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Abstract: This work focuses on the propagation of waves on the water’s surface, which can be
described via different mathematical models. Here, we apply the generalized exponential rational
function method (GERFM) to several nonlinear models of surface wave propagation to identify their
multiple solitary wave structures. We provide stability analysis and graphical representations for
the considered models. Additionally, this paper compares the results obtained in this work and
existing solutions for the considered models in the literature. The effectiveness and potency of the
utilized approach are demonstrated, indicating their applicability to a broad range of nonlinear
partial differential equations in physical phenomena.
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1. Introduction

Researchers in the scientific community are presented with nonlinear partial differ-
ential equations (NPDEs) capable of explaining various physical events from science to
engineering [1–3]. Nonlinear partial differential equations models in mathematics and
physics play an important role in theoretical sciences. The understanding of these nonlinear
partial differential equations is also crucial to many applied areas such as meteorology,
oceanography, and aerospace industry. A prominent area in nonlinear theory is the hunt
for exact solutions to NPDEs [4,5]. Raza et al. employed a truncated Painleve approach
for three coupled nonlinear Maccari’s models in complex form [6]. Yel et al. considered a
chiral nonlinear Schrödinger equation via the rational sine-Gordon expansion method [7].
Fadhal et al. utilized two techniques for some NFDEs with beta derivative [8]. Abuashad
and Hashim applied the homotopy decomposition procedure [9]. Ahmad et al. considered
a unified method [10]. Zafar et al. performed three distinct techniques for the consid-
ered NFDE [11]. Arshed et al. considered the Kraenkel–Manna–Merle model with the
betaderivative [12]. Zhang and Si used the new generalized algebraic method for the
(1 + 2)-dimensional nonlinear Schrödinger equation [13]. Akbulut and Islam studied the
Biswas–Arshed equation with the beta derivative [14]. Ismael et al. probed the Schrodinger–
Boussinesq system with the beta derivative [15]. Gurefe et al. employed the trial equation
technique to the KdV equation with dual-power-lawnonlinearity [16]. Martínez et al. em-
ployed the in sub-equation technique [17]. Hosseini et al. turned to Jacobi techniques [18].
Kazmi et al. employed bifurcation-phase portraits of the q-deformed Sinh–Gordon equa-
tion [19]. Akar and Ozkan handled the sub-equation procedure [20]. Ouahid considered
the unified solver technique [21]. Islam et al. used a modified simple equation method [22].

Mathematics 2023, 11, 4030. https://doi.org/10.3390/math11194030 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194030
https://doi.org/10.3390/math11194030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5700-9127
https://orcid.org/0000-0003-0342-491X
https://doi.org/10.3390/math11194030
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194030?type=check_update&version=1


Mathematics 2023, 11, 4030 2 of 17

This paper will examine the Ostrovsky and (1 + 1)-dimensional symmetric regularized
long wave (SRLW) equations. The Ostrovsky equation can be written as

uuxxt − uxuxt + u2ut = 0. (1)

This equation providesa model of nonlinear waves in a rotating ocean [23–25]. The SRLW
equation is given as

utt + uxx + uuxt + utux + uxxtt = 0. (2)

Scientists use this equation to research physical oceanography, river floods, wave
propagation in tsunami estimation, breakwater construction and control, dam-breaking
problems, and coastal engineering. The modified extended tanh-function approach was em-
ployed in this equation to attain the soliton and periodic wave solutions of this equation [23].

The primary purpose of this work is to analyze wave propagations for the Ostro-
vsky and (1 + 1)-dimensional SRLW equations. The manuscript is structured as follows:
Section 2 provides preliminary information. Section 3 briefly discusses the GERFM and
includes a mathematical analysis of the suggested models and solutions. Section 4 presents
the solitary wave solutions of the scrutinized equations. Section 5 provides some discus-
sions and graphical representations of several analytical solutions. Finally, the conclusion
in Section 7 summarizes the estimated findings.

2. Preliminary Information for Reduced ODE

The general form of the differential equation is given as follows:

P(u, ut, ux, utt, uxt, uxx, . . . ) = 0, (3)

where P is a polynomial of u(x, t) and its partial derivatives. If we employ wave transforma-
tion in the following form,

u(x, t) = U(ε), ε = kx− vt, (4)

to Equation (3), we obtain a nonlinear ordinary differential equation (ODE) as follows:

Q
(
U, U′, U′′, U′′′, . . .

