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Abstract: In this paper, an explicit boundary-type numerical procedure, including a constraint-type
fictitious time integration method (FTIM) and a two-point boundary solution of the Lie-group shoot-
ing method (LGSM), is constructed to tackle nonlinear nonhomogeneous backward heat conduction
problems (BHCPs). Conventional methods cannot effectively overcome numerical instability to solve
inverse problems that lack initial conditions and take a long time to calculate, even using different
variable transformations and regularization techniques. Therefore, an explicit-type numerical pro-
cedure is developed from the FTIM and the LGSM to avoid numerical instability and numerical
iterations. First, a two-point boundary solution of the LGSM is introduced into the numerical algo-
rithm. Then, the maximum and minimum values of the initial guess value can be determined linearly
from the boundary conditions at the initial and final times. Finally, an explicit-type boundary-type
numerical procedure, including a boundary value solution and constraint-type FTIM, can directly
avoid the numerical iterative problems of BHCPs. Several nonlinear examples are tested. Based on
the numerical results shown, this boundary-type numerical procedure using a two-point solution
can directly obtain an approximated solution and can achieve stable convergence to boundary con-
ditions, even if numerical iterations occur. Furthermore, the numerical efficiency and accuracy are
better than in the previous literature, even with an increased computational time span without the
regularization technique.

Keywords: regularization technique; meshless method; ill-posed problem; fictitious time integration
method; heat conduction equation

MSC: 35J67

1. Introduction

With the development of artificial intelligence and computer technology, the inverse
problem is becoming increasingly pivotal in many engineering and science areas. Applica-
tions such as optics, acoustics, signal processing, medical imaging, oceanography, natural
language processing, and machine learning are widely used. Generally, an inverse problem
can be divided into the following situations: identification of the boundary conditions,
parameter identification, and estimation of the initial state of the system. In many practical
heat transfer situations, it is not always possible to specify the initial temperature distribu-
tion or the boundary conditions over the whole boundary of a heat-conducting body. In
this paper, we deal with the initial state of the system, called the backward heat conduction
problem (BHCP). Mathematically, BHCPs are treated as the strongest ill-posed problem
because they are sensitive to the measurement errors of data [1]. Any small measurement
errors in the input data may cause drastic changes to the solution. In fact, the initial tem-
perature quickly disappears due to the rapid temperature decay with time. In addressing
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the above issue, Ames and Epperson [2] mentioned that ill conditions and regularization
techniques for iterative methods are necessary, and the problem must be regularized before
constructing any approximation; that is, an ill-posed problem is impossible to solve using a
classical scheme and requires special techniques. Regarding solving nonlinear nonhomoge-
neous BHCPs with long time spans using the explicit numerical method, so far, there has
been no numerical method that can directly solve these inverse problems. Therefore, this
paper proposes a flexible, explicit, boundary-type numerical procedure to address BHCPs
without numerical iterations and to address the numerical stability problem.

For BHCPs, many solutions have been proposed to address homogeneous problems.
For example, Han et al. [3] proposed the boundary element method (BEM) in conjunction
with a minimal energy technique to solve homogeneous BHCPs. Moreover, Mera et al. [4,5]
and Jourhmane and Mera [6] used the iterative-type BEM to deal with homogeneous
BHCPs. Considering the fact that regularization techniques in numerical procedures have
been widely proposed and applied, Muniz et al. [7] used the maximum entropy principle
and Tikhonov regularization in conjunction with truncated singular value decomposition to
solve the backward heat equation. Mera [8] proposed the method of fundamental solutions
(MFSs) using the Tikhonov regularization technique to address BHCPs. Finally, Li et al. [9]
and Yang et al. [10] used radial basis functions combined with a truncation regularization
technique to address nonhomogeneous problems. Liu [11] developed implicit and explicit
difference schemes to solve forward and backward HCPs. However, iterative or mesh-
less methods in conjunction with the Tikhonov regularization technique and the L-curve
method still have numerical stability problems. The new strategy of adopting a boundary-
type numerical method does not directly deal with nonlinear governing equations, but
further utilizes basis functions to satisfy the boundary conditions (BCs). Liu [12] and Lin
and Liu [13] developed homogenization functions based on BCs to solve inverse heat
conductivity problems. The boundary-type meshless method from BCs can construct linear
basis functions to avoid ill-posed problems. However, the use of homogenization functions
still cannot avoid numerical iterations. Therefore, the innovative idea of this paper is to
use explicit numerical methods to obtain efficient and stable solutions from boundary
conditions without numerical iterations and overcome numerical stability problems.

