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Abstract: This paper proposes a novel numerical approach for handling fractional boundary value
problems. Such an approach is established on the basis of two numerical formulas; the fractional
central formula for approximating the Caputo differentiator of order α and the fractional central
formula for approximating the Caputo differentiator of order 2α, where 0 < α ≤ 1. The first formula
is recalled here, whereas the second one is derived based on the generalized Taylor theorem. The
stability of the proposed approach is investigated in view of some formulated results. In addition,
several numerical examples are included to illustrate the efficiency and applicability of our approach.
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1. Introduction

The significance of fractional differential equations (FDEs) has grown significantly in
recent decades. This is, of course, due to their value in modeling various phenomena in
many practical and industrial applications such as science, physics, dynamics, mechanics,
engineering, etc. When dealing with ordinary/partial differential equations, one might
be concerned about obtaining solutions to these equations so that they satisfy specific
conditions [1,2]. In general, we will have initial conditions once certain conditions are
provided at a single point of an independent variable, whereas we will have boundary
conditions once the conditions are provided at more than a single point of that variable.
Actually, obtaining a solution of a fractional-order problem in accordance with n-boundary
conditions is called an FBVP. Such a problem in its linear and 2α-order cases is regarded as
a very important problem due to its various applications in technology and science. In this
work, two boundary conditions are typically assumed at end points of an interval, as in
most physical applications. In particular, we consider the following FBVP:

pD2αy(x) + qDαy(x) + ry(x) = f (x), (1)

subject to the boundary conditions

y(a) = ya y(b) = yb, a < x < b, (2)

where p, q, r are constants and 0 < α ≤ 1 and ya, yb are given real numbers.
The boundary value problems consisting of FDEs have contributed to a deep under-

standing of many processes in different sciences, as different types of these equations can
be solved using certain mathematical methods which meet specific boundary conditions.
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Given the impossibility of solving nonlinear types of the BVPs analytically, several numeri-
cal approaches are used, see [3–7]. It should be noted that the finite difference method can
provide very good numerical solutions for different types of FDES, see, e.g., [8–10]. From
this point of view, we here propose to use the fractional central formula for approximating
the Caputo differentiator of order α established in [11], and another formula called the
fractional central formula for approximating the Caputo differentiator of order 2α, to find
approximate solutions to a type of FBVPs given in (1), where 0 < α ≤ 1. The stability
of the proposed method is then examined, and several numerical examples are provided
for completeness.

This paper is coordinated as follows. In Section 2, necessary preliminaries and some
properties connected with fractional calculus are presented. Section 3 displays the method-
ology of the proposed method coupled with its stability. Section 4 provides a number of
examples with some figures and tabulated results attached to illustrate the fulfilled findings.
Section 5 finishes this work by declaring a conclusion.

2. Preliminaries

In this section, we mention some basic and necessary definitions in fractional calcu-
lus, such as the Riemann–Liouville integral and derivative, the Caputo derivative, and
properties of the operators, which will be applied throughout the paper.

Definition 1 ([12,13]). The Riemann–Liouville fractional integral of the function f of order γ is
outlined as

J γ f (t) =
1

Γ(γ)

∫ t

0
(t− τ)γ−1 f (τ)dτ, (3)

where t > 0 and 0 < γ ≤ 1.

Remark 1 ([12,13]). It is useful to mention some characteristics of the Riemann–Liouville integral
operator, which are listed below for completeness:

• The identity property, i.e.,
J 0 f (t) = f (t). (4)

• The power rule property, i.e.,

J γtm =
Γ(m + 1)

Γ(m + γ + 1)
tm+γ, m ∈ Z+. (5)

• The commutation property, i.e.,

J γJ B f (t) = J γ+B f (t) = J BJ γ f (t), γ,B ≥ 0. (6)

Definition 2 ([12,13]). Let n− 1 < γ ≤ n such that n is a positive integer and γ ∈ R+. The
Riemann–Liouville derivative of fractional-order γ is outlined as

Dγ f (t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

f (n)(τ)
(t− τ)γ+1−n dτ. (7)

Definition 3 ([12,13]). The Caputo fractional differential operator of order γ is outlined as

Dγ f (x) =
1

Γ(n− γ)

∫ t

0

f (n)(τ)
(t− τ)γ+1−n dτ, (8)

where t > 0 and n− 1 < γ ≤ n such that n ∈ N.

