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Abstract: This article is mainly concerned with the approximate controllability for some semi-linear
fractional integro-differential impulsive evolution equations of order 1 < α < 2 with delay in Banach
spaces. Firstly, we study the existence of the PC-mild solution for our objective system via some
characteristic solution operators related to the Mainardi’s Wright function. Secondly, by using the
spatial decomposition techniques and the range condition of control operator B, some new results of
approximate controllability for the fractional delay system with impulsive effects are obtained. The
results cover and extend some relevant outcomes in many related papers. The main tools utilized in
this paper are the theory of cosine families, fixed-point strategy, and the Grönwall-Bellman inequality.
At last, an example is given to demonstrate the effectiveness of our research results.
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1. Introduction

It is an undeniable actuality at the present stage that the fractional derivative has
stronger expressiveness than the integral order derivative. Since fractional calculus is more
suitable for describing objective reality, there is an increasing amount of valuable outcomes
about various fractional systems, including theoretical aspects and application fields in
recent years. Currently, the theory of fractional calculus has been extensively employed
in disciplines such as viscoelasticity and rheology, physics, signal processing, control
engineering, etc. For further information regarding these studies, please go through [1–8].

Controllability of control systems is an important component and research direction
of control theory, as well as the foundation of optimal control and optimal estimation. In
recent years, the controllability of various types of fractional dynamic systems, including
fractional impulsive systems [9,10], delay syetems [11], stochastic systems [12,13], neutral
systems [14], nonlocal systems [15], damped systems [16], integro-differential systems [17],
measure evolution systems [18], etc., has been studied extensively and deeply. For example,
in [10], the authors derived some new results of the total controllability (a type of exact
controllability) for a fractional control system with non-instantaneous impulse by means
of Krasnoselskii’s fixed-point theorem. H. Gou et al. [19] proved the exact controllability
for fractional integro-differential system with impulsive effects via the theory of resolvent
operators and measures of noncompactness. The exact controllability of a neutral frac-
tional evolution system was also investigated by fixed point theory and the measures of
noncompactness in [20]. Y. Yi et al. [21] addressed the exact controllability for fractional
integro-differential equations with input delay via Mittag–Leffler functions and nonlinear
functional analysis theory in finite spaces.

We should note that exact controllability can manipulate the target system to any
specified endpoint state, but the requirement for the control operator is that it must be
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reversible. Moreover, an important fact that needs to be clarified is that when the semigroup
and sine family are compact, the evolution systems of the first and second orders are never
exactly controllable [22]. Undoubtedly, this means that exact controllability has significant
limitations in practice. Therefore, as an extension of its concept, which indicates that target
system can be manipulated to the neighborhood of a specified endpoint state, approximate
controllability is provided with more widespread practical application prospects. For
instance, the authors in [23] formulated and demonstrated several sufficient conditions
for approximate controllability of a class of stochastic fractional system by using solution
operator theory and fixed-point strategy. In [24,25], the authors established some sufficient
conditions for approximate controllability of fractional differential equations of order
α ∈ (1, 2) with finite delay and infinite delay via the theory of strongly continuous cosine
and sine family, respectively. C. Dineshkumar et al. [26] discussed the approximate
controllability of fractional neutral integro-differential systems by applying Schauder’s
fixed-point theorem. N. I. Mahmudov [27] proved the partial-approximate controllability
of some fractional nonlocal dynamic equations by using an approximating technique due
to the non-compactness of associated C0-semigroup at t = 0.

What we need to emphasize here is that such outcomes mentioned above regarding
approximate controllability are achieved under some special resolvent conditions related
to the resolvent operators associated with the studied systems (see [28–30] for further
details). However, there are only a few articles on investigating approximate controllability
by decomposing the given Banach space into the direct sum of its orthogonal subspaces
(we call them spatial decomposition techniques). For example, K. Naito [31] studied the
approximate controllability of a class of integer order system dx

dt
= −Ax(t) + F(x(t)) + Bu(t), t ∈ [0, T],

x(0) = 0,

where F is Lipschitz continuous, −A generates a C0-semigroup, and B is a bounded linear
operator. The results were firstly derived through some range conditions of the operator
B, and a proper decomposition of certain space related with the C0-semigroup. S. Kumar
et al. [32] studied the approximate controllability of the following fractional differential
equation with finite delay{

Dαx(t) = Ax(t) + f (t, x(t− h)) + Bu(t), t ∈ [0, b],
x(t) = ϕ(t), t ∈ [−h, 0],

where α ∈ (
1
2

, 1), f is nonlinear, ϕ is continuous, and A generates a C0-semigroup. By using
Banach contraction principle and spatial decomposition methods, the authors obtained the
existence of mild solutions and the approximate controllability of the fractional system.

Thus, it can be observed that although results on the approximate controllability of
integer order and fractional order evolution systems have been presented one after another
in recent years, and also only a few papers have considered the approximate controllability
for such systems by using spatial decomposition techniques (see [31–33]), there is currently
no report on the approximate controllability of fractional integro-differential impulsive
evolution equations of order 1 < α < 2 with delay under a new definition of the PC-mild
solution by using spatial decomposition techniques.

Motivated by these considerations, in this work, we take advantage of spatial decom-
position techniques and the theory of the strongly continuous cosine family to study the
approximate controllability of the following fractional delay system with impulsive effects
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CDαx(t) = Ax(t) + Ãx(t− b) + Bu(t) + f
(

t, x(t− b),
∫ t

0
k(t, s, x(s− b))ds

)
, a.e. t ∈ I,

x(t) = φ(t), t ∈ [−b, 0],
x′(0) = x0,
∆x(tk) = zk, k = 1, 2, · · ·, m,
∆x′(tk) = z̃k, k = 1, 2, · · ·, m,

(1)

where CDα is the Caputo derivative with order 1 < α < 2. The state x takes value in a
Banach space X with norm ‖ · ‖. The linear closed operator A : D(A) ⊂ X → X generates a
strongly continuous cosine family {C(t)}t≥0 in X. Let Z = L2(I; X), Zb = L2(J; X), where
I = [0, a] and J = [−b, a]. Define Y = L2(I; U), and U is also a Banach space with norm
‖ · ‖U . The control u is introduced in Y, and B is a bounded linear operator from Y to Z. The
impulse point set {tk} satisfies 0 = t0 < t1 < t2 < · · · < tm < tm+1 = a < +∞, m ∈ N. Ã
is a bounded linear operator on X. φ is continuous on [−b, 0]. x0, zk, z̃k ∈ X. The functions
f , k are some given functions that will be mentioned in detail later. If f ≡ 0, the system (1)
degenerates into a linear system denoted by (2); that is,

CDαx(t) = Ax(t) + Ãx(t− b) + Bu(t), a.e. t ∈ I,
x(t) = φ(t), t ∈ [−b, 0],
x′(0) = x0,
∆x(tk) = zk, k = 1, 2, · · ·, m,
∆x′(tk) = z̃k, k = 1, 2, · · ·, m.

(2)

The major features of this article are as follows. (i) The PC-mild solution of fractional
integro-differential impulsive evolution equations of order 1 < α < 2 with delay (1) is
firstly presented by some characteristic solution operators based on the Mainardi’s Wright
function. (ii) Compared with the way of spatial decomposition in some of the previous
relevant literature, approximate controllability of fractional system (1) is investigated by
utilizing some more extensive spatial decomposition techniques, which covers and extends
some related conclusions obtained in many papers [24,31–34].

The structure of the present paper is arranged as follows. Section 2 provides some
known fundamental theories and some necessary preparations for the new definition of
the PC-mild solution. Section 3 gives and proves the existence of the new PC-mild solution
for the considered system by utilizing fixed-point strategy. Approximate controllability for
fractional integro-differential impulsive system of order 1 < α < 2 with delay (1) is proved
by means of spatial decomposition techniques in Section 4. In the last section, an example
is proposed to demonstrate the obtained controllability results.

2. Preliminaries

Denote PC(J; X) = {x : J → X | x ∈ C((tk, tk+1]; X), x(t−k ) and x(t+k ) exist with x(t−k ) =

x(tk), k = 1, 2, · · ·, m}. It is easy to see that PC(J; X) is a Banach space provided with the
norm ‖x‖PC(J;X) = sup

t∈J
{‖x(t)‖}. Let L(X) be a space of all bounded linear operators from

X into itself endowed with the norm ‖ · ‖L. Also, C([−b, 0]; X) represents a Banach space
of all continuous function from [−b, 0] to X with the norm ‖ · ‖C.

Definition 1 ([35]). The Caputo fractional derivative with order α ∈ (1, 2) is denoted by

Dα
0+x(τ) =

1
Γ(2− α)

∫ τ

0

x(2)(s)
(τ − s)α−1 ds,

where x ∈ C1([0, a]; X).

Definition 2 ([36]). The family {C(τ)}τ∈R ⊆ L(X) is said to be a cosine family if it satisfies

(i) C(ζ + τ) + C(ζ − τ) = 2C(ζ)C(τ), ∀ζ, τ ∈ R;
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(ii) C(0) = I;
(iii) C(τ)ξ is strongly continuous in τ on R for every fixed ξ ∈ X.

Definition 3 ([36]). The Mainardi’s Wright function Mβ is defined as

Mβ(v) =
∞

∑
n=0

(−v)n

n!Γ(−βn + 1− β)
, β ∈ (0, 1), v ∈ C,

and it satisfies
∫ ∞

0
vς Mβ(v)dv =

Γ(1 + ς)

Γ(1 + βς)
, −1 < ς < ∞.

The family {S(τ)}τ∈R ⊆ L(X) is said to be a sine family associated with {C(τ)}τ∈R if
it satisfies

S(τ)ξ =
∫ τ

0
C(s)ξds, ξ ∈ X, τ ∈ R.

The operator A denoted by

Aξ =
d2

dt2 C(τ)ξ |τ=0, ∀ξ ∈ D(A),

is said to be an infinitesimal generator of {C(τ)}τ∈R where

D(A) = {ξ ∈ X : C(τ)ξ is a twice continuously di f f erentiable f unction o f τ}.

In addition, from [36,37], we know that there exists a constant M ≥ 1 such that
‖C(τ)‖L ≤ M for τ ≥ 0.

Lemma 1 ([36]). Assume that {C(τ)}τ∈R is a strongly continuous cosine family in X and satisfies
‖C(τ)‖L ≤ Meσ|τ|, τ ∈ R. Then, for λ with Reλ > σ, λ2 ∈ ρ(A) and

λR(λ2; A)ξ =
∫ ∞

0
e−λτC(τ)ξdτ, R(λ2; A)ξ =

∫ ∞

0
e−λτS(τ)ξdτ, ∀ξ ∈ X.

Before deducing the mild solution of system (1), let us consider the following linear
fractional impulsive system with delay

CDαx(t) = Ax(t) + h(t), a.e. t ∈ I,
x(0) = φ(0),
x′(0) = x0,
∆x(tk) = zk, k = 1, 2, · · ·, m,
∆x′(tk) = z̃k, i = 1, 2, · · ·, m.

(3)

By using a similar derivation to the mild solution of fractional impulsive systems
in [9,38], we can transform system (3) into an equivalent integral expression

x(t) =



φ(0) + x0t +
∫ t

0

(t− s)α−1

Γ(α)
(Ax(s) + h(s))ds, t ∈ [0, t1],

φ(0) + x0t + z1 + z̃1(t− t1) +
∫ t

0

(t− s)α−1

Γ(α)
(Ax(s) + h(s))ds, t ∈ (t1, t2],

φ(0) + x0t + z1 + z̃1(t− t1) + z2 + z̃2(t− t2) +
∫ t

0

(t− s)α−1

Γ(α)
(Ax(s) + h(s))ds, t ∈ (t2, t3],

...

φ(0) + x0t +
m

∑
k=1

zk +
m

∑
k=1

z̃k(t− tk) +
∫ t

0

(t− s)α−1

Γ(α)
(Ax(s) + h(s))ds, t ∈ (tm, a].

(4)
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Obviously, (4) can be expressed in the following form

x(t) = φ(0) + x0t +
m

∑
k=1

χk(t)zk +
m

∑
k=1

χk(t)z̃k(t− tk) +
∫ t

0

(t− s)α−1

Γ(α)
(Ax(s) + h(s))ds, t ∈ I, (5)

where

χk(t) =

{
0, t ≤ tk,

1, t > tk.
(6)

For simplicity, denote β =
α

2
for α ∈ (1, 2). Then, one presents the next important

lemma.

Lemma 2. Suppose that (5) holds. Then, one has

x(t) = Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] +
∫ t

0
(t− s)

β−1
Pβ(t− s)h(s)ds, t ∈ I, (7)

where

Cβ(t) =
∫ ∞

0
Mβ(s)C(tβs)ds, Kβ(t) =

∫ t

0
Cβ(s)ds, Pβ(t) =

∫ ∞

0
βsMβ(s)S(tβs)ds.

Proof. First, it is not difficult to check the following Laplace transform:

L[χk(t)](λ) =
e−λtk

λ
, L[χk(t)(t− tk)](λ) =

e−λtk

λ2 . (8)

Furthermore, using the similar way in [37] implies

λβ−1
∫ ∞

0
e−λβtC(t)φ(0)dt = L[Cβ(t)φ(0)](λ), (9)

∫ ∞

0
e−λβtS(t)L[h(t)](λ)dt = L

[∫ t

0
(t− s)β−1Pβ(t− s)h(s)ds

]
(λ). (10)

Let λα ∈ ρ(A). From Lemma 1 and (8)–(10) and taking the Laplace transform to (5) on
both sides, it follows that

L[x(t)](λ) =
1
λ

φ(0) +
1

λ2 x0 +
m

∑
k=1

e−λtk

λ
zk +

m

∑
k=1

e−λtk

λ2 z̃k +
1

λα
AL[x(t)](λ) + 1

λα
L[h(t)](λ)

= λα−1(λα I − A)−1φ(0) + λα−2(λα I − A)−1x0 +
m

∑
k=1

e−λtk λα−1(λα I − A)−1zk

+
m

∑
k=1

e−λtk λα−2(λα I − A)−1z̃k + (λα I − A)−1L[h(t)](λ)

= λβ−1
∫ ∞

0
e−λβtC(t)φ(0)dt + λ−1λβ−1

∫ ∞

0
e−λβtC(t)x0dt +

m

∑
k=1

e−λtk λβ−1
∫ ∞

0
e−λβtC(t)zkdt

+
m

∑
k=1

e−λtk λ−1λβ−1
∫ ∞

0
e−λβtC(t)z̃kdt +

∫ ∞

0
e−λβtS(t)L[h(t)](λ)dt

=
∫ ∞

0
e−λtCβ(t)φ(0)dt +

∫ ∞

0
e−λt

(∫ t

0
Cβ(s)x0ds

)
dt +

m

∑
k=1

e−λtk

∫ ∞

0
e−λtCβ(t)zkdt

+
m

∑
k=1

e−λtk

∫ ∞

0
e−λt

(∫ t

0
Cβ(s)z̃kds

)
dt +

∫ ∞

0
e−λt

(∫ t

0
(t− s)β−1Pβ(t− s)h(s)ds

)
dt

= L[Cβ(t)φ(0)](λ) + L[Kβ(t)x0](λ) +
m

∑
k=1
L[χk(t)Cβ(t− tk)zk](λ)

+
m

∑
k=1
L[χk(t)Kβ(t− tk)z̃k](λ) + L

[∫ t

0
(t− s)β−1Pβ(t− s)h(s)ds

]
(λ).
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Then, the uniqueness theorem of Laplace transform guarantees that

x(t) = Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] +
∫ t

0
(t− s)

β−1
Pβ(t− s)h(s)ds, t ∈ I.

This ends the proof.

Lemma 3 ([37]). For any τ ∈ [0,+∞) and ξ ∈ X, the following inequalities hold:

‖Cβ(τ)ξ‖ ≤ M‖ξ‖, ‖Kβ(τ)ξ‖ ≤ M‖ξ‖τ, ‖Pβ(τ)ξ‖ ≤
M

Γ(2β)
‖ξ‖τβ.

Lemma 4 ([37]). For any τ1, τ2 ∈ [0,+∞) and for any ξ ∈ X, the following estimations hold:
(i) ‖Cβ(τ2)ξ − Cβ(τ1)ξ‖ → 0, as |τ1 − τ2| → 0;
(ii) ‖Kβ(τ2)− Kβ(τ1)‖L → 0, as |τ1 − τ2| → 0;

(iii) ‖Pβ(τ2)− Pβ(τ1)‖L ≤
M

Γ(2β)
|τβ

2 − τ
β
1 | → 0, as |τ1 − τ2| → 0.

Lemma 5 ([38] Schaefer’s fixed-point theorem). Suppose X to be a Banach space and the
operator Ψ : X → X to be completely continuous. If the set

U(Ψ) = {x ∈ X : x = λΨx f or certain λ ∈ (0, 1)}

is bounded, then the operator Ψ has at least a fixed point.

3. Existence of the Mild Solution

On the basis of Lemma 2, the new PC-mild solution of system (1) can be introduced as
below.

Definition 4. A function x ∈ PC(J; X) is called a PC-mild solution of system (1) for each control
u ∈ Y if it satisfies the piecewise equation

x(t) =



Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k]

+
∫ t

0
(t− s)

β−1
Pβ(t− s)

[
Ãx(s− b) + Bu(s) + f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)]
ds, t ∈ I,

φ(t), t ∈ [−b, 0].

Now, we impose some necessary hypotheses on the nonlinear terms of the studied
fractional system.

Hypothesis 1 (H1). The function f : I × X× X → X is continuous, and there exists a function
p(t) ∈ C(I;R+) such that

‖ f (t, x, y)‖ ≤ p(t)(1 + ‖x‖+ ‖y‖),

for all x, y ∈ X and t ∈ I.

Hypothesis 2 (H2). The function k : ∆× X → X is continuous where ∆ = {(t, s) ∈ I × I : s ≤
t}, and there exists a function m ∈ L1(I;R+) such that ‖k(t, s, x)‖ ≤ m(s) for all (t, s) ∈ ∆ and
x ∈ X.

Lemma 6. Assume that (H1) and (H2) hold. Then, the fractional system (1) has at least one
PC-mild solution.
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Proof. Define an operator Ψ : PC(J; X)→ PC(J; X) as

(Ψx)(t) =



Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)
[
Cβ(t− tk)zk + Kβ(t− tk)z̃k

]
+
∫ t

0
(t− s)

β−1
Pβ(t− s)

[
Ãx(s− b) + Bu(s) + f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)]
ds, t ∈ I,

φ(t), t ∈ [−b, 0].

To make the proof more concise, we shall now divide it into four steps.
Step I. Ψ maps bounded set into bounded set in PC(J; X).
For any t ∈ I, r1 > 0 and any x ∈ Br1 = {x ∈ PC(J; X) : ‖x‖PC ≤ r1}, one can obtain

‖(Ψx)(t)‖ ≤ ‖Cβ(t)φ(0)‖+ ‖Kβ(t)x0‖+
m

∑
k=1

[‖Cβ(t− tk)zk‖+ ‖Kβ(t− tk)z̃k‖]

+
∫ t

0
(t− s)

β−1
∥∥∥∥Pβ(t− s)

[
Ãx(s− b) + Bu(s) + f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)]∥∥∥∥ds

≤ M‖φ(0)‖+ Ma‖x0‖+
m

∑
k=1

[M‖zk‖+ Maz̃k‖]

+
Ma2β−1

Γ(2β)

∫ t

0

[
‖Ãx(s− b)‖+ ‖Bu(s)‖+ p(s)(1 + ‖x(s− b)‖+ ‖m‖L1)

]
ds

≤ M‖φ(0)‖+ Ma‖x0‖+
m

∑
k=1

[M‖zk‖+ Maz̃k‖]

+
Ma2β−1

Γ(2β)

[
ar1‖Ã‖+

√
a‖Bu‖Z + max

t∈I

∫ t

0
p(s)ds · (1 + r1 + ‖m‖L1)

]
:= r0,

which implies that ‖Ψx‖PC ≤ max{‖φ‖C, r0} := r2. Thereby, we have Ψ(Br1) ⊆ Br2 .
Step II. Ψ is continuous.
Suppose that {xn} satisfies xn → x in PC(J; X). Since f , k are all continuous, then for

every t ∈ I, we have from Lebesgue’s domination convergence theorem that

‖(Ψxn)(t)− (Ψx)(t)‖

≤
∫ t

0
(t− s)β−1

∥∥∥Pβ(t− s)
[

Ãxn(s− b)− Ãx(s− b)
]∥∥∥ds

+
∫ t

0
(t− s)β−1

∥∥∥∥Pβ(t− s)
[

f
(

s, xn(s− b),
∫ s

0
k(s, η, xn(η − b))dη

)
− f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)]∥∥∥∥ds

≤ M‖Ã‖
Γ(2β)

∫ t

0
(t− s)2β−1‖xn(s− b)− x(s− b)‖ds

+
M

Γ(2β)

∫ t

0
(t− s)2β−1

∥∥∥∥ f
(

s, xn(s− b),
∫ s

0
k(s, η, xn(η − b))dη

)
− f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)∥∥∥∥ds

≤ a2β M‖Ã‖
Γ(2β)

‖xn − x‖PC

+
a2β M
Γ(2β)

∥∥∥∥ f
(

s, xn(s− b),
∫ s

0
k(s, η, xn(η − b))dη

)
− f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)∥∥∥∥
→ 0, as n→ ∞.

In addition, it is obvious that ‖(Ψxn)(t)− (Ψx)(t)‖ = 0 for each t ∈ [−b, 0]. Therefore,
by using the Ascoli–Arzela theorem, it is not difficult to verify that ‖Ψxn −Ψx‖PC → 0, as
n→ ∞.

Step III. Ψ maps bounded set into equicontinuous set in PC(J; X).
For simplicity, let

F(t) = f
(

t, x(t− b),
∫ t

0
k(t, s, x(s− b))ds

)
, t ∈ I.
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Then, for any 0 ≤ σ1 < σ2 ≤ t1 and x ∈ Br1 , we have

‖(Ψx)(σ2)− (Ψx)(σ1)‖
≤

∥∥Cβ(σ2)φ(0)− Cβ(σ1)φ(0)
∥∥+ ∥∥Kβ(σ2)x0 − Kβ(σ1)x0

∥∥
+
∫ σ1

0

∥∥∥[(σ2 − s)β−1Pβ(σ2 − s)− (σ1 − s)β−1Pβ(σ1 − s)
][

Ãx(s− b) + Bu(s) + F(s)
]∥∥∥ds

+
∫ σ2

σ1

(σ2 − s)β−1
∥∥∥Pβ(σ2 − s)

[
Ãx(s− b) + Bu(s) + F(s)

]∥∥∥ds

=
3

∑
i=1

Θi,

where

Θ1 =
∥∥Cβ(σ2)φ(0)− Cβ(σ1)φ(0)

∥∥+ ∥∥Kβ(σ2)x0 − Kβ(σ1)x0
∥∥,

Θ2 =
∫ σ1

0

∥∥∥[(σ2 − s)β−1Pβ(σ2 − s)− (σ1 − s)β−1Pβ(σ1 − s)
][

Ãx(s− b) + Bu(s) + F(s)
]∥∥∥ds,

Θ3 =
∫ σ2

σ1

(σ2 − s)β−1
∥∥∥Pβ(σ2 − s)

[
Ãx(s− b) + Bu(s) + F(s)

]∥∥∥ds.

It can be seen from Lemma 4 that Cβ(t) is strongly continuous and Kβ(t) is uniformly
continuous, and thus we have Θ1 → 0 as σ2 → σ1. In addition, the uniform continuity of
Pβ(t) can imply the operator P̃β(t) := tβ−1Pβ(t) is also uniformly continuous, which can
guarantee that

‖Θ2‖ ≤
∫ σ1−ε

0

∥∥∥[P̃β(σ2 − s)− P̃β(σ1 − s)
][

Ãx(s− b) + Bu(s) + F(s)
]∥∥∥ds

+
∫ σ1

σ1−ε

∥∥∥[P̃β(σ2 − s)− P̃β(σ1 − s)
][

Ãx(s− b) + Bu(s) + F(s)
]∥∥∥ds

≤
∫ σ1−ε

0

[
‖Ãx(s− b)‖+ ‖Bu(s)‖+ p(s)(1 + ‖x(s− b)‖+ ‖m‖L1)

]
ds · sup

s∈[0,σ1−ε]

∥∥∥P̃β(σ2 − s)− P̃β(σ1 − s)
∥∥∥
L

+
M

Γ(2β)

∫ σ1

σ1−ε

[
‖Ãx(s− b)‖+ ‖Bu(s)‖+ p(s)(1 + ‖x(s− b)‖+ ‖m‖L1)

]
·
[
(σ2 − σ1 + ε)2β−1 + ε2β−1

]
≤

[
ar1‖Ã‖+

√
a‖Bu‖Z + (1 + r1 + ‖m‖L1)

∫ σ1−ε

0
p(s)ds

]
· sup

s∈[0,σ1−ε]

∥∥∥P̃β(σ2 − s)− P̃β(σ1 − s)
∥∥∥
L

+
M

Γ(2β)

[
εr1‖Ã‖+

√
ε‖Bu‖Z + (1 + r1 + ‖m‖L1)

∫ σ1

σ1−ε
p(s)ds

]
·
[
(σ2 − σ1 + ε)2β−1 + ε2β−1

]
→ 0, as σ2 → σ1, ε→ 0.

As for Θ3, we have

‖Θ3‖ ≤
M

Γ(2β)

∫ σ2

σ1

(σ2 − s)2β−1
[
‖Ãx(s− b)‖+ ‖Bu(s)‖+ p(s)(1 + ‖x(s− b)‖+ ‖m‖L1)

]
ds

≤ M
Γ(2β)

(σ2 − σ1)
2β−1

[
(σ2 − σ1)r1‖Ã‖+

√
σ2 − σ1‖Bu‖Z + (1 + r1 + ‖m‖L1)

∫ σ2

σ1

p(s)ds
]

≤ M
Γ(2β)

[
(σ2 − σ1)

2βr1‖Ã‖+ (σ2 − σ1)
2β− 1

2 ‖Bu‖Z + (σ2 − σ1)
2β−1(1 + r1 + ‖m‖L1)

∫ σ2

σ1

p(s)ds
]

→ 0, as σ2 → σ1.

Hence, we obtain that Ψ is equicontinuous on [0, t1]. For the case of general interval
(tk, tk+1], it can be similarly proved that
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‖(Ψx)(σ2)− (Ψx)(σ1)‖
≤

∥∥Cβ(σ2)φ(0)− Cβ(σ1)φ(0)
∥∥+ ∥∥Kβ(σ2)x0 − Kβ(σ1)x0

∥∥
+

m

∑
k=1

[∥∥Cβ(σ2 − tk)zk − Cβ(σ1 − tk)zk
∥∥+ ∥∥Kβ(σ2 − tk)z̃k − Kβ(σ2 − tk)z̃k

∥∥]
+
∫ σ1

0

∥∥∥[(σ2 − s)β−1Pβ(σ2 − s)− (σ1 − s)β−1Pβ(σ1 − s)
][

Ãx(s− b) + Bu(s) + F(s)
]∥∥∥ds

+
∫ σ2

σ1

(σ2 − s)β−1
∥∥∥Pβ(σ2 − s)

[
Ãx(s− b) + Bu(s) + F(s)

]∥∥∥ds

=
m

∑
k=1

[∥∥Cβ(σ2 − tk)zk − Cβ(σ1 − tk)zk
∥∥+ ∥∥Kβ(σ2 − tk)z̃k − Kβ(σ2 − tk)z̃k

∥∥]+ 3

∑
i=1

Θi

→ 0, as σ2 → σ1,

which means that Ψ is equicontinuous on (tk, tk+1].
Consequently, we can obtain by Step I–III and the Arzela–Ascoli theorem that Ψ(Br1)

is compact.
Step IV. A priori bound.
We shall prove that the set

U(Ψ) = {x ∈ PC(J; X) : x = λΨx f or certain λ ∈ (0, 1)}

is bounded.
Assume that x ∈ U(Ψ), then x = λΨx for certain λ ∈ (0, 1). In general, we only

consider the case t ∈ (tk, tk+1]. Hence,

‖x(t)‖ ≤ ‖Cβ(t)φ(0)‖+ ‖Kβ(t)x0‖+
k

∑
i=1

[∥∥Cβ(t− tk)zi
∥∥+ ∥∥Kβ(t− ti)z̃i

∥∥]
+
∫ t

0
(t− s)

β−1
∥∥∥∥Pβ(t− s)

[
Ãx(s− b) + Bu(s) + f

(
s, x(s− b),

∫ s

0
k(s, η, x(η − b))dη

)]∥∥∥∥ds

≤ M‖φ(0)‖+ Ma‖x0‖+
k

∑
i=1

[M‖zk‖+ Maz̃k‖]

+
Ma2β−1

Γ(2β)

∫ t

0

[
‖Ãx(s− b)‖+ ‖Bu(s)‖+ p(s)(1 + ‖x(s− b)‖+ ‖m‖L1)

]
ds

≤ M‖φ(0)‖+ Ma‖x0‖+
k

∑
i=1

[M‖zk‖+ Maz̃k‖] +
Ma2β−1

Γ(2β)
‖Bu‖Z

+
Ma2β

Γ(2β)
max
t∈I

∫ t

0
p(s)ds · (1 + ‖m‖L1) +

Ma2β−1

Γ(2β)

∫ t

0

(
p(s) + ‖Ã‖

)
‖x(s− b)‖ds.

By the Grönwall–Bellman inequality, we can choose a constant Mk > 0 such that

‖x(t)‖ ≤ Mk, ∀t ∈ (tk, tk+1].

Denote

M̃ = max
{
‖φ‖C, max

1≤k≤m
{Mk}

}
.

Then, for any t ∈ J, it has ‖x(t)‖ ≤ M̃, which implies ‖x‖PC ≤ M̃. The boundedness
of U(Ψ) has been proven.

From Lemma 5, the operator Ψ has a fixed point which is a PC-mild solution of
fractional system (1). This ends the proof.

4. Approximate Controllability

In this section, we study the approximate controllability of the fractional system (1).
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Denote the reachable set of system (1) by Λa( f ), where

Λa( f ) = {x(a) ∈ X : x is the mild solution o f (1)}.

Definition 5. The fractional system (1) is called approximately controllable on I provided that
Λa( f ) = X, where Λa( f ) represents the closure of Λa( f ). Evidently, linear system (2) is approxi-
mately controllable provided that Λa(0) = X.

We can define operators F(i)
b : Zb → Z (i = 1, 2) presented by(

F(1)
b x

)
(t) = Ãx(t− b),

and (
F(2)

b x
)
(t) = f

(
t, x(t− b),

∫ t

0
k(t, s, x(s− b))ds

)
,

and denote

(Fbx)(t) = Ãx(t− b) + f
(

t, x(t− b),
∫ t

0
k(t, s, x(s− b))ds

)
.

Clearly,

(Fbx)(t) =
(

F(1)
b x

)
(t) +

(
F(2)

b x
)
(t).

Define an operator Q : Z → X as

Qx =
∫ a

0
(a− s)β−1Pβ(t− s)x(s)ds,

and W : Z → Z is defined by

(Wx)(t) =
∫ t

0
(t− s)β−1Pβ(t− s)x(s)ds, t ∈ I.

In the sequel, R(B) and R(B) stand for the range of the operator B and its closure;
N0(Q) and N⊥0 (Q) represent the null space of Q and its orthogonal space, respectively.
Then, we have a unique decomposition Z = N0(Q)⊕N⊥0 (Q).

To demonstrate our controllability result, we also need the following hypotheses.

Hypothesis 3 (H3). The cosine operator family {C(t)}t∈R is compact.

Hypothesis 4 (H4). For every x ∈ Z, there is a y ∈ R(B) satisfying Qx = Qy.

Hypothesis 5 (H5). (i) There exists a function l ∈ L1(I;R+) satisfying

‖ f (t, x1, y1)− f (t, x2, y2)‖ ≤ l(t)(‖x1 − x2‖+ ‖y1 − y2‖), ∀t ∈ I, xi, yi ∈ X, i = 1, 2.

(ii) There exists a function q ∈ L1(I;R+) satisfying

‖k(t, s, x)− k(t, s, y)‖ ≤ q(s)‖x− y‖, ∀(t, s) ∈ ∆, x, y ∈ X.

Hypothesis (H4) indicates that any x ∈ Z can be decomposed as

x = θ + y : θ ∈ N0(Q), y ∈ R(B).
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Then, define an operator G : N⊥0 (Q) → R(B) as Gx̃ = ỹ, where ỹ is the unique
element with minimum norm in {x +N0(Q)} ∩R(B) satisfying

‖Gx̃‖ = ‖ỹ‖ = min{‖z‖ : z ∈ {x̃ +N0(Q)} ∩R(B)}.

Note that G is a linear and continuous operator [32]. Hence, there exists a positive
constant δ such that ‖G‖ ≤ δ.

Lemma 7 ([32]). For each x ∈ Z and corresponding θ ∈ N0(Q), the following inequality holds
‖θ‖Z ≤ (1 + δ)‖x‖Z.

Consider the following set

Ξ =


ω ∈ Zb : ω(t) = (Wθ)(t), θ ∈ N0(Q), t ∈ I;

ω(t) = 0, t ∈ [−b, 0].

. (11)

Obviously, Ξ is a subspace of Zb and satisfies ω(a) = 0, ∀ω ∈ Ξ.
For each mild solution x of linear system (2) with control u, define operators γ

(1)
x and

γ
(2)
x from Ξ to Ξ as

γ
(1)
x (ω) =


Wθ1, t ∈ I;

0, t ∈ [−b, 0],

and

γ
(2)
x (ω) =


Wθ2, t ∈ I;

0, t ∈ [−b, 0],

where θ1 and θ2 are given by the unique decompositions

F(1)
b (x + ω) = θ1 + ι1, θ1 ∈ N0(Q), ι1 ∈ R(B), (12)

and
F(2)

b (x + ω) = θ2 + ι2, θ2 ∈ N0(Q), ι2 ∈ R(B), (13)

respectively.

Lemma 8. Assume that (H1)–(H3) hold. Then, the operator γ
(i)
x (i = 1, 2) has a fixed point in Ξ,

provided that
Ma2β(1 + δ)

Γ(2β)
max

{
p∗, ‖Ã‖

}
< 1, where p∗ = max

t∈I
{p(t)}.

Proof. We are about to take advantage of Schauder’s fixed-point theorem. Consider the
set Ωr = {ω ∈ Ξ : ‖ω‖Zb ≤ r} where r is a certain positive constant. Let us prove that

γ
(i)
x (Ωr) ⊆ Ωr (i = 1, 2) first. If not, then there exists an element ω ∈ Ωr satisfying

γ
(i)
x (ω) /∈ Ωr, i.e., ‖γ(i)

x (ω)‖ > r (i = 1, 2).

From Hölder’s inequality and Lemma 7, it follows that(∫ t

0
‖θ1(s)‖ds

)2
≤

(∫ t

0
12ds

)(∫ t

0
‖θ1(s)‖2ds

)
≤ t‖θ1‖2

Z ≤ t(1 + δ)2
∥∥∥F(1)

b (x + ω)
∥∥∥2

Z

≤ t(1 + δ)2‖Ã‖2
∫ a

0
‖(x + ω)(t− b)‖2dt,
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and (∫ t

0
‖θ2(s)‖ds

)2
≤

(∫ t

0
12ds

)(∫ t

0
‖θ2(s)‖2ds

)
≤ t‖θ2‖2

Z ≤ t(1 + δ)2
∥∥∥F(2)

b (x + ω)
∥∥∥2

Z

≤ t(1 + δ)2
∫ a

0
[p(t)(1 + ‖(x + ω)(t− b)‖+ ‖m‖L1)]

2dt

≤ t(1 + δ)2(p∗)2
∫ a

0
(1 + ‖m‖L1 + ‖(x + ω)(t− b)‖)2dt.

Then, we obtain

‖γ(1)
x (ω)‖2

Zb
≤

∫ a

0

∥∥∥∥∫ t

0
(t− s)

β−1
Pβ(t− s)θ1(s)ds

∥∥∥∥2
dt

≤
∫ a

0

(
Ma2β−1

Γ(2β)

)2(∫ t

0
‖θ1(s)‖ds

)2
dt

≤
(

Ma2β−1

Γ(2β)

)2

(1 + δ)2‖Ã‖2a2
∫ a

0
‖(x + ω)(s− b)‖2ds

=

(
Ma2β

Γ(2β)

)2

(1 + δ)2‖Ã‖2
∫ a

0
‖(x + ω)(s− b)‖2ds,

(14)

and

‖γ(2)
x (ω)‖2

Zb
≤

∫ a

0

∥∥∥∥∫ t

0
(t− s)

β−1
Pβ(t− s)θ2(s)ds

∥∥∥∥2
dt

≤
∫ a

0

(
Ma2β−1

Γ(2β)

)2(∫ t

0
‖θ2(s)‖ds

)2
dt

≤
(

Ma2β−1

Γ(2β)

)2

(1 + δ)2(p∗)2a2
∫ a

0
(1 + ‖(x + ω)(t− b)‖+ ‖m‖L1 )

2ds

=

(
Ma2β

Γ(2β)

)2

(1 + δ)2(p∗)2
∫ a

0
(1 + ‖m‖L1 + ‖(x + ω)(t− b)‖)2ds.

(15)

For (14), it is easy to see that

r < ‖γ(1)
x (ω)‖Zb ≤ Ma2β

Γ(2β)
(1 + δ)‖Ã‖ · ‖x + ω‖Zb

≤ Ma2β

Γ(2β)
(1 + δ)‖Ã‖ ·

(
‖x‖Zb + ‖ω‖Zb

)
≤ Ma2β

Γ(2β)
(1 + δ)‖Ã‖ ·

(
‖x‖Zb + r

)
.

Divide both sides of the above inequality by r, and then make r tend towards +∞ to
take the limit, we imply

Ma2β

Γ(2β)
(1 + δ)‖Ã‖ ≥ 1.

This is a contradiction.
For (15), it can be derived from Minkowski’s inequality that
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r < ‖γ(2)
x (ω)‖Zb ≤ Ma2β

Γ(2β)
(1 + δ)p∗

[(∫ a

0
(1 + ‖m‖L1)

2ds
) 1

2
+

(∫ a

0
‖(x + ω)(t− b)‖2ds

) 1
2
]

≤ Ma2β

Γ(2β)
(1 + δ)p∗

[
(1 + ‖m‖L1)a

1
2 + ‖x + ω‖Zb

]
≤ Ma2β

Γ(2β)
(1 + δ)p∗

[
(1 + ‖m‖L1)a

1
2 + ‖x‖Zb + ‖ω‖Zb

]
≤ Ma2β

Γ(2β)
(1 + δ)p∗

[
(1 + ‖m‖L1)a

1
2 + ‖x‖Zb + r

]
.

Also, divide by r and take the limit as r → +∞ to obtain

Ma2β

Γ(2β)
(1 + δ)p∗ ≥ 1,

which is also a contradiction. Therefore, we claim that γ
(i)
x (Ωr) ⊆ Ωr (i = 1, 2).

From the compactness of cosine operator C(t) presented by (H3), it follows that Pβ(t)

is compact (see [37]). Hence, the integral operator W is compact and then γ
(i)
x (i = 1, 2)

is also compact. By using Schauder’s fixed-point theorem, we obtain that γ
(i)
x has a fixed

point ωi in the set Ξ (i = 1, 2).

Theorem 1. Assume that (H1)-(H5) hold. Then, the fractional system (1) is approximately

controllable provided that M̂ :=
Ma2β−1‖l‖L1

Γ(2β)
(1 + ‖q‖L1) < 1.

Proof. Let x be a mild solution of linear system (2) which is defined by

x(t) =



Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k]

+
∫ t

0
(t− s)

β−1
Pβ(t− s)

[
Ãx(s− b) + Bu(s)

]
ds, t ∈ I,

φ(t), t ∈ [−b, 0].

(16)

Next, we shall show that y = x + ω2 is the mild solution of the following system:



CDαy(t) = Ay(t) + Ãy(t− b) +
(

Bu− F(1)
b ω2 − ι2

)
(t) + f

(
t, y(t− b),

∫ t

0
k(t, s, y(s− b))ds

)
, a.e. t ∈ I,

y(t) = φ(t), t ∈ [−b, 0],
y′(0) = x0,
∆y(tk) = zk, k = 1, 2, · · ·, m,
∆y′(tk) = z̃k, i = 1, 2, · · ·, m.

(17)

It is easy to see from (12) and (13) that

F(1)
b (x + ω)(t) = θ1(t) + ι1(t),

and
F(2)

b (x + ω)(t) = θ2(t) + ι2(t).

Note that ωi is a fixed point of γ
(i)
x (i = 1, 2). This together with (11) implies that

WF(1)
b (x + ω1)(t) = Wθ1(t) + Wι1(t) = ω1(t) + Wι1(t), (18)
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and
WF(2)

b (x + ω2)(t) = Wθ2(t) + Wι2(t) = ω2(t) + Wι2(t). (19)

From (18), we have

W
(

F(1)
b x

)
(t)−ω1(t) = Wι1(t)−W

(
F(1)

b ω1

)
(t). (20)

Add the two sides of (18) and (19) separately, and then add x on both sides to obtain

x(t) + WF(1)
b (x + ω1)(t) + WF(2)

b (x + ω2)(t) = x(t) + ω1(t) + ω2(t) + Wι1(t) + Wι2(t).

Denote y(t) = x(t) + ω2(t); we obtain

y(t) = x(t)−ω1(t) + WF(1)
b (x + ω1)(t) + W

(
F(2)

b y
)
(t)−Wι1(t)−Wι2(t),

and then by utilizing (16) and (20), it can be concluded that

y(t) = Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(Bu)(t)

+W
(

F(1)
b x

)
(t)−ω1(t) + WF(1)

b (x + ω1)(t) + W
(

F(2)
b y

)
(t)−Wι1(t)−Wι2(t)

= Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(Bu)(t)

+Wι1(t)−W
(

F(1)
b ω1

)
(t) + WF(1)

b (x + ω1)(t) + W
(

F(2)
b y

)
(t)−Wι1(t)−Wι2(t)

= Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(Bu)(t)

+W
(

F(2)
b y

)
(t) + WF(1)

b (x + ω1)(t)−W
(

F(1)
b ω1

)
(t)−Wι2(t)

= Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(Bu)(t)

+
[
W
(

F(2)
b y

)
(t) + W

(
F(1)

b y
)
(t)
]
−W

(
F(1)

b y
)
(t) + WF(1)

b (x + ω1)(t)−W
(

F(1)
b ω1

)
(t)−Wι2(t)

= Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(Bu)(t)

+W(Fby)(t)−W
(

F(1)
b y

)
(t) + WF(1)

b (x + ω1)(t)−W
(

F(1)
b ω1

)
(t)−Wι2(t)

= Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(Bu)(t)

+W(Fby)(t)−W
(

F(1)
b ω2

)
(t)−Wι2(t)

= Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k]

+W
(

Bu− F(1)
b ω2 − ι2

)
(t) + W(Fby)(t).

This is exactly the mild solution of the system (17) under the control
(

Bu− F(1)
b ω2 − ι2

)
.

From the fact ι2 ∈ R(B), for any ε > 0, we can find an element v ∈ Y that satisfies

‖Bv− ι2‖Z < ε0,

where ε0 =

{(
1− M̂

)−1 Ma2β− 1
2

Γ(2β)
exp
[(

1− M̂
)−1 Ma2β‖Ã‖

Γ(2β)

]}−1
ε. Suppose that z is the mild

solution of fractional system (1) under the control
(

B(u− v)− F(1)
b ω2

)
, that is,

z(t) = Cβ(t)φ(0) + Kβ(t)x0 +
m

∑
k=1

χk(t)[Cβ(t− tk)zk + Kβ(t− tk)z̃k] + W(B(u− v)− F(1)
b ω2)(t) + W(Fbz)(t).
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Hence, from hypothesis (H5) and Hölder’s inequality, it follows that

‖y(t)− z(t)‖
= ‖W(Bv− ι2)(t)‖+ ‖W(Fby)(t)−W(Fbz)(t)‖

≤
∥∥∥∥∫ t

0
(t− s)β−1Pβ(t− s)(Bv− ι2)(s)ds

∥∥∥∥+ ∥∥∥∥∫ t

0
(t− s)β−1Pβ(t− s)(Fby− Fbz)(s)ds

∥∥∥∥
≤ Ma2β−1

Γ(2β)

∫ t

0
‖(Bv− ι2)(s)‖ds

+
Ma2β−1

Γ(2β)

∫ t

0

[
‖Ã‖ · ‖y(s− b)− z(s− b)‖+ l(s)

(
‖y(s− b)− z(s− b)‖+

∫ s

0
q(η)‖y(η − b)− z(η − b)‖dη

)]
ds

≤ Ma2β−1

Γ(2β)

√
a‖Bv− ι2‖Z +

Ma2β−1

Γ(2β)

(
‖Ã‖

∫ t

0
‖y(s)− z(s)‖ds + ‖l‖L1(1 + ‖q‖L1)‖y− z‖PC

)
≤ Ma2β− 1

2

Γ(2β)
ε0 +

Ma2β−1

Γ(2β)
‖Ã‖

∫ t

0
‖y(s)− z(s)‖ds +

Ma2β−1

Γ(2β)
‖l‖L1(1 + ‖q‖L1)‖y− z‖PC,

which implies that

‖y(a)− z(a)‖ ≤
[

1− Ma2β−1

Γ(2β)
‖l‖L1(1 + ‖q‖L1)

]−1 Ma2β− 1
2

Γ(2β)
ε0

+

[
1− Ma2β−1

Γ(2β)
‖l‖L1(1 + ‖q‖L1)

]−1 Ma2β−1‖Ã‖
Γ(2β)

∫ a

0
‖y(s)− z(s)‖ds

=
(

1− M̂
)−1 Ma2β− 1

2

Γ(2β)
ε0 +

(
1− M̂

)−1 Ma2β−1‖Ã‖
Γ(2β)

∫ a

0
‖y(s)− z(s)‖ds.

By means of the Grönwall–Bellman inequality, we have

‖y(a)− z(a)‖ ≤
(

1− M̂
)−1 Ma2β− 1

2

Γ(2β)
ε0 · exp

[(
1− M̂

)−1 Ma2β‖Ã‖
Γ(2β)

]
< ε.

In addition, it is easy to see that

ω2(0) = 0 = ω2(a),

and
y(0) = x(0) + ω2(0) = x(0) = φ(0),

y(a) = x(a) + ω2(a) = x(a) ∈ Λa(0).

Therefore, for any ε > 0, we obtain

‖x(a)− z(a)‖ = ‖y(a)− z(a)‖ < ε,

which indicates that Λa(0) ⊆ Λa( f ). Since Λa(0) is dense in X (hypothesis (H4) ensures
that the system (2) is approximately controllable [32,33]), then we derive that Λa( f ) is also
dense in X. Consequently, the fractional system (1) is approximately controllable. This
ends the proof.

5. An Example

Consider the following fractional control system with impulse and delay effects
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∂
6
5
t x(t, ζ) = ∂2

ζ x(t, ζ) + $x(t− 1
2

, ζ) + f
(

t, x(t− 1
2

, ζ),
∫ t

0
k(t, s, x(s− 1

2
, ζ))ds

)
+ Bu(t, ζ),

t ∈ (0, 1], t 6= t1 =
1
3

; ζ ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, 1],
∂tx(0, ζ) = x0(ζ), ζ ∈ [0, π],

∆x(
1
3

, ζ) = z1(ζ), ∆∂tx(
1
3

, ζ) = z̃1(ζ), ζ ∈ [0, π],

x(t, ζ) = φ(t, ζ), (t, ζ) ∈ [−1
2

, 0]× [0, π],

(21)

where ∂
6
5
t is the Caputo fractional partial derivative with order α =

6
5

, $ is a positive
constant, and φ is a continuous function endowed with some smoothness hypotheses.

Consider X = L2[0, π], and A :=
∂2

∂x2 with

D(A) = {y ∈ X : y,
∂y
∂x
∈ AC,

∂2y
∂x2 ∈ X, y(0) = y(π) = 0}.

Then, we know that A is the infinitesimal generator of strongly continuous cosine
family {C(t), t ≥ 0}, and

Ay = −
∞

∑
n=1

n2〈y, µn〉µn, y ∈ D(A),

where µn(τ) =
√

2
π sin(nτ), τ ∈ [0, π], n ∈ N. Thus, {µn(τ)} stands for the orthonormal

basis of X, and A possesses an eigenvalue denoted as λn = −n2, and the eigenfunction is
µn, n ∈ N. Now, we let

U =

{
u : u =

∞

∑
n=2

unµn with
∞

∑
n=2

u2
n < ∞

}

provided with norm

‖u‖U =

(
∞

∑
n=2

u2
n

) 1
2

.

In addition, define the operator B from U into X as below

Bu = 2u2µ1 +
∞

∑
n=2

unµn, u =
∞

∑
n=2

unµn ∈ U.

Take
α =

6
5

, β =
3
5

, a = 1, b =
1
2

,

and

x(t)(ζ) = x(t, ζ), u(t)(ζ) = u(t, ζ), φ(t)(ζ) = φ(t, ζ), t ∈ [0, 1], ζ ∈ [0, π],

and the impulsive point t1 =
1
3

. Now, we can rewrite problem (21) into the following
abstract system
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CDαx(t) = Ax(t) + Ãx(t− b) + Bu(t) + f
(

t, x(t− b),
∫ t

0
k(t, s, x(s− b))ds

)
, t ∈ (0, a], t 6= t1,

x(t) = φ(t), t ∈ [−b, 0],
x′(0) = x0,
∆x(t1) = z1,
∆x′(t1) = z̃1.

Additionally, impose certain appropriate assumptions on components of the con-
sidered system such that the hypotheses (H1)–(H5) hold, and then the fractional control
system (21) is approximately controllable from Theorem 1.

Remark 1. (i) In fact, the nonlinear terms f and k are not difficult to verify in Theorem 1. For
instance, take f (t, x, y) = c1t(sin x + sin y) and k(t, s, x) =

c2s
1 + t

sin x, where ci (i = 1, 2) is a

constant. It is very easy to check that f and k satisfy the required nonlinear growth conditions and
Lipschitz conditions. (ii) If Ã = 0, the main techniques of investigating approximate controllability
in this paper (Lemma 8 and Theorem 1) degenerate into the cases of the previous literature [31–33,39].
Therefore, the present results can generalize and cover as special cases the method in [31,39]
(Ã = 0, b = 0) and the method in [32,33] (Ã = 0).

6. Conclusions

Some new results of approximate controllability for the semi-linear fractional impul-
sive integro-differential evolution equations of order 1 < α < 2 with delay are derived by
using the spatial decomposition techniques and the range condition of control operator
B. We improve and generalize the decomposition techniques utilized in some related
references [31–33,39]. A new representation of the PC-mild solution for the considered
fractional evolution equations of order α ∈ (1, 2) is also deduced via some characteristic
solution operators related to the fractional order β ∈ (0, 1). The main tools used in this
work are the theory of cosine families, fixed-point theorems, and the Grönwall–Bellman
inequality. An example is also included to explain the validity of the new results.

In future work, we are about to continue our research and extend it to study the ap-
proximate controllability of the following fractional delay systems with nonlinear impulsive
effects and nonlocal conditions:

CDαx(t) = Ax(t) + Ãx(t− b) + Bu(t) + f
(

t, x(t− b),
∫ t

0
k(t, s, x(s− b))ds

)
, a.e. t ∈ [0, a],

x(t) + g(t, x) = φ(t), t ∈ [−b, 0],
x′(0) = x0,
∆x(tk) = Zk(x(tk)), k = 1, 2, · · ·, m,
∆x′(tk) = Z̃k(x(tk)), i = 1, 2, · · ·, m,

(22)

and its corresponding fractional system without delay

CDαx(t) = Ax(t) + Ãx(t) + Bu(t) + f
(

t, x(t),
∫ t

0
k(t, s, x(s))ds

)
, a.e. t ∈ [0, a],

x(0) + g(0, x) = φ(0),
x′(0) = x0,
∆x(tk) = Zk(x(tk)), k = 1, 2, · · ·, m,
∆x′(tk) = Z̃k(x(tk)), i = 1, 2, · · ·, m,

(23)

where the nonlocal term g(t, x) is continuous, and Zk, Z̃k : X → X are nonlinear impulsive
functions. Some new efforts will be devoted to derive the relationship of approximate
controllability between the fractional impulsive system with delay effects (22) and that of
fractional impulsive system without delay effects (23) under certain range conditions of
control operator B.
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