

To measure the expected value of a message and the unpredictability of informa-
tion content, information entropy (IE) is usually taken to test the strength of a designed
encryption algorithm [37], which is defined in Equation (14) for a received message m.
The theoretical value of the information entropy is 8 [38].

IE(m) =
2L−1

∑
j=0

p(mj) log2

(
1

p(mj)

)
(14)

where L is the length of pixel value in binary form (for images in this experiment, L = 9),
p(mj) denotes the probability of the occurrence of the symbol mj, and log2 represents the
base 2 algorithm. Table 3 is a comparison of the information entropy of the original image
and the encrypted image of the eight color images and a gray house image.

Table 3. Entropy of original image, the first round of encrypted image, and the second round of
encrypted image.

Image Result

Original Image First Round of Encrypted Image Second Round of Encrypted Image

Mandrill 7.1073 7.9998 7.9998
Lena 7.7502 7.9998 7.9998

Peppers 7.6698 7.9997 7.9998
House 7.4858 7.9998 7.9998
Lake 7.7622 7.9997 7.9998

Splash 7.2428 7.9997 7.9997
San Diego 7.3311 7.9998 7.9998
Jetplane 6.6639 7.9997 7.9997

House (gray) 7.2334 7.9993 7.7993

4.6. MSE and PSNR Analysis

The most common metric for evaluating the effectiveness of lossy image compression
codecs is PSNR. The correct determination of the spatial alignment and level offset between
the encrypted picture sequence and the original image sequence is crucial to the PSNR
calculation [39]. Given a noise-free m× n monochrome image I and its noisy approximation
K, MSE and PSNR are defined as [40]

MSE =
1

mn

m

∑
i=1

m

∑
j=1

[I(i, j)− K(i, j)]2 (15)

PSNR = 10 · log10

(
MAX2

I
MSE

)
(16)

where MAXI is the maximum possible pixel value of the image. When samples are
represented using linear PCM with B bits per sample, MAXI is 2B − 1. In this paper,
the pixels are represented using 8 bits per sample, and MAXI is 255.

Table 4 shows the comparison of MSE and PSNR. To reduce the probability of assaults,
a lower PSNR value and a higher MSE value are preferred [2]. As a result, it is clear that the
PSNR values computed for encrypted pictures using the proposed scheme are comparable
to or better than those obtained from other schemes in the literature [41].
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Table 4. MSE and PSNR comparison.

Image MSE PSNR

Mandrill 8773 8.6994
Lena 8923 8.6256

Peppers 10129 8.0751
House 9252 8.4686
Lake 10099 8.0880

Splash 11252 7.6183
San Diego 8480 8.8469
Jetplane 10360 7.9772

House (gray) 8955 8.6103
Ref. [41] 8353 8.9272
Ref. [42] 7274 9.55
Ref. [43] 8332 8.9331

4.7. Ablation Analysis

The ablation analysis shows the improvement in encryption due to two rounds of
encryption. The experiment can be divided into four cases and the result is demonstrated
in Table 5.

Table 5. Ablation analysis.

Method Key Space Entropy CC NPCR (%) UACI (%)

R G B Cipher R G B Cipher R G B Cipher

Case 1 > 21169 7.9997 0.0107 0.0118 0.0105 0.0079 99.6391 99.6391 99.6391 99.6391 33.4310 33.4089 33.4219 33.4206

Case 2 > 21169 7.4858 0.0368 0.0446 0.0195 0.0079 99.3141 99.1238 99.2275 99.2218 22.0984 20.2759 27.1392 23.1712

Case 3 > 21169 7.9998 0.0107 0.0111 0.0105 0.0069 99.5838 99.6136 99.6048 99.6007 33.4498 33.4860 33.4681 33.4680

Case 4 > 21169 7.9998 0.0122 0.0099 0.0096 0.0067 99.6098 99.6238 99.6055 99.6131 33.4417 33.3564 33.2640 33.3541

