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Abstract: The problem of balancing the average weighted completion times of two classes of jobs
is an NP-hard scheduling problem that was very recently introduced in the literature. Interpreted
as a cooperative-type two-agent single-machine problem, its applications are in various practical
contexts such as in logistics for balancing the delivery times, in manufacturing for balancing the
assembly lines and in services for balancing the waiting times of groups of people. The only solution
technique currently existing in the literature is a Lagrangian heuristic, based on solving a finite
number of successive linear assignment problems, whose dimension depends on the total number
of jobs. Since the Lagrangian approach has not appeared to be particularly suitable for solving
large-scale problems, to overcome this drawback, we propose to face the problem by means of a
genetic algorithm. Differently from the Lagrangian heuristic, our approach is found to be effective
also for large instances (up to 2000 jobs), as confirmed by numerical experiments.
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1. Introduction

Allocating resources to tasks over a given time horizon with the aim of optimizing
one or more objectives is the focus of the theory of scheduling. Scheduling, as a decision-
making process, plays a very important role in a lot of contexts such as manufacturing,
production, transportation and distribution (see, for example, [1,2]). The difficulty in
solving a scheduling problem, in general, strictly depends on the assumptions made on the
problem itself. One of these assumptions concerns the number of agents involved in the
considered scenario: while originally the presence of only one agent was always assumed,
in the first years of the current century in [3,4], so-called multi-agent scheduling problems
were introduced to take into account the possibility of having two or more agents.

In a multi-agent scenario (see [5]), since each agent has its own set of tasks (jobs) to be
processed and its own objective function to be optimized, the difficulty in solving such kinds
of problems is related to the fact that the agents share the same resources (machines). This
has stimulated experts in this field, making the literature grow very fast in this direction.
In the seminal paper [3], the authors have addressed a two-agent scheduling problem
by considering the following objective functions: the maximum of regular functions (i.e.,
nondecreasing functions with respect to the completion times) associated with each job, the
number of late jobs and the total weighted completion times. Additionally, the complexity
of each problem was studied in connection with each objective function and with different
structures of the processing system (single machine or shop). In [4], the authors have faced
a multi-agent problem by minimizing three different objective functions: the makespan,
the maximum lateness and the total weighted completion time. They proved that the
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problem is polynomially solvable according to any of the three mentioned criteria, showing
in addition that the problem becomes NP-hard in case a combination of them is minimized.

The multi-agent scheduling problems are applied in a lot of practical contexts, such
as in telecommunication systems with two users [6], where the transmission of on-time
data packets to one user is maximized, guaranteeing a certain amount of on-time data
packets to the other one. Note that most of these problems are of the competitive type,
since the agents compete with each other in using the common resources to optimize their
own objective functions.

Differently from the more standard cases, in this work, we deal with a cooperative-type
two-agent single-machine scheduling problem, where each agent cooperates in the same
objective function aimed at balancing the average weighted completion times of two classes
of jobs (one class per agent). This problem, that in the sequel we denote by BAWCT2
(Balancing the Average Weighted Completion Times with 2 agents), finds application in
different contexts (see [7] for the details), such as:

• In logistics, to balance the delivery times in case a single drone is used for shipping;
• In manufacturing, to balance the production of semi-finished products characterized

by high storage costs;
• In services, to balance the average waiting times of groups of people.

In particular, as mentioned in [7], the problem takes inspiration in an academic context,
where a professor had the necessity to schedule the oral examinations of two groups of
students belonging to two different classes, with the aim of balancing the respective average
waiting times.

In passing, we highlight that similar balancing problems arise in general in the multi-
agent framework whenever unfair solutions, maximizing the system utility, are unaccept-
able for the worse-off agent (see, for example, [8–10]). They are also present in more specific
fields, such as in cloud computing when the necessity to balance the workload distribution
among different servers occurs (see for example [11]).

