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Abstract: Viral infection spreads in cell culture or tissue as a reaction–diffusion wave. It is character-
ized by three main parameters: virus replication number, Rv, which determines whether infection
progresses, wave speed, c, which correlates with the virus virulence, and viral load, J(v), which
determines the infection transmission rate. In this work, we study how the inflammation triggered
by viral infection influences its progression. We obtain analytical expressions for Rv, c, and J(v) and
show how they depend on the intensity of inflammation characterized by one or two parameters.
Analytical and numerical results show that inflammation decreases the viral replication number,
virus virulence, and infectivity, though there are different cases depending on the parameters of the
model.
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1. Introduction
1.1. Inflammation in Viral Infections

Viral infections represent a significant global health threat, particularly important in the
case of the coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory
syndrome coronavirus (SARS-CoV-2). Before SARS-CoV-2, several other viruses have been
at the origin of recent epidemics, such as MERS, Ebola, and Zika. Many other infections
continue to circulate around the globe, leading to more or less important outbreaks [1].

Viral infection initiates the immune response when it penetrates into the host organism.
It starts with the innate immunity, an immediate reaction mechanism aimed to limit virus
spread in the infected tissue. It is characterized by broad specificity and mediated by
various molecules, such as lymphokines, cytokines, and chemokines [2].

In contrast, the adaptive immune response is pathogen-specific and requires more
time to develop. At this stage of the immune response, T and B-lymphocytes are activated
by antigen-presenting cells. These cells contribute to the elimination of infected cells and to
the secretion of pathogen-specific immunoglobulins and the generation of immunological
memory [3].

Upon infection, viral pathogen-associated molecular patterns (PAMPs) interact with
pattern recognition receptors (PRRs). PRR detection of viral PAMPs triggers the activa-
tion of the innate immune signaling pathways to produce inflammatory cytokines and
interferons, mediating the immune response [4].

Activation of PRRs can often lead to diverse forms of cell death [5]. At the cellular level,
elimination of infected host cells through programmed cell death (PCD) pathways is crucial
to stop viral spread. On the other hand, inflammatory products such as damage-associated
molecular patterns (DAMPs), alarmins, additional PAMPs, and inflammatory cytokines
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released from the dying cells can trigger life-threatening inflammatory cell death, cytokine
storms, organ damage, and sepsis [6,7].

The PCD pathways include apoptosis, pyroptosis, and necroptosis, and all of them
can be activated by viral infections. Apoptosis is the most studied PCD in viral infections;
it can be activated by various extracellular or intracellular events such as lack of nutrients
or some growth factors, DNA damage, or other internal cellular stress factors [1].

Inflammation leads to redness, swallow, heat, pain, and tissue disfunction. There is
a close connection between the immune response and inflammation. Inflammation is a
part of innate immunity, comprising the release of inflammatory cytokines in response to
the recognition of viral PAMPs. These cytokines attract cells from the immune response
and kill infected cells. They also act to activate the adaptive part of the immune response.
Thus, immune response and inflammation are tightly connected during viral infections
and other diseases.

There are various models of immune response that take into account cellular kinet-
ics [8–13] and different parts of the innate or adaptive immune response. As such, interferon
dynamics is taken into account in [8,10,11,13], while some parts of the adaptive immune
response are modeled in references [8,9,12,13]. The influence of inflammatory mediators is
indirectly considered in model [14] through the death coefficients in equations for the con-
centrations of virus and infected cells. This work does not directly include concentrations
of cytokines and their spatial distributions. The dynamics of inflammatory cytokines and
macrophages is considered in [15]. Depending on parameters, three regimes of COVID-19
disease are identified corresponding to mild, moderate, and severe inflammation. Based on
the modeling results, possible outcomes of the medical interventions are discussed. The
model of the SARS-CoV-2 infection with the innate and adaptive responses is considered
in [8], and the conditions of cytokine storm are determined. In the review in [16], the
mathematical modeling of acute inflammatory response in considered. Two approaches are
discussed based on ordinary differential equations and agent-based models. A comprehen-
sive overview of the mathematical models of the inflammatory response in lung infections
and injuries, including COVID-19 infection and immune response, is given in [17]. These
models are mostly based on ordinary differential equations and do not account for the
spatial distributions of the virus, host, and immune cell concentrations.

In this work, we model viral infection spreading in a cell culture or tissue due to
virus replication in the infected cells and virus diffusion in the extracellular space. We
study the spatial dynamics of infection progression. We show that infection propagates as
a reaction–diffusion wave and how this propagation is influenced by inflammation. We
discuss the mathematical model in the next section.