)
= 0. (5)

3. Explanation of the GERFM

One possible way to describe the GERFM approach is as follows [26]:

• Step 1: We assume the exact solution of Equation (3):

u(ε) = α0 +
m

∑
n=1

αnψn(ε) +
m

∑
n=1

βnψ−n(ε), (6)

ψ(ε) =
τ1eς1ε + τ2eς2ε

τ3eς3ε + τ4eς4ε
, ε = kx− vt, (7)

where τk and ςk (1 ≤ k ≤ 4) exhibit the real (or complex) numbers which will be
later obtained, and α0, αn,βn, (1 ≤ n ≤ m), the solution of Equation (6), will hold for
Equation (5).

• Step 2: m can be found in the concept of the balancing principle;
• Step 3: Putting (6) into Equation (5) and collecting the like terms, we attain the

polynomial equation A(B1, B2, B3, B4) = 0 in terms of βi = eςiε for i = 1, . . . , 4;
• Step 4: Equating the coefficients of A to zero, a set of algebraic expressions in

τk, ςk (1 ≤ k ≤ 4), and k, ω, α0, αn, βn (1 ≤ n ≤ 4) is reached;
• Step 5: We obtain the solutions to Equation (3) by evaluating the obtained expressions.
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Remark 1. By setting τ1 = τ3 = τ4 = 1 and τ2 = ς1 = ς2 = ς3 = 0, ς4 = 1 and
βn (n = 1, . . . , m) are equal to zero in Equations (6) and (7), and the ERF approach is thus
obtained [26].

ϕ(ε) =
1

1 + eε
(8)

u(ε) = α0 +
m

∑
n=1

αn

(1 + eε)n (9)

4. Applications of the GERFM
4.1. Applications to the Ostrovsky Equation

In this section, by plugging Equation (4) into Equation (1), the following equation
is retrieved:

k2(uu′′′ − u′u′′
)
+ u2u′ = 0. (10)

The balancing number can be calculated as m = 2.

u(ε) = a0 + a1ψ(ε) + a2ψ2(ε) +
b1

ψ(ε)
+

b2

ψ2(ε)
(11)

where ψ(ξ) is exhibited by Equation (7). By plugging Equation (11) into Equation (10)
and collecting all the same terms, they are turned into polynomials A(B1, B2, B3, B4) = 0 k
and v.

Family 1: Setting

τ1 = i, τ2 = i, τ3 = 1, τ4 = −1,
ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,

(12)

in Equation (7), one acquires

ψ(ε) =
cos(ε)
sin(ε)

. (13)

From the surrogation of Equation (13) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming (Maple 14, Maple
Inc., Waterloo, ON, Canada) software, and we find the following results:

1.1:
a0 = −2k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = 0. (14)

Surrogating Equations (13) and (16) into Equation (11), we find the solitary wave
solution of the considered equation as follows:

u(ε) = −2k2 − 6k2 cos2(ε)

sin2(ε)
(15)

1.2:
a0 = −6k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = 0. (16)

Surrogating Equations (13) and (16) into Equation (11), we find the solitary wave
solution of the considered equation as follows:

u(ε) = −6k2 − 6k2 cos2(ε)

sin2(ε)
(17)

1.3:
a0 = −12k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = −6k2. (18)
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Surrogating Equations (13) and (18) into Equation (11), we find the trigonometric exact
solution of the examined model as follows:

u(ε) = −12k2 − 6k2 cos2(ε)

sin2(ε)
− 6k2 sin2(ε)

cos2(ε)
. (19)

1.4:
a0 = −2k2, a1 = 0, a2 = 0, b1 = 0, b2 = −6k2. (20)

Surrogating Equations (13) and (20) into Equation (11), we find the solitary solution of
the Ostrovsky model as follows:

u(ε) = −2k2 − 6k2 sin2(ε)

cos2(ε)
. (21)

1.5:
a0 = −6k2, a1 = 0, a2 = 0, b1 = 0, b2 = −6k2. (22)

Surrogating Equations (13) and (22) into Equation (11), we find the solitary solution of
the scrutinized model as follows:

u(ε) = −6k2 − 6k2 sin2(ε)

cos2(ε)
. (23)

1.6:
a0 = 4k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = −6k2. (24)

Surrogating Equations (13) and (24) into Equation (11), we find the solitary solution of
the examined model as follows:

u(ε) = 4k2 − 6k2 cos2(ε)

sin2(ε)
− 6k2 sin2(ε)

cos2(ε)
. (25)

Family 2: Setting
τ1 = τ2 = τ3 = 1, τ4 = −1,
ς1 = ς3 = 1, ς2 = ς4 = −1,

(26)

in Equation (7), one acquires

ψ(ε) =
cosh(ε)
sinh(ε)

. (27)

From the surrogation of Equation (27) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

2.1:
a0 = 6k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = 0. (28)

Surrogating Equations (27) and (28) into Equation (11), we find the solitary solution of
the scrutinized model as follows:

u(ε) = 6k2 − 6k2 cosh2(ε)

sinh2(ε)
. (29)

2.2:
a0 = 2k2, a2 = −6k2, a1 = b1 = b2 = 0. (30)

Surrogating Equations (27) and (30) into Equation (11), we find the solitary solution of
the examined model as follows:

u(ε) = 2k2 − 6k2 cosh2(ε)

sinh2(ε)
. (31)

2.3:
a0 = −4k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = −6k2. (32)
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Surrogating Equations (27) and (32) into Equation (11), we find the solitary solution of
the examined model as follows:

u(ε) = −4k2 − 6k2 cosh2(ε)

sinh2(ε)
− 6k2 sinh2(ε)

cosh2(ε)
. (33)

2.4:
a0 = 12k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = −6k2. (34)

Surrogating Equations (27) and (34) into Equation (11), we find the solitary wave
solution of the examined equation as follows:

u(ε) = 12k2 − 6k2 cosh2(ε)

sinh2(ε)
− 6k2 sinh2(ε)

cosh2(ε)
. (35)

2.5:
a0 = 2k2, a1 = 0, a2 = 0, b1 = 0, b2 = −6k2. (36)

Surrogating Equations (27) and (36) into Equation (11), we find the solitary solution of
the Ostrovsky model as follows:

u(ε) = 2k2 − 6k2 sinh2(ε)

cosh2(ε)
. (37)

2.6:
a0 = 6k2, a1 = 0, a2 = 0, b1 = 0, b2 = −6k2. (38)

Surrogating Equations (27) and (38) into Equation (11), we find the solitary solution of
the scrutinized model as follows:

u(ε) = 6k2 − 6k2 sinh2(ε)

cosh2(ε)
. (39)

Family 3: Setting
τ1 = 2, τ2 = 3, τ3 = τ4 = 1,
ς1 = ς3 = 1, ς2 = ς4 = 0,

(40)

in Equation (7), one acquires

ψ(ε) =
3 + 2eε

1 + eε
. (41)

From the surrogation of Equation (41) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

3.1:
a0 = −36k2, a1 = 30k2, a2 = −6k2, b1 = 0, b2 = 0. (42)

Surrogating Equations (41) and (42) into Equation (11), we find the solitary solution of
the Ostrovsky model as follows:

u(ε) =
3k2

1 + cosh(ε)
. (43)

3.2:
a0 = −36k2, a1 = 0, a2 = 0, b1 = 180k2, b2 = −216k2. (44)

Surrogating Equations (41) and (44) into Equation (11), we find the solitary wave
solution of the examined equation as follows:

u(ε) =
36k2(5 sinh(ε) + 13 cosh(ε) + 12)
144 cosh2(ε) + 169 + 312 cosh(ε)

. (45)
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3.3:
a0 = −37k2, a1 = 30k2, a2 = −6k2, b1 = 0, b2 = 0. (46)

Surrogating Equations (41) and (46) into Equation (11), we find the solitary solution of
the Ostrovsky model as follows:

u(ε) = − k2(cosh(ε)− 2)
1 + cosh(ε)

. (47)

3.4:
a0 = −37k2, a1 = 0, a2 = 0, b1 = 180k2, b2 = −216k2. (48)

Surrogating Equations (41) and (48) into Equation (11), we find the solitary solution of
the examined model as follows:

u(ε) = − k2(−5 sinh(ε)− 24 + 13 cosh(ε))
−5 sinh(ε) + 13 cosh(ε) + 12

. (49)

Family 4: Setting
τ1 = i, τ2 = −i, τ3 = τ4 = 1,
ς1 = ς3 = i, ς2 = ς4 = −i,

(50)

in Equation (7), one acquires

ψ(ε) = − sin(ε)
cos(ε)

. (51)

If we substitution of Equation (51) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

4.1:
a0 = −2k2, a1 = 0, a2 = 0, b1 = 0, b2 = −6k2. (52)

Surrogating Equations (51) and (52) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −2k2 − 6k2 cos2(ε)

sin2(ε)
. (53)

4.2:
a0 = −6k2, a1 = 0, a2 = 0, b1 = 0, b2 = −6k2. (54)

Surrogating Equations (51) and (54) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −6k2 − 6k2 cos2(ε)

sin2(ε)
. (55)

4.3:
a0 = 4k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = −6k2. (56)

Surrogating Equations (51) and (56) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = 4k2 − 6k2 sin2(ε)

cos2(ε)
− 6k2 cos2(ε)

sin2(ε)
. (57)

4.4:
a0 = −12k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = −6k2. (58)

Surrogating Equations (51) and (58) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −12k2 − 6k2 sin2(ε)

cos2(ε)
− 6k2 cos2(ε)

sin2(ε)
. (59)
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4.5:
a0 = −2k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = 0. (60)

Surrogating Equations (51) and (60) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −2k2 − 6k2 sin2(ε)

cos2(ε)
. (61)

4.6:
a0 = −6k2, a1 = 0, a2 = −6k2, b1 = 0, b2 = 0. (62)

Substituting Equations (51) and (62) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −6k2 − 6k2 sin2(ε)

cos2(ε)
. (63)

Family 5: Setting
τ1 = 3, τ2 = 2, τ3 = τ4 = 1,
ς1 = ς3 = 1, ς2 = ς4 = 0,

(64)

in Equation (7), one acquires

ψ(ε) = − 1
eε + 1

. (65)

From the surrogation of Equation (65) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

5.1:
a0 = −k2, a1 = −6k2, a2 = −6k2, b1 = 0, b2 = 0. (66)

Surrogating Equations (65) and (66) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −k2 +
6k2

1 + sinh(ε) + cosh(ε)
− 6k2

(1 + sinh(ε) + cosh(ε))2 . (67)

5.2:
a0 = 0, a1 = −6k2, a2 = −6k2, b1 = 0, b2 = 0. (68)

Surrogating Equations (65) and (68) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) =
6k2

1 + sinh(ε) + cosh(ε)
− 6k2

(1 + sinh(ε) + cosh(ε))2 . (69)

Family 6: Setting

τ1 = 2− i, τ2 = 2 + i, τ3 = τ4 = 1,
ς1 = ς3 = i, ς2 = ς4 = −i,

(70)

in Equation (7), one acquires

ψ(ε) =
2 cos(ε) + sin(ε)

cos(ε)
. (71)

From the surrogation of Equation (71) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

6.1:
a0 = −30k2, a1 = 0, a2 = 0, b1 = 120k2, b2 = −150k2. (72)
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Surrogating Equations (71) and (72) into Equation (11), we find the solitary solution of
the Ostrovsky model as follows:

u(ε) = −30k2 +
120k2 cos(ε)

2 cos(ε) + sin(ε)
− 150k2 cos2(ε)

(2 cos(ε) + sin(ε))2 . (73)

6.2:
a0 = −26k2, a1 = 0, a2 = 0, b1 = 120k2, b2 = −150k2. (74)

Surrogating Equations (71) and (74) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −26k2 +
120k2 cos(ε)

2 cos(ε) + sin(ε)
− 150k2 cos2(ε)

(2 cos(ε) + sin(ε))2 . (75)

6.3:
a0 = −30k2, a1 = 24k2, a2 = −6k2, b1 = 0, b2 = 0. (76)

Surrogating Equations (71) and (76) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −6k2 − 6k2 sin2(ε)

cos2(ε)
. (77)

6.4:
a0 = −30k2, a1 = 24k2, a2 = −6k2, b1 = 0, b2 = 0. (78)

Surrogating Equations (71) and (78) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = −2k2 − 6k2 sin2(ε)

cos2(ε)
. (79)

Family 7: Setting
τ1 = 2, τ2 = τ3 = τ4 = 1,
ς1 = ς3 = 1, ς2 = ς4 = 0,

(80)

in Equation (7), one acquires

ψ(ε) =
2eε + 1
1 + eε

. (81)

From the surrogation of Equation (81) into Equations (6) and (11), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

7.1:
a0 = −12k2, a1 = 18k2, a2 = −6k2, b1 = 0, b2 = 0. (82)

Surrogating Equations (81) and (82) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) =
3k2

1 + cosh(ε)
. (83)

7.2:
a0 = −12k2, a1 = 0, a2 = 0, b1 = 36k2, b2 = −24k2. (84)

Surrogating Equations (81) and (84) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) =
12k2(−3 sinh(ε) + 5 cosh(ε) + 4)

16 cosh2(ε) + 40 cosh(ε) + 25
. (85)
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7.3:
a0 = −13k2, a1 = 18k2, a2 = −6k2, b1 = 0, b2 = 0. (86)

Surrogating Equations (81) and (84) into Equation (11), we find the solitary solution of
the Ostrovsky model as follows:

u(ε) = − k2(cosh(ε)− 2)
1 + cosh(ε)

. (87)

7.4:
a0 = −13k2, a1 = 0, a2 = 0, b1 = 36k2, b2 = −24k2. (88)

Surrogating Equations (81) and (88) into Equation (11), we find the solitary wave
solution of the examined equation:

u(ε) = − k2(5 cosh(ε) + 3 sinh(ε)− 8)
5 cosh(ε) + 3 sinh(ε) + 4

. (89)

In this part, fresh traveling wave solutions to Equation (1) via the GERFM will be
examined. As a result, we begin with a mathematical study of the considered equation.

4.2. Applications to the SRLW Equation

Using the chain rule and travelling wave transformation Equation (4), we find:

(k2 + v2)u′′ − kvuu′′ − kv(u′)2 + k2v2u′′′′ = 0. (90)

The balancing number can be calculated as m = 2.

u(ε) = a0 + a1ψ(ε) + a2ψ2(ε) +
b1

ψ(ε)
+

b2

ψ2(ε)
, (91)

where ψ(ξ) is exhibited by Equation (7). By plugging Equation (91) into Equation (90) and
combining all like terms, they are turned into polynomials A(B1, B2, B3, B4) = 0 k and v.

Family 1: Setting
τ1 = 1, τ2 = 1, τ3 = 1, τ4 = −1,
ς1 = 1, ς2 = −1, ς3 = 1, ς4 = −1,

(92)

in Equation (7), one acquires

ψ(ε) =
cosh(ε)
sinh(ε)

. (93)

We surrogate Equation (93) into Equations (90) and (91), and we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

1.1:

a0 =
k2 + v2 − 8k2v2

kv
, a1 = 0, a2 = 12kv, b1 = 0, b2 = 0. (94)

Then, we surrogate Equations (93) and (94) into Equation (91), and we find the follow-
ing exact solution for the (1 + 1)-dimensional SRLW equation:

u(ε) =
k2 + v2 − 8k2v2

kv
+

12kv cosh2(ε)

sinh2(ε)
. (95)

1.2:

a0 =
k2 + v2 − 8k2v2

kv
, a1 = 0, a2 = 0, b1 = 0, b2 = 12kv. (96)
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When we surrogate Equations (93) and (96) into Equation (91), we obtain the following
exact solution for the (1 + 1)-dimensional SRLW equation:

u(ε) =
k2 + v2 − 8k2v2

kv
+

12kv sinh2(ε)

cosh2(ε)
. (97)

1.3:

a0 =
k2 + v2 − 8k2v2

kv
, a1 = 0, a2 = 12kv, b1 = 0, b2 = 12kv. (98)

Then, we surrogate Equations (93) and (98) into Equation (91) to find the exact solution
for the (1 + 1)-dimensional SRLW equation as follows:

u(ε) =
k2 + v2 − 8k2v2

kv
+

12kv cosh2(ε)

sinh2(ε)
+

12kv sinh2(ε)

cosh2(ε)
. (99)

Family 2: Setting
τ1 = 2, τ2 = 3, τ3 = 1, τ4 = 1,
ς1 = 1, ς2 = 0, ς3 = 1, ς4 = 0,

(100)

in Equation (7), one acquires

ψ(ε) =
3 + 2eε

1 + eε
. (101)

When we surrogate Equation (101) into Equations (90) and (91), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

2.1:

a0 =
73k2v2 + k2 + v2

kv
, a1 = −60kv, a2 = 12kv, b1 = 0, b2 = 0. (102)

When we surrogate Equation (102) and the obtained results into Equation (91), we find:

u(ε) =
−5k2 sinh(ε)(v2 + 1) + 13v2 cosh(ε)(k2 + 1)− 5v2 sinh(ε) + 12(v2 + k2) + 13k2 cosh(ε)− 60k2v2

kv(−5 sinh(ε) + 13 cosh(ε) + 12)
. (103)

2.2:

a0 =
73k2v2 + k2 + v2

kv
, a1 = −60kv, a2 = 12kv, b1 = 0, b2 = 0. (104)

When we surrogate Equation (104) and the obtained results into Equation (91), we find:

u(ε) =
(k2 + v2)(cosh(ε) + 1) + k2v2(cosh(ε)− 5)

kv(1 + cosh(ε))
. (105)

Family 3: Setting
τ1 = i, τ2 = −i, τ3 = 1, τ4 = 1,
ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,

(106)

in Equation (7), one acquires

ψ(ε) = − sin(ε)
cos(ε)

. (107)

When we surrogate Equation (107) into Equations (90) and (91), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

3.1:

a0 =
v2 + k2 + 8k2v2

kv
, a1 = 0, a2 = 0, b1 = 0, b2 = 12kv. (108)
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We surrogate Equation (108) and the found results into Equation (91) to find:

u(ε) =
v2 + k2 + 8k2v2

kv
+

12kv cos2(ε)

sin2(ε)
. (109)

3.2:

a0 =
v2 + k2 + 8k2v2

kv
, a1 = 0, a2 = 12kv, b1 = 0, b2 = 0. (110)

Then, we surrogate Equation (110) and the found results into Equation (91) to find:

u(ε) =
v2 + k2 + 8k2v2

kv
+

12kv sin2(ε)

cos2(ε)
. (111)

3.3:

a0 =
v2 + k2 + 8k2v2

kv
, a1 = 0, a2 = 12kv, b1 = 0, b2 = 12kv. (112)

We surrogate Equation (112) and the found results into Equation (91) to find:

u(ε) =
v2 + k2 + 8k2v2

kv
+

12kv cos2(ε)

sin2(ε)
+

12kv sin2(ε)

cos2(ε)
. (113)

Family 4: Setting
τ1 = 2, τ2 = 1, τ3 = 1, τ4 = 1,
ς1 = 1, ς2 = 0, ς3 = 1, ς4 = 0,

(114)

in Equation (7), one acquires

ψ(ε) =
2eε + 1
1 + eε

. (115)

When we surrogate Equation (115) into Equations (90) and (91), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:

4.1:
a0 =

25k2v2 + k2 + v2

kv
, a1 = −36kv, a2 = 12kv, b1 = 0, b2 = 0. (116)

We surrogate Equation (116) and the found results into Equation (91) to obtain

u(ε) =
(k2 + v2)(cosh(ε) + 1) + k2v2 cosh(ε)− 5k2v2

kv(1 + cosh(ε))
. (117)

4.2:

a0 =
25k2v2 + k2 + v2

kv
, a1 = 0, a2 = 0, b1 = −72kv, b2 = 48kv. (118)

We surrogate Equation (118) and the found results into Equation (91) to obtain

u(ε) =
(3 sinh(ε) + 5 cosh(ε))(k2 + v2) + k2v2(5 cosh(ε) + 3 sinh(ε)) + 4(k2 + v2 − 5k2v2)

kv(3 sinh(ε) + 4 + 5 cosh(ε))
. (119)

Family 5: Setting
τ1 = i, τ2 = i, τ3 = 1, τ4 = −1,
ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,

(120)

in Equation (7), one acquires

ψ(ε) =
cos(ε)
sin(ε)

. (121)

When we surrogate Equation (121) into Equations (90) and (91), we find an equation
system. Then, we solve this system using mathematical programming software, and we
find the following results:
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5.1:

a0 =
v2 + 8v2k2 + k2

kv
, a1 = 0, a2 = 12kv, b1 = 0, b2 = 0. (122)

Surrogating Equation (122) and the found results into Equation (91) leads to

u(ε) =
v2 + 8v2k2 + k2

kv
+

12kv cos2(ε)

sin2(ε)
. (123)

5.2:

a0 =
v2 + 8v2k2 + k2

kv
, a1 = 0, a2 = 0, b1 = 0, b2 = 12kv. (124)

Surrogating Equation (124) and the found results into Equation (91) leads to

u(ε) =
v2 + 8v2k2 + k2

kv
+

12kv sin2(ε)

cos2(ε)
. (125)

5.3:

a0 =
v2 + 8v2k2 + k2

kv
, a1 = 0, a2 = 12kv, b1 = 0, b2 = 12kv. (126)

Surrogating Equation (126) and the found results into Equation (91) leads to

u(ε