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Abstract: Glass plays a vital role in several fields, making its accurate detection crucial. Proper
detection prevents misjudgments, reduces noise from reflections, and ensures optimal performance
in other computer vision tasks. However, the prevalent usage of glass in daily applications poses
unique challenges for computer vision. This study introduces a novel convolutional attention glass
segmentation network (CAGNet) predicated on a transformer architecture customized for image glass
detection. Based on the foundation of our prior study, CAGNet minimizes the number of training
cycles and iterations, resulting in enhanced performance and efficiency. CAGNet is built upon the
strategic design and integration of two types of convolutional attention mechanisms coupled with
a transformer head applied for comprehensive feature analysis and fusion. To further augment
segmentation precision, the network incorporates a custom edge-weighting scheme to optimize
glass detection within images. Comparative studies and rigorous testing demonstrate that CAGNet
outperforms several leading methodologies in glass detection, exhibiting robustness across a diverse
range of conditions. Specifically, the IOU metric improves by 0.26% compared to that in our previous
study and presents a 0.92% enhancement over those of other state-of-the-art methods.

Keywords: convolutional attention; transformer; feature analyze; semantic segmentation

MSC: 68T07; 68U10; 68T45

1. Introduction

Glass is ubiquitous in various fields, such as architecture, appliances, decorations,
and furniture, providing functional and aesthetic benefits. However, its prevalent usage
poses unique challenges for computer vision. The inherent properties of glass, such as
reflection, refraction, and transparency, significantly increase the complexity of achieving
high-precision detection, with the diversity of glass types, from flat and non-double-sided
frosted glass to colored decorative window glass, further complicating this problem. Each
type of glass displays unique characteristics in different environments and changes its
appearance according to the surrounding conditions and lighting, thereby increasing the
difficulty of detection.

Accurate glass detection is pivotal in diverse applications. In autonomous vehicles and
robotics, correctly identifying glass objects can prevent misjudgments that cause collisions.
For three-dimensional (3D) point-cloud reconstruction, identifying and preprocessing
the glass locations in two-dimensional (2D) images can significantly minimize the noise
caused by glass reflection and refraction, thereby enhancing the overall quality of the
reconstructed scenes [1,2]. Additionally, advancements in computer vision have been
evident in areas such as semantic segmentation [3–6], object detection [7–9], and image
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recognition [8,10], with notable contributions from attention mechanisms [3], pyramid
structures [5,7], and transformer architectures [8], depth estimation algorithms [11,12], and
salient object detection methods [13–15].

Despite significant progress in collecting vast image data containing glass and glass-
like objects [16], detecting glass from a single 2D RGB image remains a formidable challenge.
Traditional methods typically rely on depth maps (RGB-D) [17], thermal maps (RGB-T) [18],
and polarization maps (RGB-P) [19] to identify glass in images. While utilizing additional
data indeed aids models in learning more regarding glass features for detection, such
data are often hard to come by in many scenarios. Furthermore, when only a single RGB
image is available, these methods often underperform and fail to accurately pinpoint the
location of the glass. The imperative of using a single RGB image for glass segmentation is
primarily rooted in its practicality and ubiquity. In several real-world applications, such as
drones, mobile robots, or some low-cost surveillance systems, only standard RGB cameras
might be equipped. This makes acquiring data from additional sensors challenging, and
researching algorithms for single RGB images can significantly reduce data acquisition
costs and enhance its universality.

To address these issues, a convolutional attention glass segmentation network (CAGNet)
based on a transformer structure has been proposed. This study builds upon our previously
published work in [20], optimizes its structure, designs two novel convolutional attention
mechanisms, and flexibly uses the feature integration and analysis capabilities of the
transformer head to play key roles in various modules. The proposed design achieved good
efficiency and performance for glass detection in single RGB images, thereby improving
the robustness and accuracy of the task.

This study makes the following key contributions:

• A backbone feature analysis (BFA) module was engineered to amalgamate feature in-
formation from different layers of the backbone network. Furthermore, a global context
(GC) module was incorporated to substantially mitigate the problem of overfitting;

• A multi-level convolutional attention module (MCA), which includes the custom-
designed multi-scale convolutional attention module and a convolutional self-attention
(CSA) module, was developed. In combination with the transformer head, these
methods provide comprehensive feature analysis and fusion, offering an enhanced
solution for glass detection in single RGB images;

• A cross-modal feature-analysis fusion module (CFAF) was constructed to fuse and
analyze the features, with a custom edge-weighting scheme incorporated into the
network. This innovation improves the accuracy of the segmentation process, thereby
enabling more refined image-based glass detection.

2. Related Works

Conventional glass detection tasks primarily involve segmenting glass regions in
images using semantic segmentation methods. This process entails distinguishing the glass
and background as distinct labels, which enables the model to learn the glass features for
detection purposes.