1.2. Mathematical Modeling of Viral Infections

Viral infection spreads in cell culture or tissue as a reaction–diffusion wave [18].
The speed of wave propagation correlates with virus virulence, and the viral load in the
upper respiratory tract correlates with virus infectivity in the case of respiratory viral
infections [19]. The wave speed and viral load were determined in [19] for the basic model,
representing a delayed reaction–diffusion system for the concentrations of uninfected cells,
infected cells, and virus. These results were applied for the characterization of different
variants of the SARS-CoV-2 infection and of their competition [20]. The influence of the
immune response on infection spreading is studied in [21] and the intracellular regulation
of virus replication in [22]. Mucus motion and airway obstruction during respiratory viral
infections are investigated in [23].

In this work, we study the influence of inflammation on viral infection spreading. We
consider the following system of equations:

∂U
∂t

= k1(U0 −U)− k2UV, (1)
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∂W
∂t

= k2UV − k3SW − σ1W, (2)

∂V
∂t

= D1
∂2V
∂x2 + bW − σ3V, (3)

dS(t)
dt

= k6 J(W)− k7 J(W)S− σ4S, (4)

where

J(W) =
∫ +∞

−∞
W(x, t)dx. (5)

Here, U(x, t) is the concentration of uninfected cells, W(x, t) is the concentration of in-
fected cells, V(x, t) is the concentration of virus particles, and S(t) is the concentration of
inflammatory cytokines. The first term in the right-hand side of Equation (1) describes the
influx of uninfected cells and their death. In the case without infection, these two processes
are balanced, and cell concentration reaches some equilibrium value U0. The second term
describes the rate of infection of uninfected cells by virus. The same term with a plus sign
is presented in the right-hand side of Equation (2). The next term characterizes the death
of infected cells due to inflammatory cytokines, and the last term describes their death
not related to inflammation (e.g., cell exhaustion). Equation (3) for the virus concentration
contains the diffusion term, the rate of virus production by infected cells, and the rate of its
elimination or neutralization.

We assume that inflammatory cytokines are redistributed in the infected tissue by
blood circulation. Therefore, their concentration S(t) depends only on time and not on
the space variable, contrary to the other concentrations. Equation (4) contains the rate of
cytokine production proportional to the total amount of infected cells, cytokine depletion
due to their interaction with infected cells, and their degradation.

Let us note that we consider this system of equations on the whole axis in the theoreti-
cal analysis of reaction–diffusion waves (Section 2). It is considered on a bounded interval
in numerical simulations (Section 3).

2. Analysis of the Model
2.1. Stationary Points

Let us first consider the case where k1 = 0; that is, the influx and death of uninfected
cells are neglected. This assumption is biologically justified for relatively short respiratory
viral infections (1–2 weeks), since the average life span of epithelial cells is essentially
longer (several months). Then, the stationary points of systems (1)–(4), that is, their space-
independent stationary solutions, are W = 0, V = 0, S = 0, and any U. Let us note that the
integral J(W) considered on the whole axis is well defined in this case.

In order to analyze stability of this stationary point, consider the system linearized
about it (equations for W and V):

dW
dt

= k2U0V − σ1W, (6)

dV
dt

= bW − σ3V. (7)

Therefore, the condition of stability of this solution is given by the inequality

R(1)
v =

k2bU0

σ1σ3
< 1. (8)

In this case, the virus replication number R(1)
v has the same form as in the previously

considered system of three equations [19], and the infection growth occurs for R1
v > 1.
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If k1 > 0, then the system (1)–(5) has the unique stationary point (U0, 0, 0, 0). It is also
stable if condition (8) is satisfied.

In what follows, we consider a particular case, σ4 = 0. In this case, systems (1)–(4) have
stationary solutions with coordinates W = 0, V = 0, and S and U are arbitrary. Consider
the stability of the point (U0, 0, 0, S0), which corresponds to the noninfection state with
some amount of anti-inflammatory cytokines. From the linearized system

dW
dt

= k2U0V − k3S0W − σ1W, (9)

dV
dt

= bW − σ3V (10)

we obtain the stability condition:

R(2)
v =

k2bU0

σ3(k3S0 + σ1)
< 1. (11)