Proposed > 22338 7.9998 0.0113 0.0092 0.0125 0.0072 99.6162 99.6086 99.6048 99.6099 33.4552 33.4399 33.4081 33.4344

Case 1: Proposed method without scrambling.
Case 2: Proposed method without diffusion.
Case 3: Proposed method without the first round of encryption.
Case 4: Proposed method without the second round of encryption.
It can be seen from the table that, when encryption is performed without diffusion

operation, the pixel correlation of the scheme is substantially higher than the proposed
scheme, and the UACI is likewise far away from the theoretical value. Without scrambling
operations or without one of the rounds being used for encryption, these data are within
a respectable range, but the primary benefit of the proposed scheme with two rounds of
encryption is the extremely large key space.

4.8. Key Sensitivity Analysis

Key sensitivity analysis is a cryptographic evaluation method that assesses the signifi-
cance and security of an algorithm [35]. It ensures that even a slight modification to the key
will render the original flat image irrecoverable [2].

This encryption system demonstrates a high level of sensitivity to the key. By main-
taining constant control variables and initial conditions, a small increment of 10−14 is
added to the key within the scheme. Consequently, the encrypted image exhibits significant
differences between the two variables over time, displaying pseudo-random characteristics.
This observation suggests that the system’s key is highly sensitive to initial conditions.
To illustrate this sensitivity, two similar images are encrypted using keys with minute
differences. Figure 14 shows the waveform of x1 and x1 + ∆x over time and their difference.
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After performing the subtraction of the encrypted images, it is clearly seen from Figure 15
that the resulting images exhibit significant dissimilarities.

(a) (b) (c)

Figure 14. (a) The difference waveform of x1 and x1 + ∆x over time; (b) the values of x1 + ∆x over
time; (c) the values of x1 over time.

Figure 15. Key sensitivity test: (a) the difference between the twice encrypted image of the R channel
of images; (b) the difference between the twice encrypted image of the G channel of images; (c) the
difference between the twice encrypted image of the R channel of images; (d) the difference between
the twice encrypted images of three channels of images.

Key sensitivity analysis is usually performed based on the following two indicators:
one is the number of pixels rate of change (NPCR), and the other is the uniform average
intensity of change (UACI). These two indicators are defined as [44]
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NPCR =
N

∑
i=1

M

∑
j=1

D(i, j)
M× N

× 100% (17)

UACI =
N

∑
i=1

M

∑
j=1

|C1(i, j)− C2(i, j)|
T ×M× N

× 100% (18)

D(i, j) =

{
0, if C1(i, j) = C2(i, j)
1, if C1(i, j) 6= C2(i, j)

(19)

where C1 and C2 are two encrypted images of size M×N, and T denotes the largest allowed
pixel intensity.

NPCR and UACI are theoretically 99.6043% and 33.4635% [45]. The data presented in
Tables 6 and 7 demonstrates that the test value of the algorithm exhibits a high degree of
proximity to the ideal value, indicating a strong level of key sensitivity. In summary, this
scheme has high key sensitivity.

Table 6. NPCR of three channels in key sensitivity analysis.

Image NPCR (%)

R G B

Mandrill 99.5930 99.6330 99.6113
Lena 99.5811 99.6162 99.6052

Peppers 99.6048 99.6021 99.6140
House 99.6162 99.6086 99.6048
Lake 99.6273 99.6307 99.6063

Splash 99.6078 99.5998 99.6201
San Diego 99.6117 99.6071 99.6025
Jetplane 99.6128 99.6227 99.6158

Lena (gray) 99.6017

Table 7. UACI of three channels in key sensitivity analysis.

Image UACI (%)

R G B

Mandrill 33.4605 33.4560 33.5050
Lena 33.3818 33.5105 33.4385

Peppers 33.4500 33.5263 33.5738
House 33.4552 33.4399 33.4081
Lake 33.5367 33.4740 33.3750

Splash 33.4298 33.4887 33.5137
San Diego 33.4646 33.4861 33.4083
Jetplane 33.5527 33.5670 33.5132

Lena (gray) 33.4496

4.9. Differential Attack

To avoid differential attacks, a secure cryptosystem should be sensitive to plaintext [46],
indicating that even minor alterations in the pixel values of a regular image can result in
significant modifications in the corresponding encrypted image [47]. Figure 16 shows the
results of differential attack experiments.