In this paper, an explicit numerical procedure is developed whose parameters are
independent of discrete numbers. First, it is necessary to understand the influence of
different parameters, such as discretization techniques, time integration, and variable
transformation for solving the inverse problem. It is convenient to describe the direction
of integration of variable transformation, as shown in Figure 1. In terms of time direction
applications, Liu [14] first developed the backward group preserving scheme (BGPS) to
address the numerical stability in the time direction integral for homogeneous BHCPs. As
for Lie-group properties, Chang et al. [15] applied the Lie-group shooting method (LGSM)
using a regularization parameter for the BHCPs. However, when the computational time
increases, the BGPS or the original LGSM that introduce a regularization parameter into
the numerical procedure still cannot avoid numerical divergence. Chen [16] proposed an
explicit-type LGSM, in which a minimum weighting factor is introduced into the initial
conditions (ICs) and final conditions (FCs), solving the missing ICs and heat source under
homogeneous boundary conditions. This explicit result first solved the BHCPs from the
point of view of the BCs. Then, for the numerical integration in space direction, Liu [17]
and Liu and Chang [18] employed an LGSM based on the proper orthochronous Lorentz
group and general linear group to address the 1-D BHCPs. Although spatial direction
integration avoids numerical divergence and timespan problems, the scheme is limited to
solving one-dimensional problems. The above results demonstrate that the parameters of
the LGSM, such as the time step size, convergent stopped criterion, and spatial discretion
size, are essential convergency factors and must be chosen. Finally, Chang [19] applied an
original fictitious time integration method (FTIM) for multi-dimensional homogeneous
BHCPs for numerical integration in the fictitious time direction. Furthermore, Chen [20,21]
developed a FTIM with a fixed viscosity-damping coefficient in conjunction with implicit-
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and explicit-type group-preserving schemes based on a general linear group for solving
BHCPs. Although the approach provided promising results in homogeneous BHCPs,
deciding the parameters, such as the viscosity-damping coefficient, fictitious time step size,
and convergent stopped criterion, is complicated. To overcome the selection problems of
the parameters for the FTIM, Chen et al. [22,23] proposed a complete procedure using a
constraint-type FTIM for solving nonlinear elliptic equations. As the results show, all the
parameters of the FTIM are combined into a single parameter, whose physical quantities
include the computational domain size and discrete numbers in space and time. Although
the parameter selection problem of the constraint-type FTIM is overcome, this method still
does not solve the initial guess problem. Hence, the two-point boundary solution of the
LGSM is introduced into the constraint-type FTIM, whose maximum and minimum values
of the initial guess value can be determined linearly from the boundary conditions.
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Solving the parabolic problem differs from the elliptic problem. Three critical factors
must be considered, including the time integration direction, ICs, and heat source. Here,
this paper combines the work of Chen et al. [16,23] for time and fictitious time direction
applications. The innovation points of this paper are as follows:

1. The inverse problem of the initial value problem can be regarded as a two-point
boundary value problem.

2. All of the parameters of numerical methods can be combined into a single parameter,
without having to overcome the traditional FTIM parameter selection problem.

3. The initial guess value and criteria conditions can be determined by the boundary
conditions and termination conditions.

4. For solving inverse problems with long time spans, numerical methods do not need
numerical iterations and can address numerical stability problems.

A simple explicit method solver can be established. First, the two-point solution of the
LGSM is constructed to determine the initial guess value based on the boundary conditions
(BCs). Then, the relationship between the convergent stopped criterion and the BCs is
established. The remainder of this paper is structured as follows: Section 2 presents the
methodology of the FTIM. Then, several 2D and 3D nonlinear benchmark examples test
the proposed numerical procedure in Section 3. Finally, this work ends with a conclusion
in Section 4.

2. Backward-In-Time in Heat Conduction Equations

The three-dimensional heat conduction equations are as follows:

∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 + F

(
X, T, Tx, Ty, Tz, . . .

)
, (X, t) ∈ Ω, (1)
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T(X, tF) = TF(X), (2)

T(X, t) = G(X, t), on Γ, (3)

where X denotes x, y, and z of the spatial variables, Γ is the boundary on the domain Ω,
T is a temperature field, Tx, Ty, and Tz represent derivatives of T with respect to x, y, and z,
respectively, and TF and G are known functions. Here, the initial value, T(X, 0) = T0(X),
is unknown.