2.2. Wave Propagation

We look for a traveling wave solution of system (1)–(4), that is, a solution of the form
U(x, t) = u(ξ), W(x, t) = w(ξ), V(x, t) = v(ξ), where ξ = x− ct and c is the wave speed.
Since the last equation of the system does not depend on the space variable, then dS/dt = 0.
Assuming that k1 = 0 according to the biological assumptions, we obtain from system
(1)–(4):

cu′ − k2uv = 0, (12)

cw′ + k2uv− k3Sw− σ1w = 0, (13)

cv′ + D1v′′ + bw− σ3v = 0, (14)

where

S =
k6 J(w)

k7 J(w) + σ4
, J(w) =

∫ +∞

−∞
w(ξ)dξ. (15)

We consider the following limits at infinity:

u(−∞) = u f , u(+∞) = u0, w(±∞) = v(±∞) = 0, (16)

where u0 is initial concentration of the uninfected cells, and u f is their unknown final
concentration. Along with this final concentration, we determine the integrals J(w) and
J(v) =

∫ +∞
−∞ v(ξ)dξ, which represent an important characterization of infection waves.

In Equation (12), we separate variables and integrate it on the whole axis using the
limits (16):

c ln
u0

u f
= k2 J(v). (17)

Next, integrating the sum of Equations (12) and (13), we obtain the equality

c(u0 − u f ) = (k3S + σ1)J(w),

or, using (15):

cu0(1− X) =
(k3k6 + σ1k7)J(w) + σ1σ4

k7 J(w) + σ4
J(w), (18)

where X = u f /u0, 0 < X < 1. Finally, from Equation (14)

bJ(w) = σ3 J(v). (19)
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Thus, we obtain the system of three Equations (17)–(19) with respect to the variables
X = u f /u0, J(w), J(v). We discuss its solution below.

Without degradation of inflammatory cytokines.

We begin with a particular case, σ4 = 0, for which the analysis of system (17)–(19)
becomes simpler. Biologically, this condition means that there is no degradation of anti-
inflammatory cytokines. In this case, system (17)–(19) can be reduced to the equation:

ln X = Rv(X− 1), (20)

where the virus replication number Rv now has the following form:

Rv =
k2bu0

σ3(α + σ1)
, (21)

where α = k3k6/k7. This formula coincides with the R(2)
v defined in (11), where U0 = u0

and α = k3S0.
Equation (20) has a solution X ∈ (0, 1) (0 < u f < u0) for Rv > 1. In this case, the total

viral load J(v) can be found from (17). Let us also note that for an Rv that is sufficiently
large, and this is the case of virulent infections, solution X of Equation (20) is such that
X � 1. In this case, we obtain an approximate solution of this equation X = exp(−Rv).

We can now determine the viral load J(v) from (17):

J(v) = − c ln X
k2
≈ cRv

k2
. (22)

With degradation of inflammatory cytokines.

If σ4 6= 0, then system (17)–(19) can be reduced to the equation

ln X(ln X− q) = Rv(X− 1)(ln X− r) (23)

(Appendix C), where

q =
bk2σ1σ4

σ3c(k3k6 + k7σ1)
> 0, r =

bk2σ4

σ3ck7
> 0.

An important difference in this case in comparison with σ4 = 0 is that the coefficients of
this equation depend on the unknown wave speed c. We determine it in the next section.
As we see below, the wave speed depends on X (through the integral J(w)). Hence, we
obtain a system of two equations with respect to c and X. Let us also note that q = r = 0
if σ4 = 0, and Equation (23) is reduced to Equation (20). Some examples of the graphical
solution of Equation (23) are shown in Figure 1.

The existence of the solution of Equation (23) such that 0 < X < 1 is studied in the
following proposition.

Proposition 1. Equation (23) has a solution X ∈ (0, 1) if and only if R(1)
v > 1.

Proof. Set
f (X) = ln X(ln X− q) , g(X) = Rv(X− 1)(ln X− r).

The asymptotic behavior of these functions as X → 0 is different, f (X) ∼ (ln X)2 and
g(X) ∼ −Rv ln X. Therefore, f (X) > g(X) for an X that is sufficiently small. Furthermore,
f (1) = g(1) = 0, and f ′(1) = −q, g′(1) = −rRv. Thus, Equation (23) has a solution
0 < X < 1 if f ′(1) > g′(1), that is, q < rRv, or R(1)

v > 1 (U0 is replaced by u0).
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Suppose now that R(1)
v ≤ 1, that is, f ′(1) ≤ g′(1). If Equation (23) has a solution 0 < X < 1,

then f ′(X)− g′(X) = 0 for some X in this interval. Let us show that this equation does not
have solutions there. It can be written as follows:

2 ln X− q = Rv(X− 1) + RvX(ln X− r). (24)

Denote by h(X) the left-hand side of this equality and by z(X) its right-hand side. Then,
h(1) = −q ≤ −rRv = z(1),

h′(1) = 2 ≥ 2R(1)
v > 2Rv − rRv = z′(1).