Semantic segmentation associates each pixel in an image with a specific category,
thus forming the foundation for glass detection; this subfield labels the glass regions
and backgrounds in the images. Initial advancements were achieved using fully con-
volutional networks, which introduced the techniques of feature map fusion and stitch-
ing [21,22]. Badrinarayanan et al. [23] further advanced this technology by proposing an
optimized encoder-decoder structure utilizing a maximum pooling index for up-sampling.
Chen et al. [24–26] enhanced this method by combining a null-pyramid pooling method
with the pyramid pooling module of Zhao et al. [5], expanding the receptive field and
refining the boundaries through dilated convolution. He et al. [4] conducted binary segmen-
tation on a fast R-CNN [27] and introduced bilinear interpolation for feature up-sampling,
which improved the segmentation accuracy.
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Mei et al. [16] contributed significantly to glass detection by introducing the glass
detection dataset (GDD) and a novel method for extracting and fusing features from
different layers of a backbone network. Cao et al. [28] and Hao et al. [29] focused on
enhancing boundary discrimination and modeling global shape boundaries.

Recently, transformers have gained widespread attention in the field of computer
vision, offering innovative methods for semantic segmentation and glass detection tasks.
Wang et al. [7,30] designed a transformer-based backbone characterized by a pyramidal
structure of attention layers to optimize the detection of multi-scale features while conserv-
ing computational resources. Similarly, Guo et al. [31] designed a convolutional attention
module that significantly reduced the requirement for computational resources while
maintaining high performance compared with self-attention methods.

In glass detection, Xie et al. [32] provided a transparent object dataset containing
various types of glasses and designed an encoder-decoder network based on the Vision
Transformer (VIT) network [10]. This configuration provides a global receptive field and
effectively classifies the glass regions. Zhang et al. [33] further improved transformer-
based methods by proposing a deeper encoder-decoder network combined with a small
transformer head to prevent overfitting and enhance the performance of glass detection
tasks.

In summary, the CNN and transformer techniques have significantly advanced seman-
tic segmentation and glass detection. CNNs excel in feature extraction and fusion, but they
may not always capture long-range dependencies owing to their local receptive fields. By
contrast, transformers offer innovative solutions for feature analysis and fusion but can be
computationally intensive, particularly when applied to spatial data such as images. The
proposed CAGNet synergistically integrates the strengths of both CNNs and Transformers,
effectively addressing their individual limitations. A key innovation in our approach is
the introduction of the multi-receptive field convolutional attention module. Furthermore,
we designed the convolutional self-attention (CSA) mechanism. Unlike traditional trans-
formers in NLP tasks that employ linear layers to compute attention, our model leverages
the inherent advantages of convolutions in 2D image processing. Specifically, we utilize
convolutions to derive the query, key, and value matrices for attention computation. This
convolutional approach to attention not only enhances computational efficiency but also
ensures a more spatially coherent representation, which is crucial for tasks such as glass
detection in RGB images. Consequently, CAGNet emerges as a robust and efficient model,
outperforming in the intricate task of detecting glass from single RGB images.

3. Proposed Method

This section introduces CAGNet, which draws upon and refines the ideas of advanced
glass detection and semantic segmentation methods. We opted for ResNeXt-101 as the
backbone network owing to its capability to provide multiple feature outputs across
different scales, which is paramount for our approach that capitalizes on multi-scale
features for glass detection. Furthermore, a plethora of state-of-the-art methodologies
employ ResNeXt-101 as their foundational network. Utilizing the same backbone ensures
a more equitable quantitative and qualitative assessment when juxtaposing our method
with these advanced techniques. Initially, images pass through the ResNeXt-101 backbone
network to produce four layers of backbone features that are input to the BFA from a
previous method [20]. A GC layer is introduced on top for further feature integration
and analysis to obtain better multi-scale feature information. Subsequently, an MCA was
designed to learn glass-feature information across small and large receptive fields. Finally,
a CFAF was constructed for feature fusion and boundary analysis. This module is used for
the cross-modal analysis of boundaries and segmentation and fusion of features in various
receptive fields. The final label classification for glass detection was accomplished using
classification convolution.
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Figure 1 illustrates the overall network architecture, comprising the following four
components: the backbone, BFA, MCA, and CFAF. ResNeXt-101 served as the backbone,
outputting four distinct feature sizes to BFA for backbone-feature context analysis and
fusion, as described in Section 3.1. After fusion, the backbone features were transferred
to MCA for multi-level receptive field feature analysis, as described in Section 3.2. Subse-
quently, the features from various receptive field levels were input to CFAF for cross-modal
feature analysis fusion, as described in Section 3.3.

Mathematics 2023, 11, x FOR PEER REVIEW  4  of  21 
 

 

receptive fields. The final label classification for glass detection was accomplished using 

classification convolution. 