Tables 8 and 9 show the NPCR and UACI of the differential attack. The test results in-
dicate a strong correlation between the system’s value and the theoretical value, suggesting
that the system is capable of effectively defending against differential attacks.
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Table 8. NPCR of three channels in differential attack experiments.

Image NPCR (%)

R G B

Mandril 99.6174 99.6136 99.6025
Lena 99.6105 99.6212 99.6162

Peppers 99.6204 99.6208 99.6262
House 99.5785 99.6117 99.6040
Lake 99.5979 99.6178 99.6166

Splash 99.6227 99.6246 99.6002
San Diego 99.6059 99.6071 99.5972
Jetplane 99.6254 99.6002 99.6227

Lena (gray) 99.6249

Table 9. UACI of three channels in differential attack experiments.

Image UACI (%)

R G B

Mandrill 33.4335 33.4402 33.4821
Lena 33.4898 33.4291 33.4875

Peppers 33.4562 33.4732 33.5182
House 33.4944 33.4663 33.5236
Lake 33.4197 33.5304 33.4407

Splash 33.4215 33.5089 33.4760
San Diego 33.4363 33.4986 33.4557
Jetplane 33.5001 33.4588 33.5305

Lena (gray) 33.4892

Figure 16. Differential attack test: (a) the difference between the twice encrypted image of the R
channel of images; (b) the difference between the twice encrypted image of the G channel of images;
(c) the difference between the twice encrypted image of the R channel of images; (d) the difference
between the twice encrypted images of three channels of images.
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4.10. Cropping Attack

A robust cryptographic system should have the capability to resist potential data loss
during transmission and storage [48]. The receiver wants to recover the plain image as
much as possible from some of the information received in this case [33]. Thus, the anal-
ysis of cropping attacks is a valuable approach to assessing the robustness of encryption
schemes [49].

For evaluating and comparing the performance of different encryption algorithms
in the face of cropping attacks, a series of experiments is conducted, and the following
comparative illustrations are produced. As shown in Figure 17, the images decrypted from
the cipher images with data loss rates of 6.25, 12.5%, 23.44%, 25%, 43.75%, and 50% are
very similar to the original images and can still provide valuable information about the
input images’ visual information.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 17. Cropping attack test [50]: (a) cropped 6.25% of the encrypted image; (b) cropped 12.5%
of the encrypted image; (c) cropped 23.44% of the encrypted image; (d) cropped 25% of the en-
crypted image; (e) cropped 43.75% of the encrypted image; (f) cropped 50% of the encrypted image;
(g) decrypted image based on the cropped 6.25% of the encrypted image; (h) decrypted image based
on the cropped 12.5% of the encrypted image; (i) decrypted image based on the cropped 23.44%
of the encrypted image; (j) decrypted image based on the cropped 25% of the encrypted image;
(k) decrypted image based on the cropped 43.75% of the encrypted image; (l) decrypted image based
on the cropped 50% of the encrypted image.

4.11. Randomness Tests for the Encrypted Image

In order to guarantee the security of the encryption system, the image should contain
properties for further measurable investigation to distinguish between different designs [51].
For the DIEHARD test, which focuses on several types of potential randomness in the
sequence [52], the value of each pixel of the encrypted image is transformed into binary.



Mathematics 2023, 11, 4099 26 of 29

The results of the DIEHARD test in Table 10 show that the proposed scheme exhibits highly
random behavior.

Table 10. Result of DIEHARD tests suite.