We use here that 1 ≥ R(1)
v > Rv. Finally, h′′(X) < 0, z′′(X) > 0. Therefore, Equation (24)

does not have a solution for 0 < X < 1. The proposition is proved.

(a) (b) (c)

Figure 1. Graphical solutions of Equation (23) depending on the values of parameters: Black lines
are the left-hand side of Equation (23), and red lines represent the right-hand side of Equation (23).

(a) p = 0.8, q = 0.14, r = 1.56 (R(1)
v > 1), (b) p = 0.8, q = 1.25, r = 1.56 (R(1)

v = 1), (c) p = 0.8,

q = 1.96, r = 1.56 (R(1)
v < 1).

The total viral load in this case can be determined by Equation (17), where X = u f /u0
is the solution of the Equation (23).

We can now compare the two cases, with and without degradation of inflammatory
cytokines, from the point of view of infection progression, that is, u f < u0 and the existence
of solution X such that 0 < X < 1. In the case without degradation, such a solution
exists for the virus replication number Rv > 1. It contains in the denominator the positive
parameter α, which characterizes intensity of inflammation. In the case with degradation,
the virus replication number R(1)

v does not contain α in the denominator; that is, strangely
enough, it does not depend on inflammation, and R(1)

v > Rv. Therefore, inflammation acts
against infection progression, and its intensity is characterized by the single parameter α.

2.3. Wave Speed

In order to determine the wave speed, we use the linearization method widely em-
ployed for monostable reaction–diffusion systems. The idea of the method is to linearize
the system at +∞ and to find the minimal wave speed for which this linear system has
a monotonically decreasing solution. In general, this method gives an estimate of the
minimal speed from below. In some cases, it is proved that it coincides with the minimal
wave speed [24].

We approximate u by its value u0 at +∞. Therefore, we obtain the following linearized
system of equations for w and v:

cw′ + k2u0v−
(

k3k6

k7 J(w) + σ4
J(w) + σ1

)
w = 0, (25)

and
D1v′′ + cv′ + bw− σ3v = 0. (26)
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Note that J(w) is considered here as a given constant determined from (18) when the equa-
tion for X is solved. Let us look for the solution of this system in the form w(ξ) = p1e−λξ ,
v(ξ) = p2e−λξ . Substituting these expressions into (25), (26), we obtain the following
system:

−cλp1 + k2u0 p2 −
(

k3k6

k7 J(w) + σ4
J(w) + σ1

)
p1 = 0, (27)

D1λ2 p2 − cλp2 + bp1 − σ3 p2 = 0. (28)

In order to find the minimal wave speed, we should find the minimal value of c for
which this system of equations has a positive solution λ. Introducing an independent
parameter µ = λc and excluding p1 and p2 from the first equation, we obtain:

p2

p1
=

1
k2u0

(
(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)

k7 J(w) + σ4

)
,

and we inject it in the second one. We obtain:

(D1λ2 − cλ− σ3)
(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)

k7 J(w) + σ4
+ b = 0.

Since cλ = µ and λ2 = µ2/c2 by the definition of µ, we can write the previous equation
as follows:

c2 =
D1[(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)]µ2

(µ + σ3)[(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)]− bk2u0(k7 J(w) + σ4)
. (29)

Let us recall that we need to find the minimal value of c for which this equation has a
positive solution µ. After that, we determine λ = µ/c. Denote the right-hand side of
Equation (29) by F(µ). This is a positive function for µ > µ0, where µ0 is a positive solution
of the equation

(µ + σ3)[(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)] = bk2u0(k7 J(w) + σ4)

(zero of the denominator). Therefore, the minimal value of c equals the minimum of
the function F(µ) for µ > µ0. Denote this minimal value by c0. Thus, we obtain the
following equality:

c2 = min
µ>µ0

D1[(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)]µ2

(µ + σ3)[(µ + σ1)(k7 J(w) + σ4) + k3k6 J(w)]− bk2u0(k7 J(w) + σ4)
. (30)

Let us recall that J(w) in the right-hand side of this equality is determined from (18) and it
depends on c. Therefore, (30) represents an equation with respect to c. We consider below a
simpler particular case where the right-hand side is independent of c, and (30) provides the
minimal wave speed.