Figure 1 illustrates the overall network architecture, comprising the following four 

components: the backbone, BFA, MCA, and CFAF. ResNeXt-101 served as the backbone, 

outputting  four distinct  feature sizes  to BFA  for backbone-feature context analysis and 

fusion, as described in Section 3.1. After fusion, the backbone features were transferred to 

MCA for multi-level receptive field feature analysis, as described in Section 3.2. Subse-

quently,  the  features  from various  receptive field  levels were  input  to CFAF  for cross-

modal feature analysis fusion, as described in Section 3.3. 

 

Figure 1. Overall framework structure of CAGNet. 

3.1. BFA 

In contrast to methods employing convolution for backbone feature extraction or di-

rectly feeding features into the network that extinguishes contextual relationships among 

features, we devised a module for backbone feature analysis and fusion called BFA, as 

shown in Figure 2. This module accepts the following four different feature sizes output 

by the backbone network: ( ,  , 256), ( ,  , 512), ( ,  , 1024), and ( ,  , 2048). These 

features are weighted toward the target area through the multi-head self-attention mech-

anism of  a  traditional  transformer,  thereby  focusing on  the  target  feature  information 

[34,35]. Each layer corresponded to the following four output feature sizes: ( ,  , 256), ( , 

 ,  512),  (  ,   ,  1024),  and  (  ,   ,  2048). These  features were  up-sampled  and  fused 

through the corresponding GC layer.   

Figure 1. Overall framework structure of CAGNet.

3.1. BFA

In contrast to methods employing convolution for backbone feature extraction or
directly feeding features into the network that extinguishes contextual relationships among
features, we devised a module for backbone feature analysis and fusion called BFA, as
shown in Figure 2. This module accepts the following four different feature sizes output by
the backbone network: ( H

4 , W
4 , 256), ( H

8 , W
8 , 512), ( H

16 , W
16 , 1024), and ( H

32 , W
32 , 2048). These

features are weighted toward the target area through the multi-head self-attention mecha-
nism of a traditional transformer, thereby focusing on the target feature information [34,35].
Each layer corresponded to the following four output feature sizes: ( H

4 , W
4 , 256), ( H

8 , W
8 ,

512), ( H
16 , W

16 , 1024), and ( H
32 , W

32 , 2048). These features were up-sampled and fused through
the corresponding GC layer.

The GC layer comprised an adaptive average pooling layer (AAPL) and a fully con-
nected layer (FCL). AAPL adaptively reduces the spatial dimensions of the input feature
map to (1, 1), thereby reducing the feature map to a single value. FCL maintains the same
number of channels while fusing global context information features [36]. Applying the
GC layer in neural networks enhances the model’s comprehension of the overall image
and utilization of context information [37]. The principle of the GC layer is represented as
follows:

fn = conv1×1(AdaptiveAvgPool2d(Fn)) (1)

where “F” represents the output feature of each layer, “n” denotes the corresponding layer,
and “ f ” is the feature processed through GC.

Consequently, BFA concatenates the processed features from the four layers to yield a
fused backbone feature.
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3.2. MCA

The features derived from a backbone network often contain vast information that is
not always accurate. For instance, given that most glasses are shaped as bars or squares,
the network might mistakenly classify objects with square frames, such as door frames
or square bookshelves, as target objects. To further analyze and refine these features, the
fused features from BFA were fed into the MCA module for multi-level receptive field
feature analysis, as shown in Figure 3. This module comprises the following four receptive
fields: ( H

4 , W
4 , 64), ( H

8 , W
8 , 128), ( H

16 , W
16 , 256), and ( H

32 , W
32 , 512), where the three dimensions

represent the height, width, and channel number. This design facilitates the model’s ability
to learn more detailed features in smaller receptive fields and overall glass features in
larger receptive fields. Each feature level is progressively transferred, thereby producing its
results independently.

To design the MCA module, two convolutional attention mechanisms were incorpo-
rated owing to the inherent differences between text and image data [38]. The original
transformer attention mechanism was designed for textual data; however, the task in-
volved image processing. Therefore, the first mechanism employs multi-receptive-field
convolutional attention as an alternative to the traditional transformer attention mecha-
nism, rendering it more suitable for image data [31]. Instead of linear layers, the second
approach utilizes 2D convolutional layers to compute the attention query (Q), key (K), and
value (V) values, known as convolutional self-attention (CSA), which tailors the attention
computation process to the nuances of image data.
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Figure 4 shows that within the multi-receptive-field convolutional attention module,
the proposed design diverges from that in [20]. The convolutional kernels were adjusted
to match the nature of the target objects. Initially, a cross-channel linear combination of
the input feature information was performed using a 1 × 1 convolution, which linearly
transformed various channels by integrating the information between them. Subsequently,
as opposed to a 5 × 5 convolution, two stacked 3 × 3 convolutions were used to reduce
the number of required parameters. The two sets of convolutional attention sizes, i.e.,
(1 × 7, 7 × 1) and (3 × 7, 7 × 3), were incorporated. Band-shaped convolutions can analyze
elongated objects and enhance the expressive capability of a network [39]. This design
enriches the multi-scale feature information and ensures a broader receptive field, rendering
it more attuned to the specific challenges of our task. This process can be expressed as
follows:

atten = ReLU(Conv3×3(ReLU(Conv3×3(F)))) (2)

atten1 = Conv7×1(Conv1×7(atten)) (3)

atten2 = Conv7×3(Conv3×7(atten)) (4)

where “F” represents the feature obtained after a nonlinear transformation using a Conv1×1;
“atten” denotes the feature derived after applying a weight to the convolutional feature
matrix of size (3 × 3, 3 × 3), which subsequently undergoes a nonlinear transformation
via the ReLU activation function; “atten1” and “atten2” represent the feature obtained after
weighting the convolutional feature matrices of sizes (1 × 7, 7 × 1) and (3 × 7, 7 × 3),
respectively.
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Subsequently, we followed the approach outlined in reference [31], which involves
combining contextual features obtained through additive merging attention mechanisms to
derive composite features referred to as “Attention”. “Attention” is multiplied elementwise
with the original input feature matrix “F”, thereby introducing a residual connection.
Residual connections alleviate the vanishing gradient problem and enhance the information
flow between layers, thereby promoting effective feature reusability and propagation [40].
Furthermore, they improve a network’s ability to learn residual mappings and contribute
to stable network convergence [41]. The processed features are passed through a dropout
layer, yielding the final feature output f as follows:

Attention = atten + atten1 + atten2 (5)

f = Drop(F× Attention) (6)

This method minimized the number of parameters and ensured the accuracy of the
model. Thereafter, the resulting feature output was fed into the CSA module for further
attention analysis. Initially, three 1× 1 convolutions were used to obtain the query, key, and
value matrices. Following the conventional transformer self-attention mechanism, the dot
product of the query and key is computed, and the softmax function is applied to derive
the attention matrix Attenconv. This matrix is weighted and summed using a value matrix.
Subsequently, a 1 × 1 convolution was used for feature consolidation. After traversing
the dropout layer, the processed features are combined with the original output via a skip
connection, yielding the final feature representation. The detailed process is as follows:

query = Conv1×1( f ) (7)
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key = Conv1×1( f ) (8)

value = Conv1×1( f ) (9)

Attenconv = so f tmax
(

query× valueT
)

(10)

fatten = F + Drop(conv1×1(Attenconv × value)) (11)

where “query”, “key”, and “value” are the matrices for query, key, and value, respectively,
obtained through convolution; “Attenconv” represents the attention matrix; “F” denotes the
original input; and “ fatten” is the final feature obtained.

3.3. CFAF

Figure 5 shows the CFAF module structure, encompassing the four feature analyses
and fusion units. Each unit comprises the following four components: a transformer head
(TH), cross-modal atrous spatial pyramid pooling module (C-ASPP) [20], transformer con-
version head (TCH) [20], and feature fusion block (FFB). Given that the MCA progressively
integrates and independently outputs features from each receptive field, features from
different levels might exhibit discrepancies, as highlighted in references [42,43]. Directly
processing these features could potentially limit the model’s performance. To address this,
a TH was designed to consolidate these features and mitigate the impact of such discrepan-
cies on the model’s efficacy [34,35]. This design aimed to enhance the model’s performance
by effectively integrating and leveraging features at different levels. C-ASPP performed
cross-modal bifurcation of the features into boundary and segmentation features. TCH,
equipped with two THs, further weighs and analyzes the boundary and segmentation
features. FFB fuses features of the boundary, segmentation, and preceding layer. It weighs
and analyzes the fused features again. CFAF accepts four features from the MCA output
with dimensions ( H

4 , W
4 , 64), ( H

8 , W
8 , 128), ( H

16 , W
16 , 256), and ( H

32 , W
32 , 512). Consequently, it

outputs a feature of size ( H
4 , W

4 , 64), which is fed into the classification convolution layer
for categorization and up-sampling to obtain the final detection image result.

For CFAF, we adopted the C-ASPP and TCH modules from our previous study [20],
which were extensively detailed and experimentally validated. In this study, the final
fusion part, i.e., the FFB module, was adjusted, and its structure was optimized to reduce
complexity while enhancing computational efficiency.