2.1. Construction of an Evolutional-Type Heat Conduction Equation

To avoid integrating in the time direction, let a new variable perform variable transfor-
mation, as follows:

U(X, t, µ) = RT(X, t), (4)

where µ denotesa fictitious time variable and R = (1 + µ).
According to Chen et al. [23], a space–time variable, ξ > 0, is considered in Equation (1),

0 = −ξ
∂T
∂t

+ ξ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
+ ξF

(
X, T, Tx, Ty, Tz, . . .

)
, (5)

and a constraint condition of the space–time variable, including a fictitious time variable
and space discrete physical quantity, is conducted as follows:

1
µ
> ξ, (6)

ξ =

(
1

µ·Exyz

)
, 0 < µ·Exyz < 1,Exyz > 0, (7)

where Exyz denotes the convergence speed based on the maximum discrete grid numbers
in the space domain. When Exyz increases, ξ will also relatively decrease. When µ, Exyz,
and ξ satisfy Equations (6) and (7), the FTIM can stably approach solutions.

When Equation (5) is multiplied by R, and using Equation (4), we obtain

0 = −ξ
∂U
∂t

+ ξ

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
+ ξF

(
X, T, Tx, Ty, Tz, . . .

)
, (8)

Because Uµ = T(X, t), Uµ and T(X, t) can be added on both sides of Equation (8),
as follows:

∂U
∂µ

= −ξ
∂U
∂t

+ ξ

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
+ ξRF

(
X, T, Tx, Ty, Tz, . . .

)
+ T. (9)

Finally, by using T = U/R, Tx = Ux/R, Ty = Uy/R, and Tz = Xz/R, Equations (1)–(3)
can be transformed into an evolutional-type heat conduction equation in the fictitious domain:

∂U
∂µ

= −ξ
∂U
∂t

+ ξ

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
+ ξRF

(
X,

U
R

,
Ux

R
,

Uy

R
,

Uz

R
, . . .

)
+

U
R

, (10)

U(X, tF, µ) = RTF(X), (11)

U(X, t, µ) = RG(X, t), on Γ, (12)
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Applying a semi-discrete procedure to Equation (10) yields a coupled system of ODEs:

.
Ui,j,k,l = − ξ

∆t

[
Ui,j,k,l+1 −Ui,j,k,l

]
+ξ

{
1

(∆x)2

[
Ui+1,j,k,l − 2Ui,j,k,l + Ui−1,j,k,l

]
+ 1

(∆y)2

[
Ui,j+1,k,l − 2Ui,j,k,l + Ui,j−1,k,l

]
+ ξ

(∆z)2

[
Ui,j,k+1,l − 2Ui,j,k,l + Ui,j,k−1,l

]}
+ξRF

(
Xi,j,k,

Ui,j,k,l
R , Ux

R , Uy
R , Uz

R , . . .
)
+

Ui,j,k,l
R ,

(13)

where Xi,j,k = X
(

xi, yj, zk
)
, ∆x, ∆y, and ∆z represent the spatial discrete sizes in the x, y,

and z directions, Ui,j,k,l(µ) = U
(

Xi,j,k, tl, µ
)

, and
.

U denotes the differential of U with
respect to µ.

2.2. Convergence Criterion on Boundary Conditions

We use the Euler method to integrate Equation (13), and the numerical integration
process starts from µ = 0. If Ui,j,k,l at the m step is satisfied:

ZΩ ≤ ZΓ, (14)

ZΩ

(
Xi+1,j,k

)
=

Tm
0
(
xi+1, yj, zk

)
TF
(
xi+1, yj, zk

) , (15)

ZΓ

(
Xi,j,k

)
=

T0
(
xi, yj, zk

)
TF
(
xi, yj, zk

) , (16)

where Tm
0 = Um

0

(
Xi+1,j+1,k+1

)
/(1 + m∆µ), interior point ratio ZΩ

(
Xi+1,j,k

)
is very closed

to the boundary ratio ZΓ

(
Xi,j,k

)
, and ZΩ

(
Xi+1,j,k

)
= ZΩ

(
xi+1, yj, zk

)
is smaller than or

equal to ZΓ

(
Xi,j,k

)
= Z

Γ

(
xi, yj, zk

)
, as shown in Figure 2.
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3. Numerical Examples
3.1. Example 1