Remark 2 ([12,13]). The Caputo fractional derivative satisfies the following properties:



Mathematics 2023, 11, 4082 3 of 12

• The power rule property, i.e.,

Dγtε =

{
Γ(ε+1)

Γ(ε−γ+1) tε−γ, n− 1 < α < n, ε > n− 1, ε ∈ R
0, n− 1 < α < n, ε ≤ n− 1, ε ∈ N

. (9)

• The constant property, i.e.,
Dγc = 0, (10)

where c is constant.
• Interpolation property, i.e.,

lim
γ→n

Dγ f (t) = Dn f (t). (11)

• Linearity property, i.e.,
Dγ(λ1 f (t) + λ2g(t)) = λ1Dγ f (t) + λ2Dγg(t), (12)

where λ1 and λ2 are two constants.
• Non-commutation property, i.e.,

DγDµ f (t) 6= DµDγ f (t), (13)

where n− 1 < γ, µ ≤ n such that n ∈ N.

Theorem 1 ([14]). Suppose that Dkα f (x) ∈ Cn+1(0, b] for k = 0, 1, · · · , n+ 1, where 0 < α ≤ 1.
Then, the function f can be expanded about x = x0 as follows:

f (x) =
n

∑
i=0

(x− x0)
iα

Γ(iα + 1)
Diα f (x0) +

(x− x0)
(n+1)α

Γ((n + 1)α + 1)
D(n+1)α f (ξ), (14)

where 0 < ξ < b and x ∈ (0, b].

3. Methodology and Stability

In this section, we attempt to develop a novel numerical approach to deal with FBVPs.
This approach is accomplished based upon a recent formula established in [11] called
the fractional central formula for approximating the Caputo differentiator of order α,
and another formula called the fractional central formula for approximating the Caputo
differentiator of order 2α, which would be established here, where 0 < α ≤ 1. But before
all of this, we recall below the first formula by stating the following theorem.

Theorem 2 ([11]). Let f ∈ C3(0, b] and x0, x1, x3 be three distinct points in the interval (0, b]
such that 0 = x0 < x1 = x0+ h < x2 = x0 + 2h = b, where h > 0. Then, for any x ∈ (0, b], the
fractional central formula for approximating the Caputo differentiator of order α is determined by

Dα
t f (x) =

x2−α

h2αΓ(3− α)

(
f (x0)− 2 f (x1) + f (x2)

)
− x1−α

2h2αΓ(2− α)

(
f (x0)(x1 + x2)− 2 f (x1)(x0 + x2) + f (x2)(x0 + x1)

)
+

f (3)(ξ)
6

(
6

Γ(4− α)
x3−α − 2(x0 + x1 + x2)

Γ(3− α)
x2−α +

(x0x1 + x0x2 + x1x2)

Γ(2− α)
x1−α

)
,

(15)

where 0 < α ≤ 1, for an unknown ξ ∈ (0, b).

3.1. Approximating Caputo Differentiator of Order 2α

Herein, on the basis of the generalized Taylor Theorem 1, we intend to derive a novel
formula called the fractional central formula for approximating the Caputo differentiator
of order 2α, where 0 < α ≤ 1.
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Theorem 3. Suppose that f ∈ C4(0, b] and x0, x1, x2 are distinct points in the interval (0, b] such
that 0 = x0 < x1 = x0 + h < x2 = x0 + 2h = b with h > 0. Let 0 < α ≤ 1, then the fractional
central formula for approximating the Caputo differentiator of order 2α is determined by

D2α f (x) =
Γ(2α + 1)

2h2α
( f (x0)− 2 f (x1) + f (x2))−

Γ(2α + 1)
Γ(4α + 1)

h2αD4α f (ξ), (16)

where x ∈ (0, b) for an unknown ξ ∈ (0, b).