FFB aimed to establish a multi-level receptive field context association by fusing
boundary features with segmentation and the previous layer’s features at each level.
Before each fusion, the features from the preceding layer must be up-sampled, which may
introduce feature loss. To address this, a depth-wise separable convolution was performed
for feature analysis post feature-fusion. Such convolution has fewer parameters than
traditional convolution operations, offers faster computation, reduces the risk of overfitting,
and effectively enhances the generalization capability of the model [44]. As shown in
Figure 6, it comprises a depth-wise separable convolution layer and TH. The segmented
and boundary features were fused and combined with the previous layer’s features. The
resulting features were passed to SeparableConv2d to achieve context-related feature fusion
across multiple receptive fields. This process can be represented as follows:

F = SeparableConv2D( f i
s +

(
f i
s ⊗ f i

b

)
) (12)

where “F” represents the fused features, “ f i
b” denotes the boundary features, “ f i

s” stands
for the segmentation features, and “i” indicates the layer number.
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The TH described herein shares the same structure as the TH and TCH modules. It
applies feature weighting to fused features, thereby minimizing the influence of irrelevant
information [34,35]. Subsequently, the features were passed through a feed-forward net-
work (FFN) layer for nonlinear transformation, ensuring that the feature dimensions were
aligned with the next layer. This approach enhances the model’s expressive capacity and
mitigates the risk of overfitting.

3.4. Loss Function

In the proposed network architecture, we primarily employed L1, segmentation, and
boundary losses expressed as follows:

LL1 = L1lambda × L1norm (13)

Lseg = 1− 2|P ∩ G|+ smooth
|P|+ |G|+ smooth

(14)

Lboundary =

(
1− 2|Pb ∩ Gb|+ smooth
|Pb|+ |Gb|+ smooth

)
×W (15)

Loss = Lseg + Lboundary + LL1 (16)

where “L1lambda” is a hyperparameter set to 0.1 and modulates the weight of L1 loss,
“L1norm” is the summation of the absolute values of all model parameters, “G” represents
the ground truth, “Gb” indicates the ground truth for boundaries, “P” represents the
prediction result, “Pb” stands for the predicted boundary result, and “W” is a weighting
parameter for the boundary loss set to 2.0. The term “smooth” is introduced (assigned a
value of 1) to prevent the denominator from vanishing.

This amalgamation of losses ensures the model’s proficiency in accurate glass detection,
segmentation, and boundary delineation throughout the training phase.

4. Experiment
4.1. Dataset and Settings
4.1.1. Dataset Details

The GDD [16], comprising 2827 indoor and 1089 outdoor images, is a specialized
collection tailored for glass detection, encompassing a myriad of everyday scenarios. Ad-
hering to the same data partitioning as GDD, 2980 images were allocated for training, while
the remaining 936 images were reserved for testing.

4.1.2. Implementation Details

The proposed network model was constructed using PyTorch 1.8.0, complemented by
CUDA 11.3. The training infrastructure employed three RTX A6000 GPUs. The learning rate
was initialized to 1 × 10−4, which subsequently decayed following the poly strategy [45].
The backbone, ResNeXt-101 [46], was pretrained on ImageNet [47]. After training, the
learning rate decayed linearly to 1 × 10−6. The optimizer of choice was AdamW, with ε
set to 1 × 10−8 and a weight decay of 1 × 10−4. The batch size per GPU was configured
as eight. After 200 epochs in the GDD dataset [16], convergence was achieved with an
average duration of 14 h. The experiments were conducted with an input resolution of
512 × 512 pixels. Additionally, the dataset’s ground truth was binarized and converted into
a single-channel image. This approach accentuates the learning focus on the target object
labels during training. No data augmentation, online hard-example mining (OHEM), or
similar techniques were employed in the experimental tests to ensure a level playing field.
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4.2. Evaluation Metrics

During evaluation, the quartet of semantic segmentation metrics discussed in [48] were
implemented to rigorously assess the efficacy of glass detection based on the following
metrics: (1) Intersection over union (IoU): it calculates the ratio of the area of overlap
between the predicted and ground truth regions to that of their union, robustly measuring
the congruence between the predicted segmentation and actual ground truth; (2) F-measure
(Fβ) [49]: defined as the harmonic mean of precision and recall, it comprehensively assesses
the model’s precision (correct positive predictions) against its recall (true positive rate);
(3) Mean absolute error (MAE): it quantifies the average absolute differences between the
predicted and actual values, clearly indicating the deviation of the model from the ground
truth; (4) Balanced error rate (BER) [50]: it computes the average error rates across classes,
ensuring that the error of each class is weighted equally, thereby providing a balanced
view of the model’s performance across diverse classes. These metrics can be expressed as
follows:

IoU =
∑H

i=1 ∑W
j=1(G(i, j) ∗ P(i, j))

∑H
i=1 ∑W

j=1(G(i, j) + P(i, j)− G(i, j) ∗ P(i, j))
(17)

Fw
β = (1 + β2)

Precisionw · Recallw

β2 · Precisionw + Recallw (18)

MAE =
1

H ×W

H

∑
i=1

W

∑
j=1
|P(i, j)− G(i, j)| (19)

BER = 100× (1− 1
2
(

TP
NP

+
TN
Nn

)) (20)