The first example to be considered is:

∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 + F, (17)

where:
F = 3etsin(x)sin(y). (18)

Correspondingly, the analytical solution is given by:

T(x, y, t) = etsin(x)sin(y). (19)

The considered domain is given by Ω = {(x, y)||x| ≤ 3.5π
∧
|y| ≤ 3.5π}. Here, the

spatial discrete numbers in the x and y directions, time discrete numbers, fictitious time
size, convergence speed, and final time are set as follows: Nx = Ny = 11, Nt = 2, ∆µ =
10−200, Exyz = 105, and tF = 1. Then, given an initial guess value, Ui,j = (1 + ∆µ)Zi,jTF,
i = 1, . . . , Nx, j = 1, . . . , Ny. When the boundary temperature is not considered as zero, the
boundary conditions have the same ratio ZΓ, where ZΓ = 0.367879441171442. Considering
the same convergence criterion ZΩ =

(
Nx − 1, Ny − 1

)
in this example, let the whole

domain ZΩ = ZΓ
(

Nx, Ny
)
. The proposed scheme converges within one iteration. The

result satisfies the solution of the two-point boundary value from the LGSM [16] and
converges within one step. The exact solution and numerical absolute errors of the present
scheme are shown in Figure 3. The maximum numerical error is smaller than 5.159× 10−6.
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The maximum numerical errors when considering the different Nx, Ny, and Exyz are
described in Table 1. According to the results described in Table 1, Exyz is the numerical
convergent parameter, which can obtain good numerical results when one increases. Then,
FTIM applies the variable transformation and is not sensitive to grid discretization. To
provide a stringent test, we consider the noise level of δ = 1% being used here, considering
the same convergence criterion and given an initial guess value (0.37 ZΩ) that is larger than
BCs (ZΓ). Figure 4 shows the convergence plot. The proposed scheme converges within
1088 iterations, and the maximum numerical error is smaller than 9.205× 10−3. Hence, the
present method provides good numerical stability and accuracy to address this problem.
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Table 1. Maximum numerical absolute error Example 1 for the different Nx, Ny, and Exyz.

Exyz Nx Ny Maximum Absolute Errors

105

11 11

5.118× 10−6

108 5.118× 10−9

1012 5.127× 10−13

1015 1.332× 10−15

105

101 11

6.127× 10−6

108 6.127× 10−9

1012 6.135× 10−13

1015 1.443× 10−15

105

11 101

6.127× 10−6

108 6.127× 10−9

1012 6.135× 10−13

1015 1.443× 10−15

105

101 101

7.161× 10−5

108 7.161× 10−9

1012 7.168× 10−13

1015 1.544× 10−15
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3.2. Example 2

To further validate the FTIM, a 2D linear Poisson equation is considered as follows:

∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 + T − T3 + F, (20)

where:
F = 2etsin(x)sin(y) + e3tsin3(x)sin3(y). (21)

The analytical solution of Equation (22) is:

T(x, y, t) = etsin(x)sin(y). (22)
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The exact F and BCs at the initial and final time can be obtained via Equations (20)
and (22). The considered domain is given by Ω = {(x, y)||x| ≤ 3.5π

∧
|y| ≤ 3.5π}. Here,

the spatial discrete numbers in the x and y directions, time discrete numbers, fictitious
time size, convergence speed, and final time are set as follows: Nx = Ny = 11, Nt = 2,
∆µ = 10−300, Exyz = 108, and tF = 1. Then, given an initial guess value, the boundary
conditions ZΓ are the same as Example 1. Considering the same convergence criterion
ZΩ =

(
Nx − 1, Ny − 1

)
in this example, let the whole domain ZΩ = ZΓ

(
Nx, Ny

)
. The

proposed scheme still converges within one iteration. Because the exact solution is the
same for Example 1, ZΩ and the numerical absolute errors are plotted in Figure 5. The
maximum numerical error is smaller than 4.165× 10−9.
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Figure 5. (a) ZΩ and (b) numerical errors.