Image p-Value Assessment

Birthday spacing 0.4381 PASSED
Overlapping permutation 0.8404 PASSED

Binary rank 32× 32 0.4542 PASSED
Binary rank 6×8 0.5309 PASSED

Bitstream 0.6567 PASSED
OPSO 0.1355 PASSED
OQSO 0.4506 PASSED
DNA 0.7073 PASSED

Count the ones 01 0.9588 PASSED
Count the ones 02 0.7266 PASSED

Parking lot 0.6397 PASSED
2DS sphere 0.0297 PASSED
3DS spheres 0.6735 PASSED

Squeeze 0.9060 PASSED
Overlapping sum 0.1625 PASSED

Runs 0.7672 PASSED
Craps 0.1105 PASSED

4.12. Comparison with Existing Methods

This section compares the scheme with existing encryption schemes by comparing
the key space, entropy, CC, NPCR, and UACI. CC is the average value of the correlation
of adjacent pixels in the horizontal, vertical, and diagonal directions of the image, and
the formula is as follows:

CC =
|Ch|+ |Cv|+ |Cd|

3
(20)

where Ch, Cv, and Cd are correlations of horizontal, vertical, and diagonal of encrypted images.
Table 11 shows the comparison of encrypted Lena images.

Table 11. Key space, entropy, CC, NPCR, and UACI comparison.

Method Key Space Entropy CC NPCR (%) UACI (%)

R G B Cipher R G B Cipher R G B Cipher

Proposed > 22338 7.9998 0.0119 0.0096 0.0109 0.0070 99.5811 99.6162 99.6052 99.6062 33.3818 33.5105 33.4385 33.4623
Ref. [53] > 2160 7.9992 0.0320 0.0099 0.0221 - 100 100 100 100 33.6313 33.4737 33.6520 33.5857
Ref. [2] 2128 7.9998 0.0020 0.0007 0.0018 0.0015 100 100 100 100 33.4877 33.3697 33.4629 33.4400
Ref. [54] 2233 7.9967 0.0043 0.0035 0.0020 - 99.5865 99.2172 99.8480 - 33.4835 33.4640 33.2689 -
Ref. [55] 2626 7.9998 - - - 0.0026 99.6296 99.6174 99.6473 - 33.6027 33.4997 33.5516 -
Ref. [56] - 7.9956 0.0004 0.0004 0.0004 - 99.6420 99.5960 99.5290 99.5890 32.7630 30.0490 27.5670 30.1260
Ref. [57] 2170 7.9998 0.0021 0.0025 0.00040 0.0013 - - - 99.6166 - - - 33.4476
Ref. [58] 2170 7.9994 0.0034 0.0002 0.0028 0.0013 99.6099 99.6093 99.6101 - 33.4650 33.4637 33.4641 -
Ref. [59] 2711 7.9978 - - - 0.0042 - - - 99.6090 - - - 33.4500
Ref. [60] > 2183 7.9994 0.0021 0.0009 0.0005 - 99.6089 99.6089 99.6085 - 33.4589 33.4598 33.4624 -
Ref. [61] - 7.9998 - - - 0.0002 - - - 99.62 - - - 33.47
Ref. [62] - 7.9997 - - - 0.0006 - - - - - - - -
Ref. [41] 2554 7.9989 0.0030 0.0015 0.0031 0.0036 99.6246 99.6246 99.6246 99.6246 33.0716 30.7640 27.8720 30.5681
Ref. [63] 2418 7.9988 - - - 0.0022 - - - 99.6112 - - - 33.4254
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5. Conclusions

The image encryption algorithm based on the novel eighth-order hyperchaotic system
proposed in this paper performs a significant level of security in experiments. The algorithm
effectively improves the randomness and unpredictability of encrypted images through
multiple rounds of diffusion and scrambling operations. In contrast to the conventional
chaotic system, the novel hyperchaotic system exhibits superior performance in terms of
key space and resistance against attacks, while also demonstrating heightened sensitivity
to keys. By comparing the results of other encryption algorithms, it can be seen that the
key space of the proposed algorithm is significantly larger than those of other references;
NPCR and UACI are closer to the theoretical values; and the pixel correlation is also lower
than most references. Based on the aforementioned notable benefits, it is evident that the
algorithm demonstrates exceptional performance in the encryption of images.
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