BAWCT2 was introduced for the first time in [12], where the authors have considered
its basic version, assuming that all the jobs have the same processing time (i.e., they are
identical) and unitary weight. Successively, in [7], the problem was extended to the more
general case, characterized by different processing times and weights. For such a general
problem, the authors have proved the NP-hardness, providing, in addition, a Lagrangian
relaxation-based heuristic algorithm, which consists of solving a finite number of linear
assignment problems.

Apart from [7,12], to the best of our knowledge, this problem has not been explicitly
considered in the literature anywhere else. Then, taking into account that solving a linear
assignment problem at each iteration (as proposed in [7]) has a remarkable impact on
the execution time, the main contribution of this work is mainly twofold: to propose a
different technique based on the adoption of a genetic algorithm aimed at speeding up
the resolution process and, at the same time, to test such approach on (new) large-scale
instances of the problem.

This paper is organized as follows. In the next section, we formally state the problem,
recalling also the two mathematical programming formulations (nonlinear and linear)
proposed in [7]. In Section 3, we describe the used genetic algorithm, detailing the different
strategies adopted in each phase. In Section 4, we present some numerical results showing
the efficiency of our approach, which is able to deal with large-scale instances. Finally,
in Section 5, some conclusions are drawn.

Throughout the paper, we will use the following notation. Given an index set L, we
indicate by Lj the index of L in position j and by P(L) a generic permutation of L. Moreover,
in correspondence to any real number r, the nearest integer number less than or equal to
r is denoted by brc. Finally, given a one-dimensional array V, we denote by V[j] the jth
element of V.
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2. Problem Definition

Let A and B be two different classes of jobs having cardinalities nA and nB, respec-

tively. We indicate by n
4
= nA + nB the total number of jobs and by JA

4
= {1, . . . , nA} and

JB
4
= {nA + 1, . . . , n} the index sets of A and B. For each j ∈ J

4
= JA ∪ JB, we denote by pj

the processing time of the jth job and by wj the corresponding weight.
The objective of BAWCT2 is to determine a schedule of the jobs, with the aim of

balancing the average weighted completion times of the two classes A and B. In particular,
adopting the Graham notation [13], the problem can be stated as follows:

1| |C̄, (1)

where

C̄
4
=

∣∣∣∣∑j∈JA
wjCj

nA
−

∑j∈JB
wjCj

nB

∣∣∣∣,
with Cj being the completion time of the jth job.

As mentioned in the previous section, to the best of our knowledge, this problem has
been explicitly treated in the literature only in [7,12].

In particular, in [12], a simplified version of BAWCT2 was faced, assuming wj = 1
and pj = pconst for j ∈ J. In such case, the problem reduces to a particular instance of the
well-known subset-sum problem and it is solvable in linear time, or even in a constant time
whenever the job-position assignment is not explicitly considered.

Successively, in [7], the authors have proved the NP-hardness of BAWCT2, providing,
in addition, the following mathematical programming formulation of the problem as a
nonsmooth quadratic assignment program:

min
x

∣∣∣∣∣ 1
nA

[
∑

j∈JA

wj

(
pj +

n

∑
t=1

(
∑
l∈J

t−1

∑
i=1

pl xli

)
xjt

)]
−

1
nB

[
∑

j∈JB

wj

(
pj +

n

∑
t=1

(
∑
l∈J

t−1

∑
i=1

pl xli

)
xjt

)]∣∣∣∣∣
n

∑
t=1

xjt = 1 j ∈ J

∑
j∈J

xjt = 1 t = 1, . . . , n

xjt ∈ {0, 1} j ∈ J, t = 1, . . . , n,

(2)

where the decision variable xjt, for j ∈ J and t = 1, . . . , n, is equal to 1 if the jth job is
assigned to the position t and 0, otherwise, while the two groups of constraints are the
classical assignment constraints imposing a bijection between jobs and positions. They
have also proved that, by applying the Glover linearization technique [14] and introducing
the auxiliary decision variables v and zjt for j ∈ J and t = 1, . . . , n, formulation (2) reduces
to the following mixed integer linear program (MILP):
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min
x,v,z

v

v ≥ 1
nA

(
pA + ∑

j∈JA

n

∑
t=1

wjzjt

)
− 1

nB

(
pB + ∑

j∈JB

n

∑
t=1

wjzjt

)

v ≥ 1
nB

(
pB + ∑

j∈JB

n

∑
t=1

wjzjt

)
− 1

nA

(
pA + ∑

j∈JA

n

∑
t=1

wjzjt

)

dtxjt + ∑
l∈J

t−1

∑
i=1

pl xli − zjt ≤ dt j ∈ J, t = 1, . . . , n

zjt ≤ ∑
l∈J

t−1

∑
i=1

pl xli j ∈ J, t = 1 . . . , n

zjt ≤ dtxjt j ∈ J, t = 1, . . . , n

zjt ≥ 0 j ∈ J, t = 1, . . . n

n

∑
t=1

xjt = 1 j ∈ J

∑
j∈J

xjt = 1 t = 1, . . . , n

xjt ∈ {0, 1} j ∈ J, t = 1, . . . , n,

(3)

where pA
4
= ∑j∈JA

wj pj, pB
4
= ∑j∈JB

wj pj and dt
4
= (t− 1)∑

j∈J
pj for t = 1, . . . , n.

The above MILP is at the basis of the Lagrangian heuristic proposed in [7] and based
on solving successive linear assignment problems. Although this technique has provided
valuable numerical results, its main limit consists in the fact that solving at each iteration a
linear assignment problem has a nonnegligible computational impact in case of large-scale
problems (i.e., whenever n is remarkably high). For this reason, to overcome this drawback,
in the next section we propose to use a genetic algorithm aimed at speeding up the overall
resolution process.

For the reader’s convenience, we conclude this section by detailing in Table 1 the main
characteristics of our approach with respect to [7,12], taking into account that, in [12], no
type of numerical experiments was carried out.

Table 1. BAWCT2: comparison among different approaches.

Reference Characteristics of Algorithm Maximum Number of Jobs in
the Problem Type the Numerical Experiments

[12] pj = pconst and Exact -
wj = 1, j ∈ J

[7] General values of Lagrangian 500pj and wj, j ∈ J heuristic

Our contribution General values of Genetic 2000pj and wj, j ∈ J algorithm

3. The Genetic Algorithm for BAWCT2

Genetic algorithms (GAs) are metaheuristic search approaches that are successfully ap-
plied to solve different varieties of NP-hard optimization problems (see [15]). In particular,
given an optimization problem, a GA is based on the following evolution paradigm.
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One starts from an initial population, where with each individual, a genotype, rep-
resenting a possible solution to the problem, is associated. The quality of such a solution
is measured by its fitness value, obtained by evaluating the so-called fitness function and
expressing how well the solution fits the problem. In passing from a generation to the
successive one, the aim is to possibly increase the overall fitness of the population, by gen-
erating, via specific genetic operators, new individuals (offspring) characterized by better
fitness values.

The basic schema of GA is reported in Algorithm 1.

Algorithm 1: GA

1 Pop← GenerateInitialPopulation()
2 repeat
3 NewPop← ∅
4 repeat
5 parents← Selection(Pop)
6 offspring← Crossover(parents)
7 offspring←Mutation(offspring)
8 NewPop← NewPop ∪ offspring
9 until NewPop is complete

10 Pop← UpdatePop(Pop,NewPop)
11 until a stopping criterion is satisfied

Even if in the literature there are plenty of strategies to implement the steps of Algo-
rithm 1, each of those strategies can be, in general, adapted and tailored to the specific case,
making GAs really attractive for solving many optimization problems. Some examples
are [16,17], where the well-known traveling salesman problem was faced, and [18–27],
where GAs were used for solving scheduling problems.

Before describing in detail how each step of Algorithm 1 is implemented for solving
BAWCT2, it is worth specifying that, in our approach, at each iteration, the previous
population is completely replaced by the new one, maintaining only the fittest current
individual in order to preserve a monotonic behavior of the best current fitness value
(line 10, Algorithm 1).

3.1. Encoding and Fitness Evaluation

The first choice in the implementation of GA is regarding the encoding of each indi-
vidual, representing a feasible solution to the problem. Since we are dealing with a single
machine scheduling problem, in such a case, the standard way to encode an individual I is
to use a one-dimensional array VI , such that VI [t] = j if and only if the job j is scheduled
in the position t. As a consequence, according to this notation, the job processed in the
position t will be denoted by [t].

Another key point characterizing GAs is the definition of the fitness function, aimed
at providing the fitness value of an individual. Since individuals with higher fitness are
preferred by GAs, and, on the other hand, BAWCT2 is a minimization problem, we propose
using the following fitness function:

f itnessI = 1/ f (I), (4)

where f (I) is the objective function value C̄ of BAWCT2 in correspondence to the solution
represented by the individual I.

Note that using formula (4) ensures the highlighting of even slight differences in
function f and, additionally, when f (I) = 0 (corresponding to a perfect balanced optimal
solution), it trivially follows that f itnessI → +∞.
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3.2. Initial Population

Once the encoding strategy is defined, the next step to be performed in GAs is the
generation of the initial population. A review of the main techniques used in this phase is
reported in [28].

For solving BAWCT2, we have tested the following three different techniques: Random
generation, Alternated generation and Bidirectional generation. If, on the one hand, using
the Random generation strategy could generate strongly unbalanced solutions due to the
completely random generation of the population, on the other hand, Alternated generation
and the Bidirectional generation techniques should hopefully generate better starting points,
since they are based on more elaborate criteria. In particular, while the Alternated generation
technique was used for generating a starting point in the Lagrangian relaxation approach
proposed in [7], the Bidirectional generation is inspired by the strategy at the basis of the
exact algorithm which provides an optimal solution in case wj = 1 and pj = pconst for each
j ∈ J (see [12]).

In what follows, we formally describe the three strategies according to the above
proposed encoding.

• Random generation. The genotype of each individual I, corresponding to a feasible
solution of BAWCT2, is given by a random permutation P(J) of J. In other words,
[i] = P(J)i for i = 1, . . . , n.

• Alternated generation. The genotype of each individual I is given by alternating the jobs
of the two classes, until one of the two sets is completely scheduled. The remaining
jobs, if any, are accommodated at the end of the sequence.
More formally, let P(JA) and P(JB) be two random permutations of JA and JB, respec-
tively. Then, for each i = 1, . . . , min{nA, nB}, we initially set

[2i− 1] = P(JA)i and [2i] = P(JB)i.

Successively, in case nA 6= nB, the remaining jobs of the largest class are assigned at
the end of the sequence, starting from the position 2 ·min{nA, nB}+ 1.

• Bidirectional generation. The genotype of each individual is provided by an iterative
procedure, which consists of accommodating, at each iteration, two jobs of one class
(alternately chosen between A and B) in the first and in the last currently available
positions of the sequence, respectively.
In particular, let P(JA) and P(JB) be two random permutations of JA and JB, respec-
tively. Then, at each iteration k, for k = 0, . . . , bnA/2c + bnB/2c − 1, we set either

[k + 1] = P(JC)t and [n− k] = P(JC)t+1 (5)

or
[k + 1] = P(JC)t+1 and [n− k] = P(JC)t, (6)

where JC is the index set that coincides, alternately, at each iteration, with either JA or
JB. The index t is initialized to 1 and is increased by 2 at the end of each iteration.
Obviously, when only one of the two classes is completely scheduled, JC remains
fixed to the index set of the other class. Moreover, in case nA and/or nB are odd,
the remaining jobs are put in the middle of the sequence, using a greedy strategy
based on the evaluation of the fitness function. The fitness value is also considered in
the final choice of the configuration between (5) and (6).

It is worth noting that, for all of the above proposed techniques, the probability of
obtaining two times the same schedule as the output of the generation process is very low,
since they are defined in the function of random permutations. This is a crucial point, as it
guarantees a diversification in the initial population.
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3.3. Selection

Selection (see [29]) is a crucial step in designing GAs, since it defines the chance of a
given individual to participate in the reproduction process. Considering that a convergence
to optimal solutions is desired, it is recommended to provide a major chance to individuals
characterized by high fitness values.

In this work, three different well-known selection techniques were adopted: Roulette
wheel, Binary tournment and k-tournment.

• Roulette wheel. The selection is performed by simulating a roulette wheel, in which
the chance of an individual to be selected is represented by a portion of the roulette.
In particular, for each individual I, since the size of its portion must be proportional to
the fitness value, the probability pI to be selected is set as

pI =
f itnessI

∑
i∈Pop

f itnessi
,

where Pop represents the overall population.
• Binary tournament. Between two randomly selected individuals, the one characterized

by the highest fitness value is chosen for reproduction.
• k-tournament. It is the same as the Binary tournament, apart from the fact that k individ-

uals, with 2 < k ≤ psize, are involved in the tournament, where psize is the size of the
population.

3.4. Crossover

Once the parents are selected, they have to reproduce in order to generate new children
(offspring). The reproduction process is simulated by using crossover operators, aimed
at creating new individuals whose features are a mix of the genetic properties of the
parents. From the algorithmic point of view, this phase is very important since it allows
the exploration of the solution space.

In the literature, a lot of crossover operators have been proposed for the scheduling
problems and, in general, for sequencing problems, such as the traveling salesman problem
(for a general overview, see [30,31]).

In [26], the authors highlighted that the crossover operators, mainly proposed for
the traveling salesman problem, do not perform very well in a scheduling context. As a
consequence, taking into account this consideration, for solving BAWCT2, we chose to
implement the following three crossover strategies: One-point crossover, Two-point crossover
and Position-based crossover.

Given two parents I1 and I2, these operators can be described as follows:

• One-point crossover. An index i ∈ [1, n] is randomly selected. Then, with the same
probability, either the first i jobs or the last n− i ones are inherited from I1, while the
remaining ones are inserted in the sequence preserving the order they have in I2 (see
Figure 1).

• Two-point crossover. Two indices i, j ∈ [1, n] are randomly selected. Assuming i ≤ j,
the first i jobs and the last n− j ones are inherited from I1, while the remaining j− i
are inserted in the sequence preserving the order they have in I2 (see Figure 2).

• Position-based crossover. An index, k ∈ [1, n], is randomly selected and k different
positions vi, i = 1, . . . , k, are sampled in the same interval [1, n]. Then, the jobs in
positions vi, for i = 1, . . . , k, are inherited from I1, while the remaining ones are
inserted in the sequence, preserving the order they have in I2 (see Figure 3).
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Figure 1. One-point crossover with i = 2.

Figure 2. Two-point crossover with i = 1 and j = 3.

Figure 3. Position-based crossover with k = 3, v1 = 1, v2 = 3 and v3 = 4.

3.5. Mutation

Another important operator in GAs is the mutation that, together with the crossover
operator, allows the exploration of the solution space. In particular, the aim of a mutation
operator is to perturb the current solution by applying random changes. Inspired by [26],
in this work, the following mutation operators were tested:

• Arbitrary two-job change. Two positions i, j ∈ [1, n] are randomly selected and the jobs
currently scheduled in these positions are swapped (see Figure 4).

• Shift change. Two positions i, j ∈ [1, n] are randomly selected, and the job in the
position i is moved to the position j, shifting all the intermediate jobs (see Figure 5).

Additionally, considering any set of adjacent jobs as a batch, we also defined the
following mutation operator:

• Arbitrary batch change. Given two random positions i, j ∈ [1, n], assume i ≤ j. Then, an
integer s (the batch size) is randomly determined in the interval [1, min{j− i, n + 1− j}]
and, for k = 0, . . . , s− 1, the jobs in the positions i + k and j + k are swapped (see
Figure 6).
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Figure 4. Arbitrary two-job change with i = 2 and j = 4.

Figure 5. Shift change with i = 2 and j = 4.

Figure 6. Arbitrary batch change with i = 1, j = 3 and s = 2.

3.6. Local Search

The aim of the local search, that we immediately apply after the mutation, is to improve
the fitness value of a new offspring and to possibly avoid a premature convergence.

In a lot of scenarios considered in our numerical experiments, the local search has
turned out to be very effective, since, starting from a good solution produced in the previous
phases, it has often provided a perfect balancing between A and B, i.e., a global solution
located in the current neighborhood.

In particular we have adopted the following strategy, proposed in [7] and detailed in
Algorithm 2. Given an initial offspring Oinit, for each of the n(n−1)

2 couples of indices (i, j),
with i < j, we check whether, by swapping the jobs in the positions i and j, a decreasing in
the objective function of BAWCT2 (i.e., a better fitness value) is obtained. If so, the exchange
is executed.

Algorithm 2: Local search
Input: offspring Oinit

1 for i← 1 to n− 1 do
2 for j← i + 1 to n do
3 O← Swap(Oinit,i,j)
4 ∆← fitnessO - fitnessOinit
5 if ∆ > 0 then
6 Oinit ← O
7 end
8 end
9 end
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3.7. The Overall Algorithm

The overall GA, proposed for solving BAWCT2, is named GA-BAWCT2 and is detailed
in Algorithm 3 (see also Figure 7 for a graphical description). The input parameters are
the following:

• psize: size of the population;
• pc: probability of performing the crossover;
• pm: probability of performing the mutation;
• GenerateIndividual: adopted strategy for generating the initial population;
• Selection: adopted strategy for the selection operator;
• Crossover: adopted strategy for the crossover operator;
• Mutation: adopted strategy for the mutation operator;
• maxIter: maximum number of iterations.

Algorithm 3: GA-BAWCT2
Input: psize, pc, pm, maxIter

1 Pop← ∅
2 for i← 1 to psize do
3 Popi ← GenerateIndividual()
4 Evaluate(Popi)
5 Pop← Pop ∪ {Popi}
6 Ibest ← Best(Pop)
7 iter← 0
8 while f itnessIbest < +∞ and iter < maxIter do
9 NewPop← ∅

10 for i← 1 to psize do
11 parents← Selection(Pop)
12 if rand([0, 1]) < pc then
13 o f f spring← Crossover(parents)
14 else
15 o f f spring← parents1

16 if rand([0, 1]) < pm then
17 o f f spring←Mutation(o f f spring)

18 Evaluate(o f f spring)
19 o f f spring← LocalSearch(o f f spring)
20 NewPop← NewPop ∪ {o f f spring}
21 toDiscard← O ∈ NewPop s.t. ∃ P ∈ NewPop : f itnessP ≥ f itnessO
22 Pop← NewPop ∪ {Ibest} \ {toDiscard}
23 Ibest ← Best(Pop)
24 iter← iter +1

The following comments on Algorithm 3 are in order. Given the current population
(Pop), initialized at Steps 1–5, at each iteration we create a new population (NewPop),
by randomly selecting 2psize numbers in the interval [0, 1] to decide whether, in generating
the new current individual, the crossover and mutation have to be applied. In case the
crossover is not carried out, the offspring coincides with the first parent, selected at Step 11.
Once an offspring is generated, we proceed with the eventual mutation (Step 17, depending
on pm) and we evaluate the corresponding fitness value (Step 18), in order to perform
the local search (Step 19). Then, the new current population (Step 22) is obtained by
substituting, in the new population, one individual (different from the best one) with the
best one of the old population. In this way, we guarantee the monotonicity of the fitness
function in corresponding to the best individual (Ibest) of the current population, which,
at the end of the algorithm, constitutes a heuristic solution to the problem.
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Figure 7. Algorithm GA-BAWCT2: a graphical description.

Finally, we observe that the algorithm terminates either by reaching the maximum
number of iterations or because a perfect balancing (i.e., f (Ibest) = 0) has been determined,
with the latter corresponding to f itnessIbest = +∞.

4. Numerical Experiments

Algorithm 3 (GA-BAWCT2) was implemented in Java (version 14.02) and run on a
Windows 11 system, characterized by 16 GB of RAM and a 2.30 GHz Intel Core i7 processor.
For each run, the time limit was fixed to 3600 s, as in [7].

We recall that a preliminary step in the implementation of GAs is the parameters
setting, which is crucial since it strongly affects the performance of the algorithm. Moreover,
because a vast number of possible settings has to be considered, this is not a trivial step.

In particular, apart from the maximum number of iterations (maxIter) that we have set
equal to 1000 as in [7], our heuristic is defined in a function of three numerical input param-
eters (psize, pc, pm) and four categorical parameters (the inner procedures Initial population,
Selection, Crossover and Mutation), the latter to be chosen among the different strategies
proposed in the previous section and summarized in Table 2. On the possible values of the
numerical parameters, our proposal is reported in Table 3 (three different values for each pa-
rameter), resulting in a total of seven parameters and 37 = 2187 combinations for the overall
setting of the algorithm. Due to the huge number of these combinations, the parameters’
setting was simplified by adopting the strategy described in the next subsection.



Mathematics 2023, 11, 4034 12 of 15

Table 2. Algorithm GA-BAWCT2: Domains of the categorical parameters.

Parameters Proposed Values

Initial population Random Alternated Bidirectional
Selection Roulette Binary tournament k-tournament

Crossover One-point Two-point Position-based
Mutation Arbitrary two-job Shift Arbitrary batch

Table 3. Algorithm GA-BAWCT2: Domains of the numerical parameters.

Parameters Proposed Values

psize 20 50 100
pc 0.75 0.85 0.95
pm 0.05 0.25 0.5

4.1. Parameters’ Setting

Initially, the three numerical parameters (psize, pc and pm) were fixed to the median of
the proposed values, i.e., 50, 0.85 and 0.25, respectively. Then, in correspondence to such
values of the numerical parameters, we have considered all the 34 combinations of the
four categorical parameters, and, for each combination, we ran the code on 30 randomly
generated instances of the problem. Such instances were obtained similarly to [7], as follows.
We considered three different scenarios in correspondence to nA = nB = k, with k ∈
{100, 150, 250}, and, for each scenario, we generated ten instances by uniformly sampling
pj and wj in the interval [1, 3n]. Taking into account that the algorithm was able to solve to
optimality (i.e., f itnessIbest = +∞) all of these instances, the execution time was considered
as the performance measure. The optimal setting of the categorical parameters, i.e., the one
in correspondence to which we have obtained the lowest average execution time, resulted
in the following:

• Initial population: Bidirectional generation;
• Selection: Binary tournament;
• Crossover: Two-point crossover;
• Mutation: Shift change.

Successively, in correspondence with the above fixed best configuration of the categor-
ical parameters, we similarly proceeded to determine the optimal setting of the numerical
parameters by considering all the 33 combinations. We obtained:

• psize = 20;
• pc = 0.85;
• pm = 0.5.

For the sake of completeness, in Figures 8 and 9, the main effects’ plots of the cate-
gorical and of the numerical parameters, respectively, are reported, using as a metric the
execution time.
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Roulette 2-tournament k-tournament

Selection
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Figure 8. Algorithm GA-BAWCT2: Main effects’ plots of categorical parameters.
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Figure 9. Algorithm GA-BAWCT2: Main effects’ plots of numerical parameters.

4.2. Testing Phase

In correspondence with the above parameters’ setting, the code was tested on some of
the instances used in [7] (see Table 5 therein), and on some new larger randomly generated
instances. We recall, in fact, that our main purpose is to show the effectiveness of GA,
especially in solving large-scale problems.

The dataset used in Table 5 of [7] consists of six scenarios, each of them composed of 20 instances.
These scenarios were defined by taking nA = nB = k, with k ∈ {30, 50, 100, 150, 200, 250},
and by randomly sampling pj and wj from the uniform interval [1, 3n]. Our results are
reported in Table 4, in comparison with the results obtained by the authors in [7], exactly
on the same machine, where the GA-BAWCT2 code was further run. In particular, for both
the algorithms and for each scenario, we report:

• The average execution time (in seconds);
• The average best incumbent, i.e., the average of the best objective function values of

BAWCT2, found by the algorithm;
• The number of instances certainly solved to optimality, i.e., how many times the

algorithm exited with a zero objective function value.

Table 4. Algorithm GA-BAWCT2: numerical results on medium instances, in comparison with the
Lagrangian heuristic proposed in [7].

Lagrangian Heuristics GA-BAWCT2
nA nB Time Best #Solved Time Best #Solved

(s) Incumbent to Opt (s) Incumbent to Opt

30 30 1.08 0 20/20 0.026 0 20/20
50 50 12.01 0 20/20 0.101 0 20/20

100 100 144.58 0 20/20 1.35 0 20/20
150 150 737.13 0 20/20 3.45 0 20/20
200 200 1467.99 0.001 16/20 11.97 0 20/20
250 250 1847.42 0.005 4/20 42.72 0 20/20

Looking at the results, it is evident that Algorithm GA-BAWCT2 overcomes the
Lagrangian heuristic: in fact, differently from the Lagrangian approach, our algorithm is
able to solve to optimality all of the 120 instances, and moreover, in terms of execution time,
it is clearly the winner with a difference of two orders of magnitude.

In order to test our approach on more and larger instances, we randomly generated
a new large-scale dataset consisting of seven scenarios, each of them constituted by ten
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instances. In such case, a maximum number of jobs equal to 2000 is considered, taking
again pj and wj as random integer numbers from a uniform distribution on the interval
[1, 3n]. The obtained results are reported in Table 5, from which we can observe that
Algorithm GA-BAWCT2 was certainly able solve to optimality in more than 50% of the
overall instances, providing, for each scenario, an average value of the incumbent that is
less then 0.001.

Table 5. Algorithm GA-BAWCT2: numerical results on large instances.

nA nB Time (s) Best Incumbent #Solved to Opt

500 500 619.81 0 10/10
500 600 2581.38 0.0002 5/10
500 700 2370.27 0.0001 5/10
500 800 2589.24 0.0002 4/10
500 900 3220.57 0.0002 4/10
500 1000 1984.54 0.0002 8/10

1000 1000 2426.04 0.0006 6/10

5. Conclusions

In this paper, a genetic algorithm was adopted for balancing the average weighted
completion times of two classes of jobs in a single-machine scheduling problem.

For implementing each phase, different techniques were tested, with some of them
taken from the literature, while others were introduced for the first time in this work.

The numerical results obtained on a dataset taken from the literature demonstrated
the efficiency of the new proposal, which is able to significantly speed up the resolution
process with respect to the state of the art. Additional numerical experiments also proved
that our approach is able to effectively deal with large-scale instances of up to 2000 jobs.

Future research could be devoted to the extension of the genetic algorithm to the bi-
objective case, by taking into account the additional minimization of the average weighted
completion times of one of the two agents.
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