
Citation: Mataifa, H.; Krishnamurthy,

S.; Kriger, C. Comparative Analysis

of the Particle Swarm Optimization

and Primal-Dual Interior-Point

Algorithms for Transmission System

Volt/VAR Optimization in

Rectangular Voltage Coordinates.

Mathematics 2023, 11, 4093.

https://doi.org/10.3390/

math11194093

Academic Editors: Alessandro

Niccolai and Ioannis G. Tsoulos

Received: 18 July 2023

Revised: 20 September 2023

Accepted: 23 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Comparative Analysis of the Particle Swarm Optimization and
Primal-Dual Interior-Point Algorithms for Transmission System
Volt/VAR Optimization in Rectangular Voltage Coordinates
Haltor Mataifa *, Senthil Krishnamurthy and Carl Kriger

Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology,
Cape Town 7535, South Africa; krishnamurthys@cput.ac.za (S.K.); krigerc@cput.ac.za (C.K.)
* Correspondence: mataifah@cput.ac.za; Tel.: +27-78-562-7703

Abstract: Optimal power flow (OPF) is one of the most widely studied problems in the field of
operations research, as it applies to the optimal and efficient operation of the electric power system.
Both the problem formulation and solution techniques have attracted significant research interest
over the decades. A wide range of OPF problems have been formulated to cater for the various
operational objectives of the power system and are mainly expressed either in polar or rectangular
voltage coordinates. Many different solution techniques falling into the two main categories of
classical/deterministic optimization and heuristic/non-deterministic optimization techniques have
been explored in the literature. This study considers the Volt/VAR optimization (VVO) variant of
the OPF problem formulated in rectangular voltage coordinates, which is something of a departure
from the majority of the studies, which tend to use the polar coordinate formulation. The heuristic
particle swarm optimization (PSO) and the classical primal-dual interior-point method (PDIPM) are
applied to the solution of the VVO problem and a comparative analysis of the relative performance
of the two algorithms for this problem is presented. Four case studies based on the 6-bus, IEEE
14-bus, 30-bus, and 118-bus test systems are presented. The comparative performance analysis
reveals that the two algorithms have complementary strengths, when evaluated on the basis of
the solution quality and computational efficiency. Particularly, the PSO algorithm achieves greater
power loss minimization, whereas the PDIPM exhibits greater speed of convergence (and, thus,
better computational efficiency) relative to the PSO algorithm, particularly for higher-dimensional
problems. An additional distinguishing characteristic of the proposed solution is that it incorporates
the Newton–Raphson load flow computation, also formulated in rectangular voltage coordinates,
which adds to the efficiency and effectiveness of the presented solution method.

Keywords: Volt/VAR optimization; reactive power/voltage control; classical/numerical optimization;
heuristic methods; particle swarm optimization; primal-dual interior-point method; optimal power
flow; Newton–Raphson load flow; rectangular voltage coordinates

MSC: 78M32; 78M50

1. Introduction

The electric power supply system serves a critical functionality in modern society.
Its primary operational objective is to be able to match the generated power to the load
demand at all times. Secure, reliable, economic, and efficient operation of the power system
has become one of the pillars of sustainable economic development and social welfare.
The primary means used by the system operator to ensure such optimal operation of the
power system is referred to as optimal power flow (OPF). OPF developed as an extension
of the conventional economic dispatch problem in the early 1960s [1,2]. Over the decades,
it has evolved into a variety of network optimization problems employed in all aspects of
planning, design, and efficient operation of the entire electric power system. Surveys of
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OPF formulations and solution techniques have been presented by several authors over the
years, for example [3–7]. The focus of the work presented in [3] was on the comparative
analysis of the genetic algorithm (GA) and particle swarm optimization (PSO) as they
are applied to the OPF problem, with particular attention being paid to the accuracy and
computational burden of the two algorithms. The authors of [4] looked at the application
of operations research to a number of OPF problems, including expansion planning, unit
commitment, and network resiliency. The authors’ main interest was in suggesting how the
operations research community could contribute to the advancement of OPF techniques.
Reference [5] discussed some of the most recent optimization strategies used to solve OPF
problems, falling into the categories of evolutionary, physics-inspired, and human-inspired
techniques. The techniques discussed included the GA, evolutionary programming, PSO,
differential evolution, the artificial bee colony, the gravitational search algorithm, and the
wolf optimization algorithm. The authors of [6] conducted a survey of various classical
and heuristic optimization methods that have been applied to OPF over the decades, and
presented a critical comparative analysis of the key characteristics of the two classes of
optimization methods. Reference [7] presented a review of literature in probabilistic OPF,
which seeks to address the stochasticity introduced into electricity networks by variable
renewable generation and other distributed energy resources. The main aspects to be
considered when it comes to OPF are the problem formulation as well as the solution
techniques applied to solve the problem. One of the most practically useful formulations of
the OPF problem is the Volt/VAR optimization (VVO) problem, which is mainly concerned
with the optimal dispatch of reactive power sources and voltage-regulating devices, and
has as the main objective to minimize system losses and enhance the voltage profile of the
network. This is important not only for maintaining the security and reliability but also for
enhancing the economic operation of the power system [6].

A variety of solution techniques have been applied to the solution of the VVO prob-
lem. These fall mainly into the categories of classical/deterministic and heuristic/non-
deterministic optimization methods. A bi-level mixed-integer linear programming algo-
rithm has been applied to distribution-level Volt/VAR optimization in [8], with the aim
of minimizing voltage deviations. Reference [9] presented a distributed Volt/VAR control
algorithm that combines the alternating direction method of multipliers and the column-
and-constraint generation algorithm for distribution system power loss reduction and
voltage deviation minimization under uncertainty. Heuristic methods have increasingly
been attracting more attention among researchers compared with the classical methods. A
cooperative particle swarm optimization algorithm (CPSO) has been presented in [10] for
Volt/VAR optimization of smart distribution systems. A parallel particle swarm optimiza-
tion (PSO) algorithm has been proposed in [11] to solve a real-time Volt/VAR optimization
algorithm in a large distribution network. Reference [12] combines the PSO and the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) to solve a two-stage multi-objective
Volt/VAR optimization coordination problem for an electric distribution network. The
NSGA algorithm is also applied in [13] for solving the combined optimal active and reac-
tive power dispatch problem. In [14], an adaptive multi-objective Volt/VAR optimization
algorithm based on the artificial immune algorithm has been presented, considering active
power loss minimization, voltage stability maximization, and voltage level maintenance.
Evolutionary algorithms have been applied in [15] to a multi-objective Volt/VAR opti-
mization problem for a distribution network. Reference [16] considers deep reinforcement
learning-assisted co-optimization of Volt/VAR services in distribution networks. The au-
thors of [17] applied the biogeography-based optimization (BBO) algorithm to the solution
of a multi-objective OPF, including optimal reactive power dispatch. BBO is a biology-
inspired, population-based heuristic optimization algorithm in which solutions are treated
as habitats and models of biogeography are applied to determine the best available solu-
tion. The grey wolf optimizer (GWO) has been applied in [18] to solve the optimal reactive
power dispatch problem The GWO algorithm mimics the leadership hierarchy and hunting



Mathematics 2023, 11, 4093 3 of 29

behavior of grey wolves and tries to apply the concept of group hierarchy to classify the
fitness of a solution to an optimization problem.

Among the performance characteristics of optimization algorithms, the ability to find
the best available solution (i.e., solution quality) as quickly as possible (i.e., computa-
tional efficiency) ranks very highly [19]. For population-based metaheuristic algorithms,
such as particle swarm optimization, the genetic algorithm, evolutionary programming,
biogeography-based optimization, and grey wolf optimization that have been reviewed
above, parameter selection and complexity of algorithm dynamics play a key role in their
effectiveness and applicability to different classes of problems. The PSO algorithm has been
considered in this study for its desirable properties of having very few parameters to set
and being simple to implement, requiring only basic arithmetic operations, and yet able to
generate rich dynamic behavior of the collective swarm that proves to be very effective in
searching for a solution in the optimization search space [6].

The main focus of this article is to present a comparative analysis of the particle swarm
optimization (PSO) algorithm and the primal-dual interior-point method (PDIPM), both
applied to the solution of the Volt/VAR optimization problem. A detailed design and
implementation of the PSO-based VVO algorithm is presented in this article, whereas
the detailed design and implementation of the PDIPM-based VVO algorithm has been
presented by the authors in [20]. After presenting the design and implementation of the
PSO-VVO algorithm as well as the detailed analysis of four case studies (the same set of
case studies considered in [20]), the article then presents the comparative performance
analysis of the two algorithms. The Volt/VAR optimization problem is formulated in
the rectangular voltage coordinates and incorporates the Newton–Raphson load flow
computation, also formulated in rectangular coordinates, as presented in [20]. The reason
for the choice of the rectangular coordinate formulation over the polar formulation is the
relative computational advantage of the former. For the Volt/VAR optimization problem,
the rectangular formulation implies that the objective and constraint functions are quadratic
and the Hessian matrices are constant. This is especially advantageous for the PDIPM
algorithm, which is solved using the Newton method. Further details are provided in
the companion article [20]. The comparative performance analysis of the two algorithms
presented in this article reveals key insights into the important performance characteristics
of the two approaches to optimization (i.e., heuristic vs. classical approaches) and may
serve as a useful aid in the development and design of advanced optimization methods
that combine their synergistic properties to devise more efficient algorithm.

The main contributions of this article are outlined as follows:

• Detailed development and implementation of the PSO-based Volt/VAR optimization
algorithm, showing how the generic PSO algorithm is adapted for application to the
VVO problem formulated in rectangular coordinates;

• Incorporation of the Newton–Raphson load flow computation (also formulated in
rectangular coordinates) into the PSO-VVO algorithm, which gives the algorithm
the desirable characteristic of being feasible with respect to the active and reactive
power flow constraints at every iteration of the PSO-VVO algorithm. The detailed
implementation of the Newton–Raphson load flow computation has been presented
by the authors in [20];

• A comprehensive comparative performance analysis of the PSO-VVO and the PDIPM-
VVO algorithms, making use of four case studies of sizes ranging from the 6-bus to
the 118-bus test systems. Each case study has been thoroughly discussed in terms of
computational characteristics (i.e., number of iterations needed for convergence and
execution time) and solution quality (i.e., power loss minimization and voltage profile
improvement achieved);

• An analysis of the impact of the swarm size on the solution quality of the
PSO-VVO algorithm.

The rest of the article is organized as follows. Section 2 presents the problem formula-
tion of the Volt/VAR optimization problem. Section 3 provides background information
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about the PSO algorithm, as well as the design and implementation aspects of the standard
PSO algorithm. The application of the PSO algorithm to the solution of the VVO problem
is then presented in Section 4. Section 5 presents the simulation case studies, and the
comparative analysis of the PSO algorithm with the PDIPM is performed in Section 6.
Section 7 concludes the article with a summary of the main results of the study.

2. Formulation of the Volt/VAR Optimization Problem in Rectangular Coordinates

The Volt/VAR optimization problem can be classified as a static constrained nonlinear
optimization problem. It is static in the sense that the objective function and decision
variables do not vary with respect to time over the duration of the optimization process [21].
And, the optimization is subject to a combination of linear and nonlinear constraints. A
mathematical definition of the optimization problem consists in specifying the objectives
of optimization, the constraints to be satisfied in the course of the optimization, and the
decision or control variables used in the optimization process. Table 1 lists the components
of the VVO problem formulation, the key characteristics, as well as typical choices of
these components.

Table 1. Main components of the Volt/VAR optimization problem formulation.

Optimization Problem Component Key Characteristics Typical Choices

Objectives of optimization
– Linear/nonlinear;
– Convex/nonconvex;
– Single-/multi-objective.

– Power loss minimization;
– Voltage stability maximization;
– Control effort minimization;
– Network voltage profile improvement.

Constraints of optimization – Linear/nonlinear;
– Convex/nonconvex.

– Functional (e.g., power flow equations);
– Operational (e.g., branch flow limits);
– Control variable lower/upper bounds

(e.g., generator voltage magnitudes).

Decision/control variables – Continuous/discrete

– Generator terminal voltages;
– Under-load tap-changer positions;
– Shunt reactive power sources;
– Flexible AC Transmission System devices.

In this study, the (real) power loss minimization constitutes the objective of optimiza-
tion. The impact of the Volt/VAR optimization on the voltage profile of the network is also
evaluated. Constraints of optimization include the functional and operational constraints,
as listed in Table 1. Generator terminal voltages are taken to be the decision variables.

2.1. General Definitions

In this sub-section, a few expressions that facilitate the statement of the VVO problem
in the following sub-section are defined. As a complex quantity, voltage Vk at any given bus
k can be represented either in rectangular or polar form. Since the problem formulation in
this study is based on the rectangular representation of the system voltages, the rectangular
form is of particular interest and can be stated as follows:

Vk = ek + j fk, ∀k ∈ N (1)

where N represents the total number of buses in the system; ek and fk are the real and
imaginary components of the bus voltage, respectively. In polar form, the magnitude of the

voltage and the corresponding phase angle are given by |Vk| =
√

e2
k + f 2

k and tan−1 ( fk
/

ek ),
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respectively. The active and reactive power injections at bus k are expressed in rectangular
coordinates according to Equations (2) and (3), respectively.

Pk = Gkk

(
e2

k + f 2
k

)
+ ek ∑

j∈Lk

Gkjej − Bkj f j + fk ∑
j∈Lk

Gkj f j + Bkjej, (2)

Qk = −Bkk

(
e2

k + f 2
k

)
+ fk ∑

j∈Lk

Gkjej − Bkj f j − ek ∑
j∈Lk

Gkj f j + Bkjej (3)

where Lk represents the set of branches directly connected to bus k; Gkj and Bkj repre-
sent the real and imaginary components of the kjth element of the bus admittance matrix
(i.e., Ykj = Gkj + jBkj).

The real power transmission losses, which are considered to be the objective function
in this study, can be expressed in rectangular coordinates as a summation of the losses in
each of the branches of the network, according to Equation (4) [22]:

PLoss = ∑
(k,j)∈L

Gkj

[(
ek − ej

)2
+
(

fk − f j
)2
]
. (4)

2.2. Statement of the Volt/VAR Optimization Problem

Making use of the definitions presented in the preceding sub-section, the statement of
the Volt/VAR optimization problem formulated in rectangular coordinates can be expressed
as [20]

minPLoss(e, f ) (5)

subject to
Pk(e, f ) + Pdk − Pgk = 0, (6)

Qk(e, f ) + Qdk − qk −Qgk = 0, (7)

Y2
kj

[(
ek − ej

)2
+
(

fk − f j
)2
]
≤
(

Imax
kj

)2
, (8)

(
Vmin

k

)2
≤ e2

k + f 2
k ≤ (Vmax

k )2, (9)

Qmin
gk ≤ Qgk ≤ Qmax

gk , (10)

qmin
k ≤ qk ≤ qmax

k . (11)

In the above formulation, Pgk/Pdk and Qgk/Qdk represent the active and reactive power
generation/demand at bus k, respectively, Ikj denotes the branch current magnitude in
branch kj, qk represents the shunt reactive power compensation at bus k, and Vk denotes the
magnitude of the bus voltage at bus k. The objective function is represented by Equation (5);
Equations (6) and (7) constitute the active and reactive power flow balance equations;
branch flow limits are expressed by Equation (8); and Equations (9)–(11) constitute the
boundary constraints on the bus voltages, generator reactive power outputs, and shunt
reactive power injections at the buses, respectively. The following section introduces the
particle swarm optimization (PSO) algorithm, which has been applied to the solution of the
Volt/VAR optimization problem in this study.

3. Particle Swarm Optimization (PSO) Algorithm
3.1. Historical Development of the PSO Algorithm

Particle swarm optimization (PSO) belongs to the class of heuristic optimization
techniques collectively referred to as Swarm Intelligence, which constitutes a stream of
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Artificial Intelligence (AI) research that was established in the early 1990s; it is based
on the study of the swarm behavior of natural creatures, in terms of how the decision
making of the individual is influenced by both the individual’s own experience and the
experiences of community members. PSO was conceptualized and developed by J. Kennedy,
a social psychologist, and R. Eberhart, an Electrical Engineer [23]. The main idea behind
their conceptualization was to produce computational intelligence by exploiting simple
analogues of social interaction among conspeciates and was inspired by the works of
Reynolds [24] and Heppner and Grenander [25]. Reynolds, as well as Heppner and
Grenander, had studied the dynamics of bird social behavior, out of which came the
conjecture that the aesthetics and synchrony of flocking behavior exhibited by birds was
a function of the birds’ efforts to maintain an optimal inter-individual distance among
neighboring members of the flock.

A distinctive feature of PSO is the idea of flying candidate solutions through hy-
perspace in search of better solutions. The algorithm is characterized by simplicity and
robustness. Its implementation requires only a few lines of code, making use of only primi-
tive mathematical operators with modest memory requirements and only few parameters
that need to be specified for any given problem. Out of this “natural simplicity” that is
based on emulating nature emerges a powerful algorithm that has proved to be effective for
a wide range of applications, notably the training of artificial neural network weights [26].

Since its conceptualization in the early 1990s and eventual implementation in the
subsequent years, the PSO has undergone a number of developments:

• The introduction of new parameters (e.g., inertia weight and constriction factor) to
improve the algorithm’s convergence characteristics;

• Modification of the basic algorithm to tailor it to different problem types (e.g., cooperative PSO);
• Hybridization with other heuristic optimization techniques to enhance the effective-

ness and efficiency of the algorithm.

Figure 1 provides a summary of these notable developments. Some of them are further
discussed in subsequent sections in this article.

3.2. Principle of Operation and Basic Formulation of the PSO Algorithm

PSO can be characterized as a stochastic multi-agent parallel search algorithm in which
each of a swarm of particles represents a candidate solution to an optimization problem.
A particle can be thought of as an independent intelligent agent that “flies” through a
multi-dimensional problem space in search of the optimal solution to the optimization
problem, based on its own past flying experience and that of the rest of the swarm [26]. Each
particle i in the swarm is comprises three n-dimensional vectors (n being the dimensionality
of the search space, Rn), which at time k can be denoted as the current position, Xk

i , the
previous best position, Pk

best,i, and the velocity, Vk
i [27].

The current position of each particle, Xk
i , constitutes the decision vector, which at

each iteration is evaluated for “fitness” by means of the objective function of the opti-
mization problem. The particle velocity, Vk

i , embodies the composite flying experience of
the individual particle and of the rest of the swarm and is used to update the individual
particle position in an effort to advance it to a “better” position, as judged by it attaining an
improved fitness evaluation. Each particle keeps track of the position corresponding to the
best fitness value it has attained up to the latest iteration, denoted as Pk

best,i, which is then
updated to the current position whenever the current position results in a better fitness
value than the previous best value. As the iterations progress, the swarm as a whole, much
like a flock of birds foraging for food, is likely to move towards the optimal point in the
search space. The social interaction and information sharing among the swarm’s particles
is a very important characteristic of the PSO algorithm. It is the collective behavior of the
swarm that gives the algorithm its optimum searching capability [23].
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The core component of the PSO algorithm is the iterative velocity update, which
adjusts each particle’s position so as to drive the entire swarm towards the optimal solution
to the optimization problem. The standard algorithm is presented in the flowchart in
Figure 2 [27].

→
V

k+1

i =
→
V

k

i +
→
U(0, ϕ1)⊗

(→
P

k

best,i −
→
X

k

i

)
+
→
U(0, ]ϕ2)⊗

(→
G

k

best −
→
X

k

i

)
→
X

k+1

i =
→
X

k

i +
→
V

k+1

i

(12)

In Equation (12),
→
U(0, ϕ1) represents a vector of random numbers uniformly dis-

tributed in [0, ϕ1] generated for each particle at each iteration. The symbol ⊗ denotes
component-wise multiplication. The parameters ϕ1 and ]ϕ2 are commonly referred to as
acceleration coefficients. Their magnitudes determine the relative influence of the cognitive
and social components on the flight of the particle.

A distinctive feature of the standard PSO algorithm (particularly when compared with
other heuristic optimization techniques) is that it has relatively few parameters that need to
be set for a given problem. The main PSO parameters are outlined and briefly discussed
in Table 2.
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Figure 2. Flowchart of the standard PSO algorithm.

Table 2. Key parameters of the PSO algorithm.

Parameter Type Description

Swarm size

Number of particles or population size of the particle swarm;
A large swarm size leads to a wider search space (desirable) but also implies a
higher computational cost (drawback);
Swarm size in the range (20–60) has been found to suffice for many
applications [27,28].
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Table 2. Cont.

Parameter Type Description

Number of iterations of the algorithm

A sufficiently large number improves the likelihood of finding the best
available solution;
Too large a number may lead to a prohibitive computational cost;
The type of problem may impact the decision regarding the suitable maximum
number of iterations.

Velocity update

Comprises three components: the inertial (
→
V

k

i ), cognitive

(
→
U(0, ϕ1)⊗

(→
P

k

best,i −
→
X

k

i

)
), and social (

→
U(0, ϕ2)⊗

(→
G

k

best −
→
X

k

i

)
) components;

The relative values of the acceleration constants determine the contribution of each
component to the overall velocity update;
A good balance between the cognitive and social components has been found to
work well for many problem types [28].

3.3. Implementation Aspects of the PSO Algorithm

The algorithm presented in the previous section requires a few enhancements and
additional considerations in order to improve its efficiency and effectiveness for practical
implementation purposes. Particularly, the following implementation aspects are briefly
discussed in this section, as further detailed in Table 3:

• Balancing the exploration/exploitation trade-off.
• Controlling the velocity to improve convergence characteristics by means of:

# Velocity clamping;
# Inertia weight;
# Constriction coefficient.

• Initialization of algorithm parameters.
• Termination conditions for the algorithm.

→
V

k+1

i = ω
→
V

k

i +
→
U(0, ϕ1)⊗

(→
P

k

best,i −
→
X

k

i

)
+
→
U(0, ϕ2)⊗

(
Gk

best −
→
X

k

i

)
, (13)

ωk+1 = ωmax −
(

ωmax −ωmin

kmax

)
k , ωmax > ωmin, (14)


→
V

k+1

i = χ

(→
V

k

i +
→
U(0, ϕ1)⊗

(→
P

k

best,i −
→
X

k

i

)
+
→
U(0, ϕ2)⊗

(→
G

k

best −
→
X

k

i

))
→
X

k+1

i =
→
X

k

i +
→
V

k+1

i

, (15)

χ =
2

ϕ− 2 +
√

ϕ2 − 4ϕ
, where ϕ = ϕ1 + ϕ2 > 4, (16)

X0
i = Xmin,i + ri(Xmax,i − Xmin,i), ri ∈ U(0, 1). (17)
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Table 3. Important implementation aspects of the PSO algorithm.

Implementation Aspect Considerations and Guidelines

Exploration/exploitation trade-off balance

Exploration promotes coverage of as wide a search space as possible in
the initial phase, whereas exploitation favors concentrated search in a
narrower search space in the latter phase of the algorithm execution;
Velocity control has a significant impact on achieving the right
exploration/exploitation balance.

Velocity control by velocity clamping

Important to keep velocity from building up uncontrollably,
Impacts the algorithm’s speed of convergence, and affects the
exploration/exploitation balance;

Velocity clamping places bounds on the magnitude of
→
V

k

i to lie within the
range [−Vmax,+Vmax];
Has the drawback that the choice of Vmax tends to be problem-dependent
and generally has poor velocity control characteristics [29];

Velocity control by inertia weight

Provides an alternative way of regulating velocity update [30];
Applies a scaling to the inertial component of the velocity update in
Equation (12) leading to Equation (13);
ω Is referred to as the inertia weight, typically set according to Equation
(14), where ωmax, ωmin are the initial and final values of ω, respectively,
and k, kmax are the current and maximum iteration number, respectively;
Typical values for ωmax, ωmin are 0.9 and 0.4, respectively.

Velocity control by constriction coefficient

Another alternative way of regulating velocity update;
Applies a scaling to the entire velocity update formula given by Equation
(12) leading to Equation (15), with the constriction coefficient, χ, being set
according to Equation (16);
Acceleration constants are usually set to be equal, that is, ϕ1 = ϕ2, with a
value just above 2 typical [31].

Initialization of PSO algorithm parameters

As a population-based algorithm, proper initialization of PSO parameters
is important for its effectiveness and efficiency;
Besides setting values of swarm size, acceleration constants and
maximum number of iterations, initial particle positions, and velocities
also have to be initialized;
Ensuring diversity of initial population is achieved by a randomization
operation according to Equation (17), where Xmin,i and Xmax,i are the
lower and upper bounds of the magnitude Xi, and ri is a uniformly
distributed random number between 0 and 1.

Termination conditions for the algorithm

As an iterative algorithm, termination conditions need to be set for PSO
for it to terminate, whether successfully (with the best available solution
found) or unsuccessfully.
Termination conditions may include:
Lack of appreciable (improving) change in the fitness value of the global
best position over a number of iterations;
Insignificant change in global best position over a number of iterations;
Exceeding the predetermined maximum number of iterations.
The first and third conditions listed above have been considered in
this study.

The following section focuses on the adaptation of the PSO algorithm to the require-
ments of the Volt/VAR optimization algorithm.

4. PSO Algorithm Applied to the Volt/VAR Optimization Problem

The Volt/VAR optimization (VVO) problem formulation has been presented in
Section 2. In this section, the PSO algorithm presented in Section 3 is adapted for ap-
plication to the VVO problem. In applying the PSO algorithm to any optimization problem,
the mechanics of the algorithm have to be mapped to the structure of the optimization
problem. Particularly, the mapping needs to be made between the particle positions and
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velocities, and the decision vector of the optimization problem, along with the adjustment
process of the decision vector in the search for the optimal solution to the problem. For the
VVO problem, the mapping can be stated as follows:

• The decision vector comprises the generator voltages, expressed in rectangular co-
ordinates; thus, each particle is constructed by combining the real and imaginary
components of all the generator voltages in the system.

• For the slack bus, the phase angle is required to be maintained at a predetermined
constant value, and so the imaginary component of the slack-bus voltage does not
form part of the decision vector.

• The length (i.e., number of elements) of each particle is, thus, 2ng − 1, where
ng represents the number of generators in the system, including the slack-bus generator.

• The velocities of the particles represent the step size adjustments to the decision-vector
components (i.e., particle positions), and their computation is one of the main tasks
performed in each iteration of the algorithm.

The steps of the PSO algorithm applied to the VVO problem can be outlined as follows.
Step 1:
Load the system parameters: this includes the bus voltages in rectangular coordinates

(1), the generator scheduled active generation outputs (reactive generation outputs are set
to zero, since they are unscheduled) (2), the load active and reactive power demands (3),
and the line impedance (i.e., resistance and reactance) data (3). The impedance and bus
connectivity matrices are computed on the basis of the input line data.

Step 2:
Initialize the PSO algorithm parameters: this includes the acceleration coefficients

(ϕ1, ϕ2), the swarm size, the problem dimension (i.e., number of elements comprising each
particle), and the maximum number of iterations.

Step 3:
Compute the initial particle positions and velocities: the particle positions are ini-

tialized according to Equation (17), which is reformulated below as it applies to the VVO
problem:

V0
gen_i = Vmin

gen_i + ri

(
Vmax

gen_i −Vmin
gen_i

)
, ri ∈ U(0, 1) (18)

where V0
gen_i is the ith generator’s initial voltage magnitude and Vmin

gen_i, Vmax
gen_i are the

minimum and maximum generator voltage magnitudes, respectively. For the VVO problem,
the generator-bus voltage magnitudes have the bounds

0.95 ≤ Vgen ≤ 1.1. (19)

So, based on Equation (19), the initial generator voltage magnitude (which corresponds
to particle position Xi in Equation (17) can be set according to Equation (18) as

V0
gen_i = 0.95 + 0.15ri. (20)

In effect, for the rectangular-coordinate representation of the generator voltages, Equa-
tion (20) is actually used to compute the real component of the voltage (ei), after which the
imaginary component ( fi) is computed by means of Equation (21).

V2
i = e2

i + f 2
i (21)

Initialization of the particle positions by means of Equations (20) and (21) ensures that
they are all feasible with respect to the bound constraints according to equation (19).

The initial velocities are set to zero for this study.
Step 4:
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Compute each particle’s fitness value based on initial positions: the objective function
for the VVO problem in rectangular coordinates is given by Equation (4), which is the
transmission real power loss function, restated below for ease of reference:

PLoss = ∑
(k,j)∈L

Gkj

[(
ek − ej

)2
+
(

fk − f j
)2
]
. (22)

The constraints considered in this study are all bound constraints (Equations (8)–(11)).
Each bound constraint is handled such that when it violates its bound constraint its value is
set to the violated (lower or upper) bound. The generator voltage magnitude, for example,
has its value set according to

Vgen_i =


Vmin

gen_i i f Vgen_i < Vmin
gen_i

Vgen_i i f Vmin
gen_i ≤ Vgen_i ≤ Vmax

gen_i
Vmax

gen_i i f Vgen_i > Vmax
gen_i

. (23)

Before computing the fitness values using Equation (22), limit violations are checked
and corrected according to Equation (23).

After this initial computation of fitness values, the (initial) personal best position and
corresponding fitness value of each particle is set to the current (i.e., initial) position and its
corresponding fitness value. That is, for each particle Xi,

P0
best,i = X0

i . (24)

The initial global best position is determined as the value of P0
best,i giving the best (i.e.,

minimum) fitness value, determined as

g0
best = arg min

(
f
(

p0
best,i

))
, i = 1, . . . , p (25)

where p is the number of particles in the swarm and the operator arg min() returns the
argument P0

best,i that yields the minimum value of the fitness function f
(

Pbest,i0
)

.
Step 5:
Compute the Newton–Raphson load flow: the effect of the PSO algorithm is to adjust

the generator voltage magnitude set-points at each iteration of the algorithm. In the
proposed PSO-VVO algorithm, a load flow computation is run at each iteration of the PSO
algorithm in order to determine the load-bus voltages, subject to the active and reactive
power balance equations (Equations (6) and (7), Section 2.2) (please refer to the work of the
authors in [20] for a more detailed treatment of the incorporation of the Newton–Raphson
load flow computation in the VVO algorithm). For the load flow computation, the global
best position (gbest) is used, since this is assumed to be the best available solution.

Step 6:
Recompute the objective function value: a converged load flow computation implies

that the solution obtained in step 4 is feasible with respect to both the equality and inequal-
ity constraints of the VVO problem. Recomputing the objective function value following
the load flow computation is meant to track the objective value of the current best feasible
solution of the optimization problem.

Step 7:
Compute the velocity update and adjust the particle positions: this is essentially the

beginning of the iterative loop of the PSO algorithm, where the particle velocity is iteratively
computed and then used to adjust the particle position. In this study, the velocity and
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position update are computed on the basis of Equations (15) and (16), restated below for
ease of reference:

→
V

k+1

i = χ

(→
V

k

i +
→
U(0, ϕ1)⊗

(→
P

k

best,i −
→
X

k

i

)
+
→
U(0, ϕ2)⊗

(→
G

k

best −
→
X

k

i

))
→
X

k+1

i =
→
X

k

i +
→
V

k+1

i

, (26)

χ =
2

ϕ− 2 +
√

ϕ2 − 4ϕ
, where ϕ = ϕ1 + ϕ2 > 4. (27)

That is, the constriction coefficient is used as the velocity regulation mechanism, as
outlined in Table 3 in Section 3.3.

Step 8:
Compute the fitness value of each particle and update the personal and global best

positions: after adjusting the particle positions, limit violations are checked and corrected
for using Equation (23), after which the fitness value of each particle is computed using
Equation (22). Once the fitness value of each particle has been computed, the personal best
Pk

best,i of each particle i is updated as follows:

Pk
best,i =

 Xk
i i f f

(
Xk

i

)
< f

(
Xk−1

i

)
Pk−1

best,i i f f
(

Xk
i

)
≥ f

(
Xk−1

i

) . (28)

Then, the global best position is updated according to Equation (25), restated here for
ease of reference:

gk
best = arg min

(
f
(

pk
best,i

))
, i = 1, . . . , p. (29)

Step 9:
Recompute the Newton–Raphson load flow: similar to step 5, perform a load flow

computation to determine the new load-bus voltages, with the global best position (com-
puted in step 8) acting as the new generator voltage set-points.

Step 10:
Recompute the objective function value: similar to step 6, the objective function value

is recomputed to account for the change in the load-bus voltages due to the load flow
computation. The recomputed objective function value constitutes the optimal value of
the current best feasible solution. The algorithm is assumed to have advanced in the
desired direction if the recomputed objective function value is better (i.e., less) than the one
computed in the previous iteration.

Step 11:
Check for convergence of the algorithm: the PSO algorithm is considered to have

converged successfully to an optimal solution when there is not an appreciable change
in the objective function value over a number of successive iterations, and the current
objective function value is better than the initial value. Otherwise, it is terminated with a
result of “failure” when it fails to achieve an objective function value minimization within
the predetermined number of iterations. In summary, the PSO algorithm will be terminated
if any one of the following two conditions is satisfied:

1. There is no appreciable improvement in the objective function value over a number
of successive iterations and the current objective function value is better than the
initial one;

2. The maximum number of iterations has been reached.

If neither of the two conditions is satisfied, the iteration counter (k) is incremented
and the algorithm loops back to step 7, repeating steps 7 to 11 until termination conditions
are satisfied. The flowchart in Figure 3 summarizes the steps of the PSO algorithm outlined
above as adapted for application to the VVO problem.



Mathematics 2023, 11, 4093 14 of 29Mathematics 2023, 11, x FOR PEER REVIEW 15 of 31 
 

 

Start

Load system data:
• Bus voltages in rectangular coordinates
• Scheduled generator real power outputs
• Real and reactive power demand
• Line data (resistance and reactance)
• From line data, compute Y-bus matrix and bus 

connectivity matrix 

Initialize PSO parameters:
• Acceleration coefficients (φ1, φ2 ) (see Table 4)
• Swarm size (p) (see Table 4)
• Problem dimension (i.e. number of decision variables, n)
• Maximum number of iterations (N) (see Table 4)
• Initial position (Equation 20) and velocity (0) of each particle
• Set each particle's personal best to current position 

(Equation 24)

Compute velocity update, adjust particle positions:
• For each particle, compute velocity update and adjust 

particle position based on Equatiions 15 and 16.
• Compute particle's fitness value (Equation 22), update 

personal best if current fitness value is better than previous 
one (Equation 28)

• Compute global best position based on all particles' personal 
best positions (Equation 29)

Compute Newton-Raphson load flow:
• Based on global best position, compute Newton_Raphson 

load flow to determine load-bus voltages for new generator-
bus voltages computed by the PSO algorithm

Convergence check:
• Check the convergence of the algorithm, based 

on change in fitness value and change in global 
best position  between subsequent iterations

End

Check if maximum number of 
iterations is not exceeded

Not yet
converged

• Increment iteration counter

Maximum number of iterations
not yet exceeded

Failed to converge within
permissible iteration count

Output results:
• Generator bus voltage magnitudes if 

converged
• Else, numerically failed

 
Figure 3. Flowchart of the PSO algorithm applied to the VVO problem. Figure 3. Flowchart of the PSO algorithm applied to the VVO problem.



Mathematics 2023, 11, 4093 15 of 29

5. Case Study Results and Discussion
5.1. Description of the Case Studies

The designed PSO-VVO algorithm is analyzed with the aid of four cases studies based
on the 6-bus, IEEE 14-bus, 30-bus, and 118-bus test systems. The case studies were selected
with the goal of realizing diversity in system size and test network characteristics, which
would facilitate the performance evaluation of the designed algorithm, with particular
attention paid to the following performance characteristics:

• Magnitude of loss minimization achieved;
• Degree of voltage profile improvement achieved due to the Volt/VAR optimization;
• Efficiency and speed of convergence of the designed algorithm;
• Impact of particle swarm size on the quality of the solution and on the computational

efficiency of the algorithm.

The algorithm has been implemented in MATLAB R2023a by MathWorks Inc. [32]. A
computer running the Intel(R) Core i7-7700HQ COPU, 2.80GHz, 8 GB RAM, has been used
to implement the algorithm and perform the simulation case studies. Data for the 6-bus
system has been obtained from [33]. Data for the IEEE 14-bus and 30-bus test systems have
been obtained from [34] and the IEEE 118-bus system has been obtained from [35]. The PSO
parameters used in the case studies are given in Table 4. It can be noted that the swarm size
has been specified as a range of values. For each case study, the case is run for values of the
swarm size ranging from 10 to 50, in increments of 10. Since PSO is a stochastic algorithm,
the approach taken is to make several runs of the algorithm for each value of the swarm
size. The statistical variance can then be assessed by looking at the minimum, maximum,
and average values of the key results, which can provide insightful information regarding
the possible impact of the swarm size on the performance of the algorithm. For each swarm
size, 10 independent runs of the algorithm are made, and then averaged. The averaged
data is then tabulated for each case study.

Table 4. PSO algorithm parameters used in the VVO case studies.

Parameter Setting

Cognitive acceleration constant, ϕ1 2.05
Social acceleration constant, ϕ2 2.05

Swarm size, p 10–50
Maximum number of iterations, kmax 200

5.2. Analysis and Discussion of the Case Study Results
5.2.1. Case Study 1: 6-Bus Power System

This case study is based on a 6-bus power system adapted from [33], which has three
generators, eleven lines, and three loads. The performance analysis considers the magnitude
of power loss reduction, the degree of voltage profile improvement, the computational
efficiency (in terms of the required number of iterations and the corresponding execution
time) of the algorithm, and the impact of the particle swarm size, as outlined in Section 5.1.
The results of running the PSO algorithm to solve the VVO problem for different swarm
sizes are presented in Table 5 and in Figures 4–7.

Table 5. Summary of results of the PSO-VVO algorithm applied to the 6-bus power system.

Swarm Size
Initial Loss (p.u.) Final Loss (p.u.) Number of Iterations Run Time (s) Average %

Loss ReductionMin Max Average Min Max Average Min Max Average Min Max Average

10 0.1276 0.2441 0.1647 0.1259 0.1339 0.1302 28 71 40 0.0378 0.3638 0.1385 20.95

20 0.1378 0.2885 0.2215 0.1265 0.1318 0.1293 13 102 54 0.0280 0.2056 0.1060 41.62

30 0.1273 0.3275 0.1811 0.1262 0.1336 0.1284 16 56 31 0.0381 0.1363 0.0713 29.10

40 0.1275 0.1670 0.1613 0.1255 0.1302 0.1284 8 32 19 0.0249 0.1531 0.0615 20.40

50 0.1303 0.2212 0.1569 0.1263 0.1332 0.1294 10 133 49 0.0275 0.3185 0.1216 17.53
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Figure 4. Convergence characteristics of the PSO algorithm applied to the 6-bus system.
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Figure 6. Real power loss and slack-bus generated power of the 6-bus system plotted against the
number of iterations of the PSO-based VVO algorithm.
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Figure 7. 6-bus system real power loss and total system reactive power generation plotted against
the number of iterations of the PSO-based VVO algorithm.

The results in Table 5 reveal a consistent and substantial real power loss reduction by
the PSO algorithm, with the lowest (average) percentage loss reduction being 17.53% and
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the highest being 41.62%. The average number of iterations lies in the range between 19 and 54
for all cases. There is quite a large dispersion between the minimum (8) and maximum
(133) number of iterations. The execution time shows a similar dispersion (minimum value
of 0.0713 s and maximum value of 0.1385 s). Increasing the swarm size does not seem to
significantly influence the solution quality. The impact on the computational cost of the
algorithm is also not very noticeable.

The convergence behavior of the PSO algorithm applied to the 6-bus system is depicted
in Figure 4, which plots the change in the global best position, the change in the fitness
value of the global best position, and the fitness value of the global best position in the top,
middle, and bottom traces, respectively. This case takes relatively long to converge, about
27 iterations, requiring about 0.04 s. This result can be considered to lie in the middle of the
range of the average results presented in Table 5.

The voltage profile of the 6-bus system before and after the Volt/VAR optimization
is depicted in Figure 5 in the form of a bar chart. The post-optimization voltage mag-
nitudes are greater than the pre-optimization values for all buses, except bus 2 where
the pre-optimization voltage is slightly higher than the post-optimization voltage. In
all cases, both the pre- and post-optimization voltages are within the range of nominal
values (i.e., 0.95–1.1).

Figure 6 depicts the real power loss trajectory plotted together with the slack-bus
active power output against the number of iterations. The plots reveal that reduction in
system power loss results in a corresponding reduction in the slack-bus generated power.
Indeed, the main reason for having a slack bus in the power system is to compensate for
generation-demand imbalances that cannot be known in advance, which includes system
losses [36]. A similar relationship can be seen in Figure 7 which plots the real power loss
reduction together with the total system reactive power generation, also showing that a
reduction in the system real power loss is accompanied by a reduction in the system reactive
power generation as well, which further improves the efficiency of system operation.

5.2.2. Case Study 2: IEEE 14-Bus Power System

The second case study is based on the IEEE 14-bus test system. The network, load,
and generation data is taken from [34]. Results of applying the PSO algorithm to the 14-bus
system for solving the VVO problem are presented in Table 6.

Table 6. Summary of results of the PSO-VVO algorithm applied to the IEEE 14-bus power system.

Swarm Size
Initial Loss (p.u.) Final Loss (p.u.) Number of Iterations Run Time (s) Average % Loss

ReductionMin Max Average Min Max Average Min Max Average Min Max Average

10 0.1347 0.2011 0.1613 0.1235 0.1291 0.1279 6 40 21 0.0203 0.2432 0.1196 20.71

20 0.1353 0.1652 0.1439 0.1268 0.1290 0.1282 4 24 11 0.0214 0.1375 0.0662 10.91

30 0.1381 0.2408 0.1873 0.1290 0.1301 0.1293 5 71 41 0.0307 0.5822 0.2867 30.97

40 0.1416 0.1921 0.1613 0.1273 0.1290 0.1287 4 109 29 0.0237 0.6544 0.1791 20.22

50 0.1335 0.2385 0.1595 0.1290 0.1308 0.1294 5 51 21 0.0488 0.2931 0.1394 18.85

Based on the results presented in Table 6, the average real power loss reduction ranges
from 10.91% in the case of the simulation with a swarm of 20 particles, to 30.97% in the
case of the simulation with particle 30. The average number of iterations lies in the range
between 11 and 41 for all cases. The minimum number of iterations is 4, recorded when the
swarm size is 20 and 40, and the maximum number of iterations is 109, recorded in the case
of a swarm size of 40. It can be noticed from the results presented in Table 6 that, while
increasing the swarm size does not necessarily lead to increased execution time, there is
a direct relationship between the number of iterations and the execution time. Thus, the
maximum execution time (0.6544 s) is recorded in connection with the swarm size of 40,
which also happens to coincide with the maximum number of iterations recorded for all the
runs. The average execution time ranges from 0.0662 s (for a swarm size of 20) to 0.2867 s
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(for a swarm size of 30). The lowest absolute real power loss achieved is 0.1235 per unit,
with a swarm size of 10. It can, thus, be seen here that the global minimum (in the context
of the presented results) is attained with a swarm size of 10, implying that increasing the
swarm size for this case does not necessarily lead to an improvement in the quality of
the solution. It is worth noting that the (average) minimum number of iterations (11) is
attained in the case of a swarm size of 20, which also has the minimum average execution
time (0.0662 s).

The convergence behavior of the PSO algorithm for the 14-bus system is depicted in
Figure 8 which, similar to Figure 4 for the 6-bus system, plots the changes in the global best
position and in the fitness value of the global best position, as well as the fitness value of
the global best position. This case takes a relatively shorter time period to converge, about
10 iterations, requiring about 0.05 s. It can be noticed that by the ninth iteration, the change
in the global best position and the corresponding change in the fitness value of the global
best position decrease to nearly zero, which signifies the satisfaction of the termination
conditions for the algorithm.
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Figure 8. Convergence characteristics of the PSO algorithm applied to the IEEE 14-bus system.

The voltage profile of the 14-bus system before and after the Volt/VAR optimization is
depicted in Figure 9 in the form of a radar chart. The post-optimization voltage magnitudes
are greater than the pre-optimization values for all buses. It can be seen also for this case
study that both the pre- and post-optimization voltages are within the range of nominal
values (i.e., 0.95–1.1) for all the buses.
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Figure 9. Change in voltage profile of the IEEE 14-bus system due to PSO-based VVO.

Figure 10 depicts the real power loss trajectory plotted together with the slack-bus
active power output against the number of iterations. Similar to the 6-bus system case
study, the close relationship between the change in the two quantities is clearly noticeable.
Figure 11 compares the trajectories of the real power loss and the total generated system
reactive power, which also depicts a relationship between the two quantities similar to that
observed in the case of the real power loss and the slack-bus active power.
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Figure 10. IEEE 14-bus system real power loss and slack-bus generated power plotted against the
number of iterations of the PSO-based VVO algorithm.
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Figure 11. IEEE 14-bus system real power loss and total system reactive power generation plotted
against the number of iterations of the PSO-based VVO algorithm.

5.2.3. Case Study 3: IEEE 30-Bus Power System

The third case study is based on the IEEE 30-bus test system. It comprises 30 buses,
6 generators, 41 lines, and 21 loads. The network, load and generation data is also taken
from [34]. Results of applying the PSO algorithm to the 30-bus system for solving the VVO
problem are presented in Table 7.

Table 7. Summary of results of the PSO-VVO algorithm applied to the IEEE 30-bus power system.

Swarm Size
Initial Loss (p.u.) Final Loss (p.u.) Number of Iterations Run Time (s) Average %

Loss ReductionMin Max Average Min Max Average Min Max Average Min Max Average

10 0.1353 2.0046 0.5253 0.0925 0.1067 0.0979 23 108 58 0.4386 2.1174 1.3169 81.29

20 0.1180 1.1763 0.4763 0.0925 0.0993 0.0947 32 179 80 0.7819 4.7353 2.2789 80.12

30 0.1203 0.8751 0.3089 0.0925 0.1054 0.0953 40 164 84 0.7581 3.7345 2.0272 69.15

40 0.1053 0.5211 0.2628 0.0925 0.0980 0.0937 20 170 96 0.4842 3.2412 1.6484 64.34

50 0.1008 1.1291 0.3987 0.0925 0.1031 0.0953 3 200 67 0.0448 4.8044 1.5187 76.10

The results presented in Table 7 show that there is substantial real power loss reduction
in all the cases, ranging from 64.34% (attained with a swarm size of 20) to 81.29% (attained
with a swarm size of 10). The average number of iterations is quite high for all the cases,
lying in the range between 58 and 96. The dispersion between the minimum and maximum
number of iterations is also quite high, the minimum and maximum values being 3 and 200
respectively, both obtained with a swarm size of 50. The average execution time ranges from
a low of 1.3169 s to a high of 2.2789 s, obtained with swarm sizes of 10 and 20, respectively.
Compared with the previous case studies, the 30-bus system requires significantly more
iterations to converge and the execution time is correspondingly longer. As in the previous
cases, increasing the swarm size does not seem to have a large impact on either the quality
of the solution or the computational cost of the algorithm.

The convergence behavior of the PSO algorithm for the 30-bus system is depicted in
Figure 12 and shows the changes in the global best position and in the fitness value of
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the global best position, as well as the fitness value of the global best position. The case
depicted in the figure converges relatively quickly, requiring only about four iterations and
an execution time of about 0.05 s.
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Figure 12. Convergence characteristics of the PSO algorithm applied to the IEEE 30-bus system.

The voltage profile of the 30-bus system before and after the Volt/VAR optimization is
depicted in Figure 13 in the form of a radar chart. The post-optimization voltage magnitudes
are greater than the pre-optimization values for the majority of buses. Some voltages hit
their lower or upper limits, but there is no voltage violation for any of the buses.
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Figure 13. Change in voltage profile of the IEEE 30-bus system due to PSO-based VVO.
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Figure 14 plots the real power loss trajectory together with the slack-bus active power
output against the number of iterations and Figure 15 does the same for the real power
loss and total generated system reactive power trajectories. Similar characteristics can be
observed as those observed in the preceding case studies.
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Figure 14. IEEE 30-bus system real power loss and slack-bus generated power plotted against the
number of iterations of the PSO-based VVO algorithm.
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Figure 15. IEEE 30-bus system real power loss and total system reactive power generation plotted
against the number of iterations of the PSO-based VVO algorithm.
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5.2.4. Case Study 4: IEEE 118-Bus Power System

The final case study considered is that of the IEEE 118-bus test system. It comprises
118 buses, 54 generators (35 of which are synchronous condensers), 186 lines, and 99 loads.
The network, load, and generation data is taken from [35]. Results of applying the PSO
algorithm to the 118-bus system for solving the VVO problem are summarized in Table 8.

Table 8. Summary of results of the PSO-VVO algorithm applied to the IEEE 118-bus power system.

Swarm Size
Initial Loss (p.u.) Final Loss (p.u.) Number of Iterations Run Time (s) Average % Loss

ReductionMin Max Average Min Max Average Min Max Average Min Max Average

10 4.4286 6.7848 5.3158 2.3799 2.8516 2.6342 200 200 200 81.8725 82.7431 82.3317 50.45

20 5.0498 11.8646 7.9246 2.3778 3.0462 2.4514 111 200 183 45.7052 93.5918 77.8222 67.44

30 4.2654 11.0633 6.2787 2.3935 3.0599 2.5487 200 200 200 83.9581 88.0829 85.9590 59.41

40 4.4071 9.8267 5.9971 2.3822 2.5720 2.4510 200 200 200 82.2720 85.6926 84.2950 59.13

50 4.6573 11.1649 8.6517 2.3743 2.5027 2.4172 200 200 200 85.4243 86.8651 85.7809 72.06

The results for the 118-bus system presented in Table 8 show the average real power
loss reduction among all the simulated cases to range from 50.45% (attained with a swarm
size of 10) to 72.06% (attained with a swarm size of 50). The average number of iterations
is quite high for all the cases. In fact, all cases except the case with a swarm size of 20
reach the pre-set maximum number of iterations. The average execution time is also quite
high, especially when compared with the preceding case studies, and ranges from 77.8 s
to 85.9 s. The minimum real power loss achieved is 2.37 per unit. The results are quite
consistent over the range of the swarm size, implying that the algorithm’s performance is
not significantly influenced by changing the swarm size, something that has been observed
across all the preceding case studies as well.

The convergence behavior of the PSO algorithm for the 118-bus system is displayed
in Figure 16, which depicts the changes in the global best position in the top trace and the
fitness value of the global best position in the bottom trace of the figure. It can be seen from
the figure that the algorithm exhibits oscillatory behavior beyond the 40th iteration. This
also seems to explain the results tabulated in Table 8, the oscillatory behavior being the
reason behind the algorithm exhausting the pre-set maximum number of iterations. By
adjusting the tolerance value of the termination condition slightly higher (i.e., the change in
the fitness value over successive iterations) the algorithm successfully terminates in much
fewer iterations, as depicted in Figure 17.
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Figure 16. Convergence characteristics of the PSO algorithm applied to the IEEE 118-bus system.
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Figure 17. Convergence characteristics of the PSO algorithm applied to the IEEE 118-bus system after
adjusting the tolerance higher.

The voltage profile of the 118-bus system before and after the Volt/VAR optimization
is depicted in Figure 18 in the form of a radar chart. The pattern is similar to the preceding
case studies, with the post-optimization voltage magnitudes being greater than the pre-
optimization values for almost all the buses. Incidentally, the Volt/VAR optimization also
alleviates some over-voltage conditions, particularly at buses 73 and 99, where the initial
(i.e., pre-optimization) voltage magnitudes actually exceed the upper limit of 1.1 per unit.
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Figure 18. Change in voltage profile of the IEEE 118-bus system due to PSO-based VVO.
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6. Comparison of the PSO-Based with the PDIPM-Based Volt/VAR
Optimization Algorithms

In this section, a comparative performance analysis is conducted between the PSO
algorithm and the primal-dual interior-point method (PDIPM) as solution methods for the
Volt/VAR optimization problem. The design and implementation of the PDIPM-based
VVO algorithm has been presented by the authors in [20] and its performance analysis has
been based on the same set of case studies as the ones used in this article. This has made
the comparison relatively easier. The summary of the results of the comparison is detailed
in Table 9. For the PSO algorithm, since several simulations have been performed for each
case study, a representative solution has been selected for comparison with the PDIPM
algorithm, considering the performance evaluation criteria used in Table 9.

Table 9. Comparison of the PSO-VVO and PDIPM-VVO [20] algorithms applied to four case studies.

System
Initial Loss (p.u.) Final Loss (p.u.) Number of Iterations Run Time (s) % Loss Reduction

PDIPM PSO PDIPM PSO PDIPM PSO PDIPM PSO PDIPM PSO

6-bus 0.1335 0.1613 0.1290 0.1255 13 19 0.1775 0.0615 3.37 20.40

14-bus 0.1353 0.1613 0.1296 0.1235 14 21 0.1477 0.1596 4.24 23.43

30-bus 0.1141 0.1353 0.1084 0.0925 14 58 0.3565 1.3170 5.03 31.63

118-bus 3.3939 4.6573 3.2270 2.3743 8 200 2.0120 85.78 4.92 49.02

The comparative performance analysis is made on the basis of the computational
efficiency, in terms of the number of iterations taken by the algorithm to converge and
the execution time required, as well as the percentage real power loss reduction. As can
be deduced from the table, the PSO algorithm far outperforms the PDIPM algorithm in
terms of the percentage loss reduction in all cases, as it consistently achieves much higher
percentage loss reduction, and the final per-unit loss reduction is less for the PSO algorithm
in all cases. The computational efficiency of the PSO algorithm, however, is generally
worse than that of the PDIPM algorithm. It requires a much higher number of iterations in
order to converge in all cases, with the exception of the 6-bus system, which has a smaller
execution time; although, the number of iterations taken by the algorithm to converge is
still higher. The results seem to suggest that the computational cost of the PSO algorithm
tends to increase significantly as the problem dimension increases. The results of this study
demonstrate what is generally known about the relative performance characteristics of
classical and heuristic optimization techniques. The main strength of classical optimization
methods is their high computational efficiency, particularly for differentiable nonlinear
systems, but they have the drawback of lacking the ability to find the globally optimal
solution. Heuristic optimization techniques, on the other hand, generally incur high
computational cost but have the advantage that they have the capability to find the globally
optimal solution [37].

As an additional comparative performance analysis, the performance of the two algo-
rithms developed and implemented by the authors in this and the companion article [20] is
compared with some results presented in the literature for the IEEE 14-bus system. The re-
sults are summarized in Table 10. It can be deduced from the comparative analysis that the
PSO algorithm presented in this article exhibits superior performance in terms of solution
quality (i.e., magnitude of percentage power loss reduction), whereas the PDIPM algorithm
outperforms in terms of computational efficiency (i.e., required number of iterations for
convergence and corresponding execution time).
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Table 10. Comparison of the PSO-VVO and PDIPM-VVO algorithms with other algorithms from the
literature for the IEEE 14-bus system case study.

Interior-Point
Method ([34])

Linear
Programming ([34]) PDIPM ([20]) PSO (Presented

in This Article)

Initial loss (p.u.) 0.11646 0.11646 0.1125 0.1613

Final loss (p.u.) 0.11004 0.11108 0.1084 0.1235

% Real power loss reduction 5.513 4.619 6.914 23.43

Number of iterations - - 16 21

Execution time (s) 18.2 61.5 0.0578 0.1596

7. Conclusions

This article has presented a detailed account of the design and implementation of
the particle swarm optimization (PSO) algorithm for solving the Volt/VAR optimization
(VVO) problem formulated in rectangular coordinates, as well as comparative analysis
with the primal-dual interior-point method (PDIPM) for the solution of the same problem,
which has been published by the authors in a companion article [20]. A brief presentation
on the historical development of the PSO algorithm is followed by a discussion of the
principle of operation and basic construction of the algorithm, after which some pertinent
implementation aspects are presented. The adaptation of the algorithm to the solution
of the VVO problem is then outlined, before presenting four case studies by means of
which the performance analysis of the developed PSO algorithm has been analyzed. For
each case study, a detailed qualitative and numerical analysis of the simulation results has
been presented. The numerical results are tabulated in the respective sections where the
case studies have been discussed. The comparative performance analysis of the PSO-VVO
and PDIPM-VVO algorithms reveals that the PSO algorithm consistently achieves higher
power loss reductions, as tabulated in Table 9. Thus, for instance, the percentage loss
reduction is 20% for the PSO algorithm vs. 3% for the PDIPM in the case of the 6-bus
system. The PDIPM, on the other hand, exhibits superior computational efficiency, as it
requires fewer iterations to converge and lower execution time. This is especially the case
for higher-dimensional systems. Thus, for instance, the PDIPM requires 14 iterations and
0.36 s to converge, whereas the PSO algorithm requires (on average) about 58 iterations and
1.32 s to converge, in the case of the IEEE 30-bus system. For a summary of the comparative
analysis of the other case studies, reference may be made to Table 9. From the presented
results, it can be deduced that the PSO algorithm outperforms the PDIPM in terms of real
power loss reduction but underperforms in terms of computational efficiency, especially for
higher-dimensional systems (such as the 118-bus system). Comparison of the developed
algorithms with those published in the literature further reveals their superior performance
in terms of computational efficiency and quality of the solution, as detailed in Table 10.
The analysis of the PSO-VVO algorithm also reveals that increasing the swarm size does
not necessarily result in a significant improvement in the solution quality for all the case
studies considered. As indicated in Table 3, besides the maximum number of iterations,
the absolute change in the fitness value of the global best position from one iteration to
another has been used as an additional termination condition for this study. The algorithm
is considered to have converged (and is, thus, terminated) if this change is insignificant
over a number of iterations. Future work will look into the design and implementation
of hybrid algorithms that seek to combine the synergistic characteristics of classical and
heuristic optimization techniques.

Author Contributions: Conceptualization, H.M. and S.K.; methodology, H.M.; software, H.M.;
validation, H.M. and S.K.; formal analysis, H.M.; investigation, H.M.; resources, S.K. and C.K;
data curation, H.M.; writing—original draft preparation, H.M.; writing—review and editing, S.K.
and C.K.; visualization, H.M.; supervision, S.K. and C.K.; project administration, S.K. and C.K.;
funding acquisition, S.K. and C.K. All authors have read and agreed to the published version of
the manuscript.



Mathematics 2023, 11, 4093 28 of 29

Funding: This research was funded in part by the Deutscher Akademischer Austausch Dienst
(DAAD)/National Research Foundation (NRF) under Grant DAAD180213312673 and the NRF
Thuthuka Grant, Number 138177. The authors also acknowledge the research grant support from the
Eskom Tertiary Education Support Programme (TESP), the Eskom Power Plant Engineering Institute
(EPPEI), and the SANEDI JET RFQ0622 funding towards the carrying out of this research work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carpentier, J. Contribution a l’etude du dispatching economique. Bull. De La Soc. Fr. Des Electr. 1962, 3, 431–447.
2. Momoh, J.A. Electric Power System Applications of Optimization; Marcel Dekker Inc.: New York, NY, USA, 2001.
3. Papazoglou, G.; Biskas, P. Review and comparison of genetic algorithm and particle swarm optimization in the optimal power

flow problem. Energies 2023, 16, 1152. [CrossRef]
4. Skolfield, J.K.; Escobedo, A.R. Operations research in optimal power flow: A guide to recent and emerging methodologies and

applications. Eur. J. Oper. Res. 2022, 300, 387–404. [CrossRef]
5. Risi, B.-G.; Riganti-Fulginei, F.; Laudani, A. Modern techniques for the optimal power flow problem: State of the art. Energies

2022, 15, 6387. [CrossRef]
6. Mataifa, H.; Krishnamurthy, S.; Kriger, C. Volt/VAR optimization: A survey of classical and heuristic optimization methods.

IEEE Access 2022, 10, 13379–13399. [CrossRef]
7. Ullah, Z.; Wang, S.; Wu, G.; Hasanien, H.M.; Jabar, M.W.; Qazi, H.S.; Tostado-Veliz, M.; Turky, R.A.; Elkadeem, M.R. Advanced

studies for probabilistic optimal power flow in active distribution networks: A scientometric review. IET Gener. Transm. Distrib.
2022, 16, 3579–3604. [CrossRef]

8. Shen, Z.; Liu, M.; Xu, L.; Lu, W. Bi-level mixed-integer linear programming algorithm for evaluating the impact of load-
redistribution attacks on Volt/VAR optimization in high- and medium-voltage distribution systems. Electr. Power Energy Syst.
2021, 128, 106683. [CrossRef]

9. Li, P.; Wu, Z.; Yin, M.; Shen, J.; Qin, Y. Distributed data-driven distributionally robust Volt/Var control for distribution network
via an accelerated alternating optimization procedure. In Proceedings of the 3rd International Conference on Power Engineering
(ICPE 2022), Sanya, China, 9–11 December 2022.

10. Papadimitrakis, M.; Kapnopoulos, A.; Tsavartzidis, S.; Alexandridis, A. A cooperative PSO algorithm Volt-VAR optimization in
smart distribution grids. Electr. Power Syst. Res. 2022, 212, 108618. [CrossRef]

11. Tan, J.; He, M.; Zhang, G.; Liu, G.; Dai, R.; Wang, Z. Volt/Var Optimization for Active Power Distribution Systems on a Graph
Computing Platform: An Paralleled PSO Approach. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting
(PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5.

12. Quan, H.; Li, Z.; Zhou, T.; Yin, J. Two-stage optimization strategy of multi-objective Volt/Var coordination in electric distribution
network considering renewable uncertainties. In Proceedings of the International Conference on Frontiers of Energy and
Environment Engineering, CFEEE, Beihai, China, 16–18 December 2022.

13. Granados, J.F.L.; Uturbey, W.; Valadao, R.L.; Vasconcelos, J.A. Many-objective optimization of real and reactive power dispatch
problems. Electr. Power Energy Syst. 2023, 146, 108725. [CrossRef]

14. Lian, L. Reactive power optimization based on adaptive multi-objective optimization artificial immune algorithm. Ain Shams Eng.
J. 2022, 13, 101677. [CrossRef]

15. Vitor, T.S.; Vieira, J.C.M. Operation planning and decision-making approaches for Volt/Var multi-objective optimization in power
distribution systems. Electr. Power Syst. Res. 2021, 191, 106874. [CrossRef]

16. Hossain, R.; Gautam, M.; Thapa, J.; Livani, H.; Benidris, M. Deep reinforcement learning assisted co-optimization of Volt-VAR
grid service in distribution networks. Sustain. Energy Grids Netw. 2023, 35, 101086. [CrossRef]

17. Christy, A.A.; Vimal Raj, P.A.D. Adaptive biogeography based predator-prey optimization technique for optimal power flow.
Electr. Power Energy Syst. 2014, 62, 344–352. [CrossRef]

18. Sulaiman, M.H.; Mustaffa, Z.; Mohamed, M.R.; Aliman, O. Using gray wolf optimizer for solving optimal reactive power dispatch
problem. Appl. Soft Comput. 2015, 32, 286–292. [CrossRef]

19. Nocedal, J.; Wright, S.J. Numerical optimization, 2nd ed.; Springer Science+Business Media LLC.: New York, NY, USA, 2006.
20. Mataifa, H.; Krishnamurthy, S.; Kriger, C. An efficient primal-dual interior-point algorithm for Volt/VAR optimization in

rectangular voltage coordinates. IEEE Access 2023, 11, 36890–36906. [CrossRef]
21. Taylor, G.A.; Song, Y.-H.; Irving, M.R.; Bradley, M.E.; Williams, T.G. A review of algorithmic and heuristic based methods

for voltage/var control. In Proceedings of the 5th International Power Engineering Conference, Singapore; 2001; Volume 1,
pp. 117–122.

https://doi.org/10.3390/en16031152
https://doi.org/10.1016/j.ejor.2021.10.003
https://doi.org/10.3390/en15176387
https://doi.org/10.1109/ACCESS.2022.3146366
https://doi.org/10.1049/gtd2.12555
https://doi.org/10.1016/j.ijepes.2020.106683
https://doi.org/10.1016/j.epsr.2022.108618
https://doi.org/10.1016/j.ijepes.2022.108725
https://doi.org/10.1016/j.asej.2021.101677
https://doi.org/10.1016/j.epsr.2020.106874
https://doi.org/10.1016/j.segan.2023.101086
https://doi.org/10.1016/j.ijepes.2014.04.054
https://doi.org/10.1016/j.asoc.2015.03.041
https://doi.org/10.1109/ACCESS.2023.3266421


Mathematics 2023, 11, 4093 29 of 29

22. Capitanescu, F.; Glavic, M.; Wehenkel, L. An interior-point based optimal power flow. In Proceedings of the 3-rd ACOMEN
Conference, Ghent, Belgium, June 2005.

23. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

24. Reynolds, C. Flocks, herds and schools: A distributed behavioral model. Comput. Graph. 1987, 21, 25–34. [CrossRef]
25. Heppner, F.; Grenander, U. A stochastic nonlinear model for coordinated bird flocks. In The Ubiquity of Chaos; Krasner, S., Ed.;

AAAS Publications: Washington, DC, USA, 1990.
26. Hu, X.; Shi, Y.; Eberhart, R. Recent advances in particle swarm. In Proceedings of the 2004 congress on evolutionary computation,

Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 90–97.
27. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization: An overview. Swarm Intell. 2007, 1, 33–37. [CrossRef]
28. Talukder, S. Mathematical modeling and applications of particle swarm optimization. Master’s Thesis, Blekinge Institute of

Technology, Karlskrona, Sweden, 2011.
29. Freitas, D.; Lopes, L.G.; Morgado-Dias, F. Particle swarm optimization: A historical review up to the current developments.

Entropy 2020, 22, 362. [CrossRef] [PubMed]
30. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on

Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.
31. Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability and convergence in a multidimensional complex space. IEEE

Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]
32. MATLAB; Version 2023a; The MathWorks Inc.: Natick, MA, USA, 2023.
33. Wood, A.J.; Wollenberg, B.F.; Sheble, G.B. Power Generation, Operation and Control, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 2014.
34. Zhu, J. Optimization of Power System Operation; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009.
35. Springer Verlag. Appendix E: IEEE 118-bus Test System Data. 2012. Available online: https://link.springer.com/content/pdf/

bbm%3A978-1-4615-4473-9%2F1.pdf (accessed on 23 January 2023).
36. Kundur, P. Power System Stability and Control; McGraw Hill Inc.: New York, NY, USA, 1994.
37. Frank, S.; Stepanovice, I.; Rebennack, S. Optimal power flow: A bibliographic survey II, nondeterministic and hybrid methods.

Energy Syst. 2012, 3, 259–289. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/37402.37406
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.3390/e22030362
https://www.ncbi.nlm.nih.gov/pubmed/33286136
https://doi.org/10.1109/4235.985692
https://link.springer.com/content/pdf/bbm%3A978-1-4615-4473-9%2F1.pdf
https://link.springer.com/content/pdf/bbm%3A978-1-4615-4473-9%2F1.pdf
https://doi.org/10.1007/s12667-012-0057-x

	Introduction 
	Formulation of the Volt/VAR Optimization Problem in Rectangular Coordinates 
	General Definitions 
	Statement of the Volt/VAR Optimization Problem 

	Particle Swarm Optimization (PSO) Algorithm 
	Historical Development of the PSO Algorithm 
	Principle of Operation and Basic Formulation of the PSO Algorithm 
	Implementation Aspects of the PSO Algorithm 

	PSO Algorithm Applied to the Volt/VAR Optimization Problem 
	Case Study Results and Discussion 
	Description of the Case Studies 
	Analysis and Discussion of the Case Study Results 
	Case Study 1: 6-Bus Power System 
	Case Study 2: IEEE 14-Bus Power System 
	Case Study 3: IEEE 30-Bus Power System 
	Case Study 4: IEEE 118-Bus Power System 


	Comparison of the PSO-Based with the PDIPM-Based Volt/VAR Optimization Algorithms 
	Conclusions 
	References