Simplification.

In the particular case σ4 = 0, the expression for the wave speed simplifies:

c2 = min
µ>µ0

D1(µ + σ1 + α)µ2

(µ + σ3)(µ + σ1 + α)− bk2u0
. (31)

Here α = k3k6/k7. Note that µ0 is a positive root of the denominator, which exists if Rv > 1.
This case is interesting not only because the formula is simpler but also because the

right-hand side in expression (31) does not depend on J(w). Therefore, the wave speed and
the viral load are decoupled from each other.
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Furthermore, all parameters of the model related to inflammation are included in
the parameter α. Hence, the influence of inflammation on the wave speed is determined
by this single parameter. This parameter adds to the parameter σ1, characterizing the
rate of infected cell death. Therefore, α can be interpreted as effective cell death due
to inflammation.

Denote by F(µ, α) the right-hand side of (31). Then, for any fixed µ, the derivative F′α
is negative. Therefore, the minimum of this function with respect to µ decreases with an
increase in α. Hence, the wave speed also decreases (Figure 2a).

(a) (b)

Figure 2. The dependence of (a) the wave speed and (b) the total viral load on parameter α for
σ4 = 0 (i.e., β = 0); values of other parameters are listed in Appendix A. The maximal wave speed
c|α=0 = 0.003768 cm/h and the maximal total viral load J(V)|α=0 = 7, 513, 498 copy/cm2.

3. Dependence on the Inflammation Parameters

In this section, we consider the dependence of the wave speed and total viral load
on parameters of inflammation in numerical simulations and the analytical estimations
obtained in the previous sections.

For the numerical simulations, we consider the system of Equations (1)–(4) on the
domain [0, L]× [0, T], with the boundary conditions

x = 0, L :
∂V
∂x

= 0, (32)

and initial conditions:

U(x, 0) = u0, W(x, 0) = 0, S(0) = S0 = 0, (33)

V(x, 0) = v0, 0 ≤ x ≤ x0, V(x, 0) = 0, x0 < x ≤ L. (34)

The algorithm is based on the explicit first-order Euler scheme timestepping procedure
with P1 finite element spatial approximation, where mesh size is equal to L/104. We use
the free software FreeFEM [25] that offers a fast interpolation algorithm and a language for
the manipulation of data on multiple meshes.

Spatial distributions of the concentrations of uninfected cells U, infected cells W, and
virus V at consecutive moments of time (Figure 3) correspond to wave propagation. The
wave speed 0.16 cm/h and the total viral load J(V) is 3.87× 107 copy/cm2 are in agreement
with the analytical results obtained with Formulas (30) and (22). The values of parameters
are indicated in the figure caption.

Next, we investigate the dependence of the total viral load and the wave speed on
the parameters of inflammation. In the simplified case, where σ4 = 0, the wave speed and,
correspondingly, the total viral load depend only on the parameter α = k3k6/k7. These
dependencies are presented in Figure 2. Both the wave speed and the total viral load
decrease with an increase in the parameter α. For α = 0, the wave speed and the total viral
load are the same as in the system of three equations without inflammation considered
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in [19] (UIV model); these values provide upper bounds for the wave speed and total viral
load in the case with inflammation. For α > (k2bu0/σ3 − σ1), the condition Rv > 1 is not
satisfied; thus, the wave does not exist for these values. For the considered parameters, the
wave exists for α < 0.048.

Figure 3. Concentrations of uninfected cells U(t, x), infected cells W(x, t), and virus V(x, t) as
a function of x in consecutive moments of time t = 10, 40, 70, 100, 130. Values of parameters:
k2 = 10−5 mL (h· copy)−1, b = 2 × 107 copy (h · cell)−1, σ3 = 1 h−1, D1 = 0.001 cm2h−1,
σ1 = 0.1 h−1, k3 = 0.2 cm2(h · pg)−1, k6 = 6.10−3 pg(h · cell)−1, k7 = 6.5.1012 cm2(h · cell)−1,
σ4 = 1.188 h−1, L = 10 cm, v0 = 100 (copy/mL), u0 = 1 (cell/mL).

Next, consider the case σ4 6= 0. We rewrite expressions for coefficients q and r, and the
function under minimization in (30) as follows:

q =
bk2σ1β

σ3c(α + σ1)
, r =

bk2β

σ3c
, (35)

F(µ) =
D1[(µ + σ1)(J(w) + β) + αJ(w)]µ2

(µ + σ3)[(µ + σ1)(J(w) + β) + αJ(w)]− bk2u0(J(w) + β)
, (36)

where α = k3k6/k7 as before and β = σ4/k7. Thus, the total viral load and the wave speed
depend on two parameters α and β, characterizing inflammation.

For the fixed β, the wave speed and the total viral load both inversely depend on
the parameter α, i.e., the inflammation downregulates the spreading of viral infection
(Figure 4b). If β 6= 0, however, the wave speed is a convex function of parameter α, and in
this case, the wave exists for larger values of α (for α < 0.2 in Figure 4b). The values of the
wave speed and the total viral load are bounded from above with their values in the UIV
model.

In Figure 4c,d, the wave speed and the total viral load are considered as functions of
the parameter β. Here, the cases with α = 0 and α 6= 0 are qualitatively different. For α = 0,
the wave speed and the total viral load do not depend on the parameter β, as shown in
Figure 4c. The values of the wave speed and the total viral load in this case are the same
as in the UIV model. If α 6= 0, then the wave speed and the total viral load depend on β.
These dependencies are also bounded from above with corresponding values from UIV
model (Figure 4d). In Figure 4d, there is a horizontal asymptote for both the wave speed
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and the total viral load. For a larger β, the wave speed and the total viral load tend to the
values in the UIV model [19].

The results described above are qualitatively similar for different values of parameters
α and β; thus, these qualitative conclusions remain valid for the approximate evaluation of
the value of parameters.

(a) (b)

(c) (d)

Figure 4. The dependence of the wave speed (blue) and the total viral load (red) as a function of α for
(a) β = 0, (b) β = 0.1: The same as a function of β for (c) α = 0, (d) α = 0.1. In figures (a–d) σ4 6= 0.
Values of other parameters are listed in Appendix A. The numerical results for the wave speed are
shown with blues dots, and the numerical results for the total viral load are shown with red triangles.
The difference between the numerical calculations and analytical estimations are less that 1%.

4. Discussion

Viral infection progresses in cell culture or tissue as a reaction–diffusion wave due to
virus replication inside infected cells and its transport between the cells [18,19]. This process
is characterized by three main parameters: virus replication number, wave speed, and viral
load. Infection develops if the virus replication number is larger than 1; otherwise, the virus
concentration remains close to the initial value. The wave speed correlates with the virus
virulence. Indeed, virus virulence is related to the size of virus plaques in the conventional
multiplicity of virus assays [26], but the latter is determined by the wave speed. Finally,
viral load in the upper respiratory tract determines infectivity of respiratory viral infections,
that is, the rate of their transmission from infected to uninfected individuals [19].

The basic model of infection spreading represents a reaction–diffusion system of
equations for the concentrations of uninfected cells, infected cells, and virus [19]. It admits
an analytical determination of these three characteristics of infection progression. This
analytical representation of the virus replication number, wave speed, and viral load
allows us to determine how they depend on parameters of the model. Furthermore,
the determination of the parameters of the model from the experimental data permit
the comparison of the virulence and infectivity for different variants of the SARS-CoV-2
infection.

Inflammation triggered by viral infection has multiple roles. Inflammatory cytokines
produced by infected cells can initiate their death by different mechanisms of programmed
cell death, and they also play the role of signaling molecules, attracting and activating
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immune cells. Excessive production of inflammatory cytokines can initiate cytokine storm
and inflammatory cell death.

In this work, we study the influence of inflammation on the three characteristics of
infection progression. Parameter α, specifying the intensity of inflammation, depends on
the rate of production of inflammatory cytokines and their depletion, as well as on the rate
of infected cell death stimulated by inflammatory cytokines. Parameter β depends on the
rate of cytokine degradation and their depletion due to interaction with infected cells. It
directly depends on the rate of cytokine removal from the infection area, and thus, it can
be interpreted as the clearance of cytokines by blood. Results from Section 3 show that
an increase in the intensity of inflammation (parameter α) reduces both the severity and
infectivity of the disease, while the effective clearance, i.e., normal blood flow (parameter
β) increases them up to the values in the inflammation absence case. The main conclusion
of this work is that the wave speed and the viral load decrease with an increase in α. In the
other words, an increase in the intensity of inflammation downregulates virus virulence
and infectivity.

If the intensity of inflammation exceeds some critical value, the virus replication
number becomes less than 1, and as a consequence, infection does not develop. The
corresponding wave speed and virus load equal 0.

The results on the dependence of the severity and infectivity on parameter β, i.e., the
increase in characteristics of the viral infection propagation with more effective blood flow,
raise a number of questions for further investigations. For example, the role of swelling,
which is one of five manifestations of inflammation, in the obstruction of blood flow in
the infection region is of interest. The physiological and clinical experience would seem
to leave no doubt that the blood obstruction is a pathological state. However, an analysis
of the model considered in this work shows that the most effective virus elimination
can be achieved for total blood obstruction, or in other words, blood obstruction has a
positive effect on the relief of the virus infection. On the other hand, blood flow brings
oxygen necessary for tissue survival, immune cells and various molecules. Therefore, the
interesting question is whether there exists a level and duration of blood flow reduction for
which the positive effect on elimination of infection prevails over its negative effect.

In this first work devoted to the analysis of infection progression with inflammation,
we deliberately simplified the model in order to obtain explicit analytical results with clear
biological interpretation. Most importantly, we have not taken into account the influence of
the immune response on viral infection [21]. The influence of inflammation in this case will
be studied in forthcoming works.
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Appendix A. Values of Parameters

We consider the case k1 = 0, i.e., the process of division of uninfected cells is neglected,
as well as their apoptosis, since these processes are slow in the time scale of infection
development. The values of other parameters were partly taken from previous works.
As such, the infection rate of uninfected cells k2 equals 7× 10−8 mL(day · copy)−1 [8] or
0.29× 10−8 mL(h · copy)−1 in the model units. The values of the coefficients of the death
rate of infected cells is σ1 = 0.01 h−1, virus diffusion coefficient D1 = 0.001 cm2h−1, the
rate of virus production by infected cells b = 2 · 107 copy(h · cell)−1, and the rate of virus
degradation σ3 = 1 h−1 are taken from [19] for the Sars-CoV-2 Delta strain.
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The rate of production of inflammatory cytokines by infected cells is k6 = 6.44 ×
10−3 pg(day · cell)−1 or 0.268× 10−3 pg(h · cell)−1 in model units. We use the cytokine secre-
tion rate from [27]. As a degradation rate of inflammatory cytokines, we take σ4 = 1.188 day−1

or 0.0495 h−1. The degradation rate for Il-12 is taken from [28,29].
For the cytokine-induced cell death k3 = 0.2 mL(day ·pg)−1 or 0.0083/L cm2(h ·pg)−1,

we use the value estimated in [30]. We also have different estimates of this parame-
ter: k3 = 0.00083 mL(h · ng)−1, for three cytokines influence TNF-α + IFN-γ + Il1β and
k3 = 0.03 mL/(h · ng)−1, for TNF-α influences only [31]. The value of parameter k3 has
large variation in the literature. This is also true for the consumption rate of inflammatory
cytokines k7 (for example, the rate of cytokine binding to the receptors and endocytosis is
1− 5 molecule · h−1 [32], the rate of complex Il-2*IL-R endocytosis is (15 min)−1 [33], and
the rate of Il-2 consumption by T cells is 1.1 · 10−3s−1 [33].

In fact, the influence of inflammation is determined by two cumulative parameters,
α = k3k6/k7 and β = σ4/k7. This allows reliable estimation of the wave speed c and
total viral load J(V) (Figure A1) in spite of the uncertainty in the values of individual
parameters.

Figure A1. Dependence of the wave speed (top line) and the total viral load (bottom line) on the
inflammation parameters α and β in various intervals of their changing. From left to right: α is in
[0, 100], β is in [0, 200]; α is in [0, 5.8], β is in [0, 7.6]; α is in [0, 1.0], β is in [0, 1.0]; α is in [0, 0.1], and β is
in [0, 0.1].

The interval length is L = 10 cm. The initial value for the concentration of uninfected
cells U0 = 1 cell/mL, for virus concentration V0 = 100 copy/mL for 0 < x < 1 cm, and
V0 = 0 for 1 cm < x < 10 cm.