To test the noisy effect, a noise level of δ = 1% is applied. Here, considering the same
convergence criterion and given an initial guess value larger than BCs, ( ZΓ) and Exyz = 105.
The convergence plot and numerical absolute errors are shown in Figure 6. The proposed
scheme converges within 30,771 iterations, and the maximum numerical error is smaller
than 2.206× 10−2. Figure 7 shows the exact ZE and interior solution ZΩ.
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3.3. Example 3

We consider a 2D heat equation:

∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 + F. (23)

The analytical solution of Equation (25) is

T(x, y, t) = x4 + 12x2t + 12t2 + y2
(

t2 + t + 1
)

. (24)

The exact F and BCs at an initial and final time can be obtained via Equations (23) and (24).
The initial condition can be expressed as follows:

T(x, y, 0) = x4 + y2. (25)

The considered domain is given by Ω = {(x, y)||x| ≤ 5
∧
|y| ≤ 5}. Here, the parame-

ters are set as follows: Nx = 11, Ny = 41, Nt = 2, ∆µ = 10−300, Exyz = 105, and tF = 1. An
initial guess value of Ui,j = (1 + ∆µ)Zi,jTF is considered. When the gradient of ZΓ(2, 1)
here is relatively small, the convergence criterion ZΩ(2, 2) ≥ ZΓ(2, 1) is used. According
to the ratio ZΓ from ZΓ(i, 1) to ZΓ

(
i, Ny

)
, the ZΩ can be obtained as follows:

ZΩ(i, j) = ZΓ(i, 1) + (j− 1)
(
ZΓ(i, 1)− ZΓ

(
i, Ny

))
/Ny,

{
i = 2, . . . , Nx − 1
j = 2, . . . , Ny − 1

(26)

From Equation (26), the contour of ZΩ is plotted in Figure 8. The figure shows a large
slope change between 0 and 2.5 in the x direction. According to Equation (26), the proposed
scheme converges within one iteration.

The exact ICs and numerical absolute errors are shown in Figure 9. The maximum
numerical error is smaller than 4.505 when considering that the maximum temperatures of
TF and T0 are 1012 and 650. The exact ZE and ZΩ are compared and shown in Figure 10.
Figures 8 and 10b show that the initial guess value is a speedy approach to an approximate
solution. When considering a sizable domain Ω = {(x, y)||x| ≤ 10

∧
|y| ≤ 10}, and when

the same parameters and convergence criterion are used to test the noisy effect, a noise level of
δ = 1% is applied. Figure 11 shows the calculated results and numerical absolute errors. The
proposed scheme satisfies the convergence criterion within one iteration, and the maximum
error is smaller than 98.429. Figure 12 shows the exact ZE and ZΩ. In Figures 11b and 12b, it
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can be seen that the maximum error occurs from 8 to 10 in the x direction, and the contour
lines close to the BCs in Figure 12b are not smooth.
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3.4. Example 4

We consider a 2-D diffusion–convection equation:

∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 − 2Tx − 3Ty + F. (27)

Correspondingly, we have the analytical solution as follows:

T(x, y, t) = x2y3
(

t2 + t + 1
)
+ et(x + y). (28)

The exact F(x, y, t) and BCs at the initial and final time can be obtained via Equations
(27) and (28). The ICs can be expressed as follows:

T(x, y, 0) = x2y3 + x + y. (29)

The considered domain is given by Ω = {(x, y)||x| ≤ 10
∧
|y| ≤ 10}. Here, the

parameters are set as follows: Nx = 11, Ny = 41, Nt = 2, ∆µ = 10−300, Exyz = 108,
and tF=1. An initial guess value of Ui,j = (1 + ∆µ)Zi,jTF and convergence criterion
ZΩ(2, 2) ≤ ZΓ(2, 1) are considered. To deal with diffusion–convection problem of the

BCs, ZΓ can be linearly divided to ZΓ < 1 and ZΓ ≥ 1, as illustrated in Figure 13. When
ZΓ ≥ 1, ZΩ, Equation (26) can be used; when ZΓ < 1, the following linear interpolation

technique can be used:

ZΩ4 = ZΓ3 ×
ZΓ2

ZΓ1

, (30)
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Figure 15. Example 4: (a) Exact solution of ICs and (b) numerical absolute errors. 

Figure 13. ZΩ segmentation diagram.

The contour of ZΩ is shown in Figure 14 for the initial guess value. The exact solution
and numerical absolute errors are shown in Figure 15. The maximum numerical error is
smaller than 4.609 when considering that the maximum values of TF and T0 are 3× 105 and
1× 105, respectively. Figure 16 shows the exact ZE and ZΩ. As the figure shows, the domain
segmentation of ZΓ can be used to obtain an approximate analytical solution value.
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The analytical solution of Equation (32) is: 𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒గమ௧𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)sin (𝜋𝑧). (33)

The exact 𝐹 and BCs at the initial and final time can be obtained via Equations (31) 
and (33). The ICs can be expressed as follows: 𝑇(𝑥, 𝑦, z, 0) = 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑦)sin (𝜋𝑧). (34)

The considered domain is given by Ω =  ሼ(𝑥, 𝑦, 𝑧)|0 ≤  𝑥, 𝑦, 𝑧 ≤  3.5𝜋ሽ. Here, the pa-
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Figure 16. Example 4: Comparing the ratios of the two-point boundary solution at the final and
initial time: (a) exact ZE, (b) ZΩ.

Figure 17 shows the numerical solutions of the ICs and numerical absolute errors
when considering a noise level of δ = 1% and when Exyz = 105 is applied. The BCs obtain
the initial value guess, the proposed algorithm quickly satisfies the convergence criterion
within one iteration, and the maximum error is smaller than 698.648.
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3.5. Example 5

A 3D heat conduct equation is considered as follows:

∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 + F, (31)

where:
F = 4π2eπ2tsin(πx)sin(πy)sin(πz). (32)

The analytical solution of Equation (32) is:

T(x, y, z, t) = eπ2tsin(πx)sin(πy)sin(πz). (33)

The exact F and BCs at the initial and final time can be obtained via Equations (31) and (33).
The ICs can be expressed as follows:

T(x, y, z, 0) = sin(πx)sin(πy)sin(πz). (34)

The considered domain is given by Ω = {(x, y, z)|0 ≤ x, y, z ≤ 3.5π}. Here, the
parameters are set as follows: Nx = Ny = Nz = 5, Nt = 2, ∆µ = 10−300, Exyz = 108,
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and tF=1. An initial guess value of Ui,j,k = (1 + ∆µ)Zi,j,kTF and the convergence criterion
ZΩ(2, 2, Nz − 1) ≤ ZΓ(2, 2, Nz) are considered. The temperatures of the BCs have the same
ratio ZΓ, where ZΓ = 0.000051723186204, and let the whole domain ZΩ = ZΓ(2, 2, Nz).

The exact solution of the ICs and numerical absolute errors at Nz = 4 are plotted in
Figure 18. Using the BCs obtained from the initial guess value, the proposed algorithm
quickly satisfies the given convergence criterion within one iteration, and the maximum
numerical error is smaller than 1.603× 10−6.
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and only achieves fourth-order accuracy in Figure 18b. Figure 20 shows the absolute er-
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ters. The figure shows that the maximum error of the numerical solution is 0.0309 when 
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Figure 18. (a) Exact solution of ICs at Nz = 4 and (b) absolute errors of ICs at Nz = 4.

Figure 19 shows the exact ZE and the absolute errors of |ZE − ZΩ|. Based on the results
in Figure 19b, it can be seen that the maximum error of |ZE − ZΩ| is 1.128× 10−10 and
only achieves fourth-order accuracy in Figure 18b. Figure 20 shows the absolute errors and
|ZE − ZΩ| when considering a noise level of δ = 5% using the same parameters. The figure
shows that the maximum error of the numerical solution is 0.0309 when the maximum error
of |ZE − ZΩ| is 3.546× 10−6. Even when increasing Nx = Ny = Nz = 21, the maximum
error of the ICs is 0.04571 when the maximum error of |ZE − ZΩ| is 5.137× 10−6, as shown
in Figure 21.
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4. Conclusions

In this paper, an explicit boundary-type FTIM is successfully developed to solve
nonlinear nonhomogeneous BHCPs. This numerical process involves constructing an initial
guess range and a fictitious time variable transformation. Using a space–time variable, all
the parameters of the FTIM are combined into a single parameter and are used to overcome
the parameter setting selection and discrete error problems. When a tiny fictitious time
step is given during the solution process, the FTIM must satisfy the two-point boundary
solution of the LGSM in the time direction. More importantly, the convergence speed only
depends on an initial guess variable and is independent of all of the discrete numbers. The
range of the initial guess variable can be determined linearly using boundary conditions
at the initial and final times. The stability and efficiency of the scheme are validated
by comparing the estimation results with the exact solution. The results show that the
proposed method is efficient in finding the true solution and can significantly improve
the accuracy and convergence. Future work can focus on extending the constraint-type
FTIM to solve semilinear fractional evolution equations [24,25] for irregular geometries
developing an optimization method to efficiently obtain initial guesses.
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