Proof. To prove this result, we first expand the function f about x0 using Theorem 1
to obtain

f (x) = f (x0) +
(x− x0)

α

Γ(α + 1)
Dα f (x0) +

(x− x0)
2α

Γ(2α + 1)
D2α f (x0) +

(x− x0)
3α

Γ(3α + 1)
D3α f (x0) +

(x− x0)
4α

Γ(4α + 1)
D4α f (ξ1). (17)

Consequently, we can approximate the function f at x1 = x0 + h. In other words, we
can have

f (x0 + h) = f (x0) +
hα

Γ(α + 1)
Dα f (x0) +

h2α

Γ(2α + 1)
D2α f (x0) +

h3α

Γ(3α + 1)
D3α f (x0) +

h4α

Γ(4α + 1)
D4α f (ξ1). (18)

From this point of view, we can use the transform variables for both x0 and x1 = x0 + h to
be x and x + h, respectively. This would immediately give

f (x + h) = f (x) +
hα

Γ(α + 1)
Dα f (x) +

h2α

Γ(2α + 1)
D2α f (x) +

h3α

Γ(3α + 1)
D3α f (x) +

h4α

Γ(4α + 1)
D4α f (ξ1). (19)

In a similar manner, we can get

f (x− h) = f (x)− hα

Γ(α + 1)
Dα f (x) +

h2α

Γ(2α + 1)
D2α f (x)− h3α

Γ(3α + 1)
D3α f (x) +

h4α

Γ(4α + 1)
D4α f (ξ−1), (20)

where x− h < ξ−1 < x < ξ1 < x + h. Adding (19) to (20) yields

f (x + h) + f (x− h) = 2 f (x) +
2h2α

Γ(2α + 1)
D2α f (x) +

h4α

Γ(4α + 1)

(
D4α f (ξ1) + D4α f (ξ−1)

)
. (21)

Now, due to 1
2
(

D4α f (ξ1) + D4α f (ξ−1)
)

lying between D4α f (ξ1) and D4α f (ξ−1), by the
Intermediate Value Theorem we can infer that ξ exists between ξ1 and ξ1, and so in
(x− h, x + h). Thus, we have

D4α f (ξ) =
1
2

(
D4α f (ξ1) + D4α f (ξ−1)

)
.

This consequently implies

Γ(2α + 1)
2h2α

( f (x− h)− 2 f (x) + f (x + h)) = D2α f (x) +
Γ(2α + 1)
Γ(4α + 1)

h2αD4α f (ξ), (22)

which immediately gives the desired result.

Remark 3. It is obvious that, if we take α = 1 in formula (16), then the conventional second
derivative midpoint formula will be immediately yielded.

3.2. Analysis of the Method

At the beginning of this section, we intend to depict the procedure of solving the FBVP
given in (1) and (2). For this purpose, we apply Theorems 2 and 3 to approximate Dαy(x)
and D2αy(x), respectively. In other words, we have

Dαy(x) ≈
x2−α

1
h2αΓ(3− α)

(y(x0)− 2y(x1) + y(x2)) (23)
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and

D2αy(x) ≈ Γ(2α + 1)
2h2α

(y(x0)− 2y(x1) + y(x2)), (24)

where h, x0, x1, x2 are defined previously in Theorem 3, and 0 < α ≤ 1. For the purpose of
developing a novel approach to find the solution of the problem (1) and (2), we divide the
interval [a, b] into n subintervals through xi = a + ih, for i = 0, 1, 2, . . . , N, such that a = x0
and b = xn, where h = b−a

N . Now, at the point x = xi, we have

Dαy(xi) ≈
xi

2−α

h2αΓ(3− α)
(y(xi−1)− 2y(xi) + y(xi+1)), (25)

and

D2αy(xi) ≈
Γ(2α + 1)

2h2α
(y(xi−1)− 2y(xi) + y(xi+1)), (26)

for i = 1, 2, . . . , N. By substituting (25) and (26) in (1), we get

Γ(2α + 1)
2h2α

(y(xi−1)− 2y(xi) + y(xi+1)) +
qxi

2−α

h2αΓ(3− α)
(y(xi−1)− 2y(xi) + y(xi+1)) + ry(xi) = f (xi), (27)

for i = 1, 2, . . . , N. Actually, formula (27) can be rewritten in the form(
Γ(2α + 1)

2
+

qxi
2−α

Γ(3− α)

)
y(xi−1)−

(
Γ(2α + 1) +

2qxi
2−α

Γ(3− α)
+ r
)

y(xi)

+

(
Γ(2α + 1)

2
+

qxi
2−α

Γ(3− α)

)
y(xi+1) = h2α f (xi),

(28)

for i = 1, 2, . . . , N. For simplicity, we set the following assumptions:

ai =
Γ(2α + 1)

2
+

qx2−α
i

Γ(3− α)
(29)

and

bi = −
(

Γ(2α + 1) +
2qx2−α

i
Γ(3− α)

+ r

)
, (30)

for i = 1, 2, . . . , N. This immediately converts (28) to

ai(y(xi−1) + y(xi+1)) + biy(xi) = h2 f (xi), (31)

for i = 1, 2, . . . , N. In fact, the above formulas can be expressed in the matrix form
as follows:

b1 a1 0 0 . . . 0 0 0
a2 b2 a2 0 . . . 0 0 0
0 a3 b3 a3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . aN−1 bN−1 aN−1
0 0 0 0 . . . 0 aN bN





y1
y2
y3
...

yN−1
yN


= h2α



f (x1)
f (x2)
f (x3)

...
f (xN−1)

f (xN)


−



a1ya
0
0
...
0

aNyb


. (32)

The above linear system can be denoted by AX = M, where

A =



b1 a1 0 0 . . . 0 0 0
a2 b2 a2 0 . . . 0 0 0
0 a3 b3 a3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . aN−1 bN−1 aN−1
0 0 0 0 . . . 0 aN bN


(33)
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X = [y1, y2, y3, · · · , yN−1, yN ]
T

and

M =
[

h2α f (x1)− a1ya, h2α f (x2), h2α f (x3), · · · , h2α f (xN−1), h2α f (xN)− aNyN

]T
.

As a matter of fact, system (32) is called tridiagonal and could be solved algebraically using
the Thomas algorithm [15]. In particular, if we take formula (31) again as follows:

ai(yi−1 + yi+1) + biyi = di, (34)

where di = h2α f (xi) for i = 1, 2, . . . , N. Now, formula (34) can be written in the form:

b1y1 + a1y2 = d∗1
b2y2 + a2(y1 + y3) = d2

b3y3 + a3(y2 + y4) = d3

...

bN−1yN−1 + aN−1(yN−2 + yN) = dN−1

aNyN−1 + bNyN = d∗N ,

(35)

where d∗1 = h2α f (x1) − a1ya and d∗N = h2α f (xN) − aNyb. By considering the Thomas
algorithm, we assume b1 6= 0 and eliminate y1 from the second equation of system (35).
This gives

b′2y2 + a2y3 = d′2,

where b′2 = b2 − a1
a2
b1

and d′2 = d2 − d1
a2
b1

. Next, assuming b′2 6= 0 and eliminating y2 from
the third equation of system (35) yields

b′3y3 + a3y4 = d′3,

where b′3 = b3 − a2
a3
b′2

and d′3 = d3 − d′2
a3
b′2

. Similarly, if we assume that b′k 6= 0 and

eliminating yk from the (k + 1)th-equation of the system (35), we obtain

b′k+1yk+1 + ak+1yk+2 = d′k+1,

where b′k+1 = bk+1− ak
ak+1

b′k
and d′k+1 = dk+1− d′k

ak+1
b′k

, for k = 1, 2, . . . , N− 1. Consequently,

by back substituting N and assuming b′N 6= 0 in which yN =
d′N
b′N

, we have

yk =
d′k − akyk+1

b′k
,

for k = N − 1, N − 2, . . . , 1. This finishes the Thomas algorithm and, hence, by proper
MATLAB code, we can obtain the desired numerical solution of the aimed system (1) and (2).

3.3. Stability of the Method

In order to insure of the stability of the fractional central formula for approximating
the Caputo differentiator of order 2α, where 0 < α ≤ 1, we consider the following FBVP:

D2αy(x) = f (x), (36)

with the boundary conditions

y(a) = ya, y(b) = yb, (37)
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where a < x < b. The importantquestiontobeaskedhere ishowwould Ŷ = [y1, y2, y3, · · · , yN−1]
T

be regarded a good approximation of solution of problem (36) and (37). To answer this
question, we need to estimate the error in the discrete values y1, y2, . . . , yN related to the
true solution y(x). In this regard, we assume the pointwise error is of the form yi − y(xi),
for i = 0, 1, . . . , N, and the true vector is of the form Y = [y1, y2, y3, . . . , yN−1, yN ]

T . This
gives the error of the form

E = Ŷ− Y,

which contains all error at each grid point. To obtain a bound on the magnitude of the
above vector error, we need to estimate O(h2α) as h→ 0. To do this, we consider

‖E‖∞ = max
1≤i≤0

|Ei| = max
1≤i≤0

|yi − y(xi)|,

which represents the largest error order in the interval [a, b]. Therefore, if ‖E‖∞ = O(h2α),
then

|yi − y(xi)| = O(h2α),

for i = 0, 1, . . . , N.
Next, our aim is to estimate the error in our proposed difference approach. To do so,

we should be concerned with the local truncation error, and then with the stability of this
approach for the purpose of justifying the boundedness of the global error. So, let us start
with the local truncation error, which would be as follows:

Ti =
Γ(2α + 1)

2h2α

(
y(xi−1)− 2y(xi) + y(xi+1)

)
− f (xi), (38)

or

Ti = D2αy(xi)−
h2αΓ(2α + 1)

Γ(4α + 1)
D4αy(ξi) + O(h4α)− f (xi), (39)

for i = 1, 2, . . . , N. Now, by using D2αy(x) = f (x), we have

Ti = −
h2αΓ(2α + 1)

Γ(4α + 1)
D4αy(ξi) + O(h4α). (40)

Now, though D4αy(ξi) is unknown fixed and is independent of h, we have Ti ∼ O(h4α) as
h→ 0. If we define T as a vector containing Ti, then

T = AY−M,

which implies
AY = M + T. (41)

Now, to address the global error, we can have from (41) the following approximation:

AŶ = M. (42)

So, the global error is defined as
E = Ŷ− Y.

Now, subtracting (41) and (42) yields

A
(
Ŷ− Y

)
= −T,

or
AE = −T. (43)

This implies
Γ(2α + 1)

2h2α
(Ei−1 − 2Ei + Ei+1) = −T(xi), (44)
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with boundary conditions
E0 = 0, EN+1 = 0, (45)

for i = 1, 2, . . . , N. Note that problems (44) and (45) are the same as the difference equation
reported previously for yi, except f (xi) = −T(xi), for i = 1, 2, . . . , N. Actually, problems (44)
and (45) can be expressed as

D2αe(x) = −τ(x), (46)

with boundary conditions
e(a) = 0, e(b) = 0, (47)

where a ≤ x ≤ b and

τ(x) =
Γ(2α + 1)
Γ(4α + 1)

D4αy(x).

Now, if we operate J α in Equation (46), we get

Dαe(x) = −h2α Γ(2α + 1)
Γ(4α + 1)

(D3αy(x)− {D2α}y(0)),

or

Dαe(x) = h2α Γ(2α + 1)
Γ(4α + 1)

D2αy(0)− h2α Γ(2α + 1)
Γ(4α + 1)

D3αy(x). (48)

By operating J α twice again in Equation (48), we obtain

e(x) = h2α Γ(2α + 1)
Γ(4α + 1)

xα

Γ(α + 1)
D2αy(0)− h2α Γ(2α + 1)

Γ(4α + 1)

(
D2αy(x)− Dαy(0)

)
,

or

e(x) = −h2α Γ(2α + 1)
Γ(4α + 1)

D2αy(x) + h2α Γ(2α + 1)
Γ(4α + 1)

(
xα

Γ(α + 1)
D2αy(0)− Dαy(0)

)
.

This implies ‖E‖∞ ≈ O(h2α), which represents the desired estimation for the global error.
Now, with aim of dealing with the stability of the proposed difference scheme, we

consider again system (43) in which A is the corresponding tridiagonal matrix, E is the
global error matrix, and T is the local truncation error matrix. In fact, system (43) can be
rewritten as

AhEh = −Th, (49)

for a given h = 1
n+1 . It is important to mention that Ah

m×m, and as a result the dimension of
Ah will grow as h→ 0. Now, let (Ah)−1 exist. Then, we have

Eh = −(Ah)−1Th. (50)

Consequently, we obtain ∥∥∥Eh
∥∥∥ =

∥∥∥(Ah)−1Th
∥∥∥ ≤ ∥∥∥(Ah)−1

∥∥∥∥∥∥Th
∥∥∥.

But we have
∥∥∥Th

∥∥∥ ∼ O(h2α). So, we expect the same for
∥∥∥Eh

∥∥∥. Thus, for
∥∥∥Eh

∥∥∥ ∼ O(h2α),

then
∥∥∥(Ah)−1

∥∥∥ is independent of h as h → 0, say
∥∥∥(Ah)−1

∥∥∥ ≤ c, for sufficiently small h,
where c is constant. Therefore, we have∥∥∥Eh

∥∥∥ ≤ c
∥∥∥Th

∥∥∥,

and hence the stability is ensured.



Mathematics 2023, 11, 4082 9 of 12

4. Numerical Experiments

In this section, we validate our proposed numerical approach discussed in the previous
section by illustrating three numerical examples including FBVPs of the forms (1) and (2).
We use MATLAB-2020 software to simulate the results in a few fractional-order values.

Example 1. Consider the following FBVP:

D2αy + 2y = 0, (51)

with boundary conditions
y(0) = 1, y(π) = 0. (52)

The exact solution for problems (51) and (52) is of the form

y(x) = cos(
√

2x)− cot(
√

2π) sin(
√

2x). (53)

In order to validate such an approach in handling the FBVPs, we track the proposed numerical
approach discussed in Section 3. This would provide us with several approximate solutions for
problem (51) and (52) with different fractional-order values, i.e., α = 1, 0.8, 0.6, 0.4. Some of these
approximate solutions are plot and compared with the exact solution (53) as can be seen in Figure 1
and Table 1.

0 0.5 1 1.5 2 2.5 3 3.5

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y
(x

)

Exact vs Numerical Solutions

FCDM with =1

FCDM with =0.8

FCDM with =0.6

FCDM with =0.4

Exact

Figure 1. Exact solution vs. numerical solutions of problems (51) and (52) for α = 1, 0.8, 0.6, 0.4.

In light of the previous numerical results, one can clearly observe that the approximate solutions
generated by our approach converge to the exact solution as α gets closer to 1, confirming the validity
of the proposed method.

Table 1. Exact solution vs. numerical solutions of problems (51) and (52) for α = 1, 0.8, 0.6, 0.4.

x α = 0.4 α = 0.6 α = 0.8 α = 1 Exact Solution

0 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 0.3280 0.2289 0.4551 0.7989 0.7842
0.2 −0.6303 −0.6484 −0.2165 0.4401 0.4161
0.3 −1.3491 −1.3529 −0.8424 −0.0056 −0.0328
0.4 −1.7529 −1.7965 −1.3172 −0.4501 −0.4753
0.5 −1.8669 −1.9651 −1.5815 −0.8058 −0.8255
0.6 −1.7447 −1.8819 −1.6146 −1.0025 −1.0154
0.7 −1.4452 −1.5903 −1.4282 −1.0013 −1.0082
0.8 −1.0235 −1.1431 −1.0593 −0.8024 −0.8052
0.9 −0.5283 −0.5954 −0.5622 −0.4451 −0.4459
1.0 0.0000 0.0000 0.0000 0.0000 0.0000
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Example 2. Consider the following FBVP:

D2αy = y + x, (54)

with boundary conditions
y(0) = 0, y(1) = 0. (55)

The exact solution for problems (54) and (55) is of the form

y(x) =
sinh x
sinh 1

− x. (56)

With the aim of verifying the correctness of our proposed technique in handling the FBVPs, we
follow the same manner used in Example 1 coupled with using the numerical approach discussed in
the previous section. This would provide us with several approximate solutions for problems (54)
and (55) with different fractional-order values, i.e., α = 1, 0.8, 0.6, 0.4. Some of these approximate
solutions are plotted and compared with the exact solution (56) as can be seen in Figure 2 and
Table 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

y
(x

)

Exact vs Numerical Solutions

FCDM with =1

FCDM with =0.8

FCDM with =0.6

FCDM with =0.4

Exact

Figure 2. Exact solution vs. numerical solutions of problems (54) and (55) for α = 1, 0.8, 0.6, 0.4.

Table 2. Exact solution vs. numerical solutions of problems (54) and (55) for α = 1, 0.8, 0.6, 0.4.

x α = 0.4 α = 0.6 α = 0.8 α = 1 Exact Solution

0 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 −0.1120 −0.0429 −0.0244 −0.0150 −0.0148
0.2 −0.1870 −0.0775 −0.0460 −0.0299 −0.0287
0.3 −0.2326 −0.1026 −0.0635 −0.0412 −0.0409
0.4 −0.2533 −0.1180 −0.0758 −0.0508 −0.0505
0.5 −0.2524 −0.1233 −0.0819 −0.0568 −0.0566
0.6 −0.2324 −0.1185 −0.0813 −0.0589 −0.0583
0.7 −0.1955 −0.1036 −0.0732 −0.566 −0.0545
0.8 −0.1435 −0.0788 −0.0572 −0.0476 −0.0443
0.9 −0.0778 −0.0442 −0.0329 −0.0269 −0.0265
1.0 0.0000 0.0000 0.0000 0.0000 0.0000

Herein, we can also notice that the approximate solutions generated by our numerical scheme
converge to the exact solution as α gets closer to 1.
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Example 3. Consider the following FBVP:

D2αy + 5Dαy + 4y = 1, (57)

with boundary conditions
y(0) = 0, y(1) = 0. (58)

The exact solution for problems (57) and (58) is of the form

y(x) =
(

e−3 − e
4(1− e−3)

)
e−x +

(
−1

4
−
(

e−3 − e
4(1− e−3)

))
e−4x +

1
4

. (59)

In a similar manner to the previous two examples, we generate here several approximate
solutions for problems (57) and (58) with different fractional-order values, i.e., α = 1, 0.8, 0.6, 0.4.
Some of these approximate solutions are plotted and compared with the exact solution (59) as can be
seen in Figure 3 and Table 3.

Note that the approximate solutions obtained by the proposed scheme also converge to the exact
solution as α gets closer to 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0

0.02

y
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)

Exact vs Numerical Solutions

FCDM with =1

FCDM with =0.8

FCDM with =0.6

FCDM with =0.4

Exact

Figure 3. Exact solution vs. numerical solutions of problems (57) and (58) for α = 1, 0.8, 0.6, 0.4.

Table 3. Exact solution vs. numerical solutions of problems (57) and (58) for α = 1, 0.8, 0.6, 0.4.

x α = 0.4 α = 0.6 α = 0.8 α = 1 Exact Solution

0 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 −0.1365 −0.0409 −0.0591 −0.0862 −0.0822
0.2 −0.1479 −0.0633 −0.0855 −0.1257 −0.1217
0.3 −0.1323 −0.0732 −0.0934 −0.1379 −0.1339
0.4 −0.1120 −0.0743 −0.0905 −0.1333 −0.1293
0.5 −0.0919 −0.0695 −0.0811 −0.1188 −0.1146
0.6 −0.0727 −0.0603 −0.0680 −0.0981 −0.0943
0.7 −0.0542 −0.0481 −0.0527 −0.0752 −0.0712
0.8 −0.0360 −0.0336 −0.0359 −0.0510 −0.0470
0.9 −0.0180 −0.0175 −0.0183 −0.0271 −0.0231
1.0 0.0000 0.0000 0.0000 0.0000 0.0000

5. Conclusions

In this paper, a novel numerical approach has been successfully proposed to deal with
fractional boundary value problems. This has been carried out by utilizing two numerical
formulas—the fractional central formula for approximating the Caputo differentiator of
order α and the fractional central formula for approximating the Caputo differentiator



Mathematics 2023, 11, 4082 12 of 12

of order 2α, where 0 < α ≤ 1. The stability analysis of the proposed approach has been
discussed, and several numerical examples have been illustrated to show the applicability
of the proposed method. Thus, in light of this study, we believe that we can address many
other kinds of fractional-order problems in a similar manner, such as the fractional-order
system of differential equations, fractional partial differential equations, and fractional
integrodifferential equations. This is left to the future for further consideration.
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