4.3. Comparison with Existing Methods

During evaluation, the performance of TGSNet was benchmarked against 14 algo-
rithms associated with our study area. These methods comprise semantic segmentation ap-
proaches, such as PSPNet [5], DANet [3], CCNet [51], and FaPN [52]; salient object detection
techniques, including EGNet [53] and F3Net [54]; transparent object segmentation methods,
namely Trans2Seg [32] and Trans4Trans [33]; the mirror segmentation method, Mirror-
Net [55], and glass segmentation techniques, including GDNet [16], GSD [56], EBLNet [29],
and PGSNet [48]. Additionally, TGDNet from our previous study was considered [20].
To ensure a fair comparison, each method was trained on the GDD dataset without data
augmentation. For methods using publicly accessible codes, the recommended optimal
parameters were followed. For those without an available code, we relied on the values
provided in [48]. All evaluations were performed using the same protocol.

Table 1 comparatively evaluates CAGNet against other prominent methodologies
using the GDD dataset. CAGNet evidently exhibits a superior IoU score, which is a crucial
metric in semantic segmentation that quantifies the congruence between the predicted
and ground truth segmentations. The IoU score of CAGNet is superior to that of TGSNet
by a margin of 0.26%, and its Fw

β is augmented by 0.04%. When benchmarked against
leading-edge glass detection paradigms, such as PGSNet [48], the IoU score of our proposed
method exhibits an enhancement of 0.92%, and its Fw

β surpasses PGSNet [48] by 1.1%. These
metrics highlight the nuanced capabilities of CAGNet in discerning intricate glass patterns,
validating its robustness and precision in various scenarios.
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Table 1. Quantitative comparison of the proposed network, CAGNet, with semantic segmentation
algorithms, salient object detection algorithms, transparent object segmentation algorithms, mirror
segmentation algorithms, and glass detection algorithms on the GDD dataset. The best and second-
best results are highlighted in red and blue, respectively. “↑” indicates that higher values are better,
“↓” indicates that lower values are better.

Method
Published
Journals Backbone

GDD [16]
IoU↑ Fw

β↑ MAE↓ BER↓

PSPNet [5] CVPR’17 ResNet-50 84.06 0.867 0.084 8.79
DANet [3] CVPR’19 ResNet-50 84.15 0.864 0.089 8.96
CCNet [51] ICCV’19 ResNet-50 84.29 0.867 0.085 8.63
FaPN [52] ICCV’21 ResNet-101 86.65 0.887 0.062 5.69

EGNet [53] ICCV’19 ResNet-50 85.05 0.870 0.083 7.43
F3Net [54] AAAI’20 ResNet-50 84.79 0.870 0.082 7.38

MirrorNet [55] ICCV’19 ResNeXt-101 85.07 0.866 0.083 7.67
Trans2seg [32] IJCAI’21 ResNet-50 84.41 0.872 0.078 7.36

Trans4Trans [33] ICCVW’21 PVT-Medium 84.94 0.878 0.076 6.86
GSD [56] CVPR’21 ResNeXt-101 87.53 0.895 0.066 5.90

GDNet [16] CVPR’20 ResNeXt-101 87.63 0.898 0.063 5.62
EBLNet [29] CVPR’21 ResNeXt-101 84.98 0.879 0.076 7.24
PGSNet [48] TIP’22 ResNeXt-101 87.81 0.901 0.062 5.56
TGSNet [20] MDPI ResNeXt-101 88.47 0.908 0.058 5.70

CAGNet (our) \ ResNeXt-101 88.73 0.913 0.054 5.51

As shown in Figure 7, a qualitative comparison was performed between TGSNet and
six state-of-the-art methodologies dedicated to glass and transparent object segmentation.
CAGNet consistently outperformed other methods in detecting broken glass regions (rows
2 and 5), multiple glass areas (rows 2–7), expansive glass zones (rows 1, 4, and 7), and
segmenting glass regions under outdoor natural illumination (rows 2 and 4). The remaining
scenarios depict segmentation within the interior under various lighting conditions. Com-
pared to other methodologies, CAGNet exhibits minimal false detections and smoother
edges and ensures the integrity of the segmented glass regions. This superior performance
can be attributed to the multi-scale convolutional attention modules embedded within the
CAGNet, which encapsulate these features and are further complemented by utilizing THs
that weigh the features and effectively filter extraneous information [34,35]. For instance,
in the resulting image in row 6, the other methods misclassified the ceiling or ghost as
glass. Contrastingly, the proposed approach accurately discerned the glass and mitigated
background interference owing to its nuanced feature analysis across different receptive
fields, which is crucial for preserving the intricate details, as shown in rows 2, 3, and 4.
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Figure 7. Comparison results of six state-of-the-art glass detection methods and the proposed
CAGNet.

We conducted additional experiments to specifically address the challenges posed by
varying lighting conditions, as illustrated in Figure 8. In the context of these experiments,
daytime scenarios were characterized by ample lighting, whereas nighttime scenarios
represented dimly lit environments. Photographs were captured at the same location under
both of these conditions. Due to equipment constraints, maintaining the exact positioning
was not feasible, but the images were shot from the same vantage point. Ground-truth
annotations were provided for these images. As depicted in Figure 8, the proposed method
consistently detected glass objects both indoors and outdoors, largely unaffected by the
lighting conditions. This underscores the efficiency and robustness of CAGNet across
diverse lighting scenarios, and it’s evident that the evaluation metrics do vary based on
these conditions, highlighting the model’s adaptability.
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As shown in Table 2, Compared to TGSNet, the current approach has been significantly
improved by optimizing the network structure. As shown in the table, the overall number
of parameters in the proposed model was reduced by 36%. Using the same GPU quantity
and model, the achieved training convergence speed was 2.6 times faster than that obtained
in the previous study. During the testing phase, the average inference time per image was
accelerated by 38.4%, and memory consumption during inference was reduced by 48.3%.

Table 2. Comparison of CAGNet with TGSNet in terms of parameter count, GPU usage, training time,
number of iterations at convergence, average inference speed per image, and memory consumption.
“MParams” represents the number of parameters.

Methods MParams GPU Train Time Train Epoch Speed
(Per Image) Memory

TGSNet [20] 185.472 3 * A6000 36 h 500 0.26 s 8921 MiB
CAGNet 118.734 3 * A6000 14 h 200 0.16 s 4610 MiB

4.4. Ablation Experiments

In this section, we describe three sets of ablation studies. Through various experiments,
the effectiveness of BFA, MCA, and CFAF components was validated. The BFA module’s
performance was compared to that of a CNN in terms of backbone feature extraction.
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Additionally, the overall performance was investigated with respect to the influence of GC
modules within BFA, the impact of using the CSA module in MCA, and the effect of the
feature analysis module in CFAF. The results are presented in Tables 3–5 and Figures 9–11.
In the tables, “Networks” and “Backbone” denote the network architecture and backbone
network used for training.

Table 3. Results of the ablation experiments for the proposed BFA module, where “conv” denotes the
process of gleaning backbone features across varied scales using convolution methods. “↑” indicates
that higher values are better, “↓” indicates that lower values are better.

Networks Backbone
GDD [16]

IoU↑ Fw
β↑ MAE↓ BER↓

a. Conv ResNeXt-101 87.34 0.896 0.068 6.55
b. BFA without GC ResNeXt-101 88.56 0.907 0.059 5.69
c. BFA with GC ResNeXt-101 88.73 0.913 0.054 5.51

Table 4. Results of the ablation experiments for the MCA module. “↑” indicates that higher values
are better, “↓” indicates that lower values are better.

Networks Backbone
GDD [16]

IoU↑ Fw
β↑ MAE↓ BER↓

a. MCA without CSA ResNeXt-101 88.12 0.905 0.057 5.77
b. MCA with CSA ResNeXt-101 88.73 0.913 0.054 5.51

Table 5. Results of the ablation experiments for the CFAF module. “↑” indicates that higher values
are better, “↓” indicates that lower values are better.

Networks Backbone
GDD [16]

IoU↑ Fw
β↑ MAE↓ BER↓

a. CFAF without TH ResNeXt-101 88.21 0.903 0.062 5.84
b. CFAF with TH ResNeXt-101 88.73 0.913 0.054 5.51

Mathematics 2023, 11, x FOR PEER REVIEW  16  of  21 
 

 

 

Figure  9.  Comparison  of  results  of  BFA module  ablation  experiments  using  (a)  a  convolution 

method, (b) BFA with no GC, and (c) BFA with GC. 

 

Figure 10. Comparison of results of MCA module ablation experiments. (a) MCA without CSA 
and (b) using BFA with GC. 

Figure 9. Comparison of results of BFA module ablation experiments using (a) a convolution method,
(b) BFA with no GC, and (c) BFA with GC.



Mathematics 2023, 11, 4084 16 of 21

Mathematics 2023, 11, x FOR PEER REVIEW  16  of  21 
 

 

 

Figure  9.  Comparison  of  results  of  BFA module  ablation  experiments  using  (a)  a  convolution 

method, (b) BFA with no GC, and (c) BFA with GC. 

 

Figure 10. Comparison of results of MCA module ablation experiments. (a) MCA without CSA 
and (b) using BFA with GC. 
Figure 10. Comparison of results of MCA module ablation experiments. (a) MCA without CSA and
(b) using BFA with GC.

4.4.1. Effectiveness of the BFA Module

Herein, the effectiveness of BFA and its GC module is validated. The experiments
were divided into the following three groups: (a) convolutional approach, (b) BFA without
the GC module, and (c) BFA with the GC module.

Figure 9 shows the limitations of traditional convolutional methods for making accu-
rate predictions while processing the content within frames. Herein, the model may learn
erroneous features, misclassifying the content inside a frame as a glass object. Furthermore,
this approach fails to detect entire regions, as indicated by the dashed blue box in the figure.
The proposed BFA can fuse features across different levels in the absence of a GC module,
thereby amplifying the information from the feature backbone. Simultaneously, BFA can fil-
ter incorrect features owing to the disparities between different levels [42,43]. BFA enhances
the model’s performance to some extent; however, instances of misprediction because of
overfitting are observed. By introducing the GC module in BFA, the proposed model’s
performance was significantly boosted, with overfitting issues effectively mitigated.

Table 3 presents a quantitative analysis of the evaluation results from the three experi-
ments. These results unequivocally demonstrate that BFA equipped with the GC module
is advantageous for backbone feature extraction and fusion and overcomes the limitation
of overfitting. Therefore, the GC module is crucial in enhancing the model’s performance,
improving feature fusion efficiency, and effectively mitigating overfitting.
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Figure 11. Comparison of the results of CFAF module ablation experiments. (a) CFAF without TH
and (b) CFAF with TH.

4.4.2. Effectiveness of the MCA Module

This section presents a scenario wherein the structure remains unchanged except
for the MCA. Within the MCA, the multi-scale convolutional attention method and CSA
were introduced and quantitatively compared to the scenario without CSA. To validate the
effectiveness of the CSA module, the following two sets of experiments were performed:
(a) MCA without CSA and (b) MCA with CSA.

Figure 10 shows that in the qualitative experiments without using CSA, the model
detected the glass position; however, it struggled to fully distinguish between the target
and non-target areas. After incorporating CSA, the model detected the glass region (row 3)
more comprehensively and distinguished between the target and non-target areas (blue
dashed box in Figure 9) more precisely.

As shown in Table 4, when CSA was introduced into the model, all four evaluation
metrics improved significantly. For MCA with CSA, the model’s IoU value increased
by 0.61% compared to that without CSA. Hence, the introduction of CSA effectively en-
hanced the feature extraction capability of the model, thereby further boosting its overall
performance.

4.4.3. Effectiveness of the CFAF Module

This section validates the efficacy of TH by comparing the results of CFAF with and
without TH while keeping the other conditions constant.

Through qualitative analysis, Figure 11 indicates that by employing TH to integrate
features from each layer of MCA, the model can effectively filter out larger erroneous re-
gions (as indicated by the blue dashed box in the first row). Furthermore, the introduction
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of TH enables the model to classify non-target regions more accurately (as shown by the
blue dashed boxes in the second and third rows). Therefore, incorporating TH signifi-
cantly enhances the model’s capability to assimilate features, reduce errors, and improve
classification accuracy, thereby optimizing the overall performance of the framework.

As shown in Table 5, the quantitative experimental results indicate that the overall
performance of the model is significantly enhanced by the introduction of TH, highlighting
the pivotal role of TH in the aggregation and fusion of convolutional features within CFAF.
Particularly, by integrating features from each MCA layer, TH effectively filters the errors
and elevates classification accuracy, enhancing the model’s performance.

5. Conclusions

This study investigated the glass detection subtask within image segmentation, em-
phasizing the effective extraction and fusion of features to enhance model performance.
Through experiments, we identified the limitations of traditional convolution methods in
predicting the content within frames, causing the acquisition of incorrect features. Con-
sequently, the BFA approach was introduced to address these limitations. BFA promotes
feature fusion across different levels, amplifying information from the backbone feature
and filtering inaccuracies owing to interlevel differences. While BFA improved the model’s
performance, overfitting issues remained. Therefore, to further enhance the model’s capa-
bilities and reduce overfitting, a GC module was incorporated into the BFA. GC captures
global contextual information, which significantly improves the model’s ability to handle
complex scenarios. Additionally, the proposed MCA module introduced CSA, which
further refined feature extraction and fusion using self-attention. Finally, we integrated
TH into CFAF to consolidate features from different levels, thereby mitigating the impact
of disparities on the model’s performance. The experimental results indicated a marked
improvement in overall performance with the inclusion of TH, emphasizing its importance
in enhancing performance and reducing overfitting. In conclusion, the proposed BFA, GC,
CSA, and TH modules demonstrated significant efficacy in boosting model performance,
optimizing feature fusion efficiency, and effectively controlling overfitting. In future en-
deavors, we aim to investigate the intricacies and potential enhancements of these modules.
We will explore the practical applications of this model, particularly in domains requiring
precise glass detection, such as autonomous driving and urban planning. Furthermore, we
aim to apply our research findings to segmentation tasks involving remote sensing images
and 3D point-cloud data.
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