The units of variables in Equations (1)–(5) are as follows:

[U] =
cell
ml

, [V] =
copy
ml

, [W] =
cell
ml

, [S] =
pg

cm2 , [t] = h, [x] = cm. (A1)

The units of parameters in Equations (1)–(5):

[k1] =
1
h

, [k2] =
ml

copy · h , [k3] =
cm2

pg · h , [σ1] =
1
h

, D1 =
cm2

h
, [b] =

copy
cell · h , (A2)

σ3 =
1
h

, [k6] =
pg

cell · h , [k7] =
cm2

cell · h , [σ4] =
1
h

. (A3)

Appendix B. Spatial Discretization

Let Ω be a convex, plane domain, and Th be a regular, quasi-uniform triangulation of Ω
with triangles of maximum size h < 1. Setting Wh = {vh ∈ C0(Ω); vh|T ∈ P1(T), ∀T ∈ Th}
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as finite-dimensional, where P1 is the set of all polynomials of degree ≤ 1 with real
coefficients, and denoting by 〈·, ·〉the standard L2 inner product on Ω, we consider the
weak formulation of the system: find Vh, Uh, Wh, Sh ∈ Wh such that ∀φV

h , φU
h , φW

h ∈ Wh,
we have

〈∂tVh − D1
∂2Vh
∂x2 − bWh + σ3Vh; φV

h 〉 = 0,

〈∂tUh + k2UhVh; φU
h 〉 = 0, (A4)

〈∂tWh − k2UhVh + k3ShWh; φW
h 〉 = 0,

Sh(t) =
k6

k7 J(Wh) + σ4
J(Wh),

which, after, gives the integration by parts:

〈∂tVh − bWh + σ3Vh; φV
h 〉+ 〈D1

∂Vh
∂x

;
∂φV

h
∂x
〉 = 0,

〈∂tUh + k2UhVh; φU
h 〉 = 0, (A5)

〈∂tWh − k2UhVh + k3ShWh + σ1Wh; φW
h 〉 = 0,

Sh(t) =
k6

k7 J(Wh) + σ4
J(Wh).

The numerical method is based on the explicit first-order Euler scheme. Denote by
(Vn+1

h , Wn+1
h , Un+1

h , Sn+1
h ) and (Vn

h , Wn
h , Un

h , Sn
h) the approximate value at time t = tn+1 and

t = tn, respectively, and by δt = 0.01 the time step size. Then, owing the system (A.5), the
unknown fields at time t = tn+1 are determined as the solution of the following system:

〈Vn+1
h + σ3δtVn+1

h ; φV
h 〉+ 〈D1δt

∂Vh
∂x

;
∂φV

h
∂x
〉 = 〈Vn

h − bδtWh; φV
h 〉, (A6)

〈Wn+1
h + k2δtUn+1

h Vn+1
h ; φU

h 〉 = 〈U
n
h ; φU

h 〉; (A7)

〈Wn+1
h + k3Sn+1

h Wn+1
h + σ1δtWn+1

h ; φW
h 〉 = 〈W

n
h + k2δtUn+1

h Vn+1
h ; φW

h 〉 (A8)

Sn+1
h (t) =

k6

k7 J(Wn+1
h ) + σ4

J(Wn+1
h ). (A9)

Appendix C. Derivation of Equation (23)

If σ4 6= 0, then Equation (18) is quadratic with respect to J(w):

J2(w)(k3k6 + k7σ1) + J(w)(σ1σ4 − ck7u0(1− X))− cσ4u0(1− X) = 0. (A10)

The positive solution of this equation is defined with:

J(w) =
1

2A

(
−(σ1σ4 − ck7u0(1− X)) +

√
D(c, X)

)
, (A11)

where
D(c, X) = (σ1σ4 − ck7u0(1− X))2 + 4Acσ4u0(1− X), (A12)

A = k3k6 + k7σ1 > 0. (A13)
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If we substitute this into the Equation (17) with respect to (19), we get the equation for X:

−Bc ln X = −(σ1σ4 − ck7u0(1− X)) +
√

D(c, X), B =
2Aσ3

bk2
.

Moving the first term from the right-hand side of this equation to the left, and taking the
second power of the resulting equation, we obtain:

B2c2 ln2 X− 2Bc ln X(σ1σ4 − ck7u0(1− X)) = 4Acσ4u0(1− X).

Dividing all of the terms by c and 4A, we obtain:(
σ3

bk2

)2
Ac ln2 X− σ3

bk2
ln X(σ1σ4 − ck7u0(1− X)) = σ4u0(1− X).

Divide all of the terms by (σ1σ3σ4)/(bk2) and group the terms in the following way:

ln X
(

σ3 Ac
bk2σ1σ4

ln X− 1
)
= (1− X)

(
u0bk2

σ1σ3
− ck7u0

σ1σ4
ln X

)
.

We finally obtain the following equation

ln X(ln X− q) = p(X− 1)(ln X− r), (A14)

where
p =

bk2k7u0

σ3 A
> 0, q =

bk2σ1σ4

σ3 Ac
> 0, r =

bk2σ4

σ3ck7
> 0. (A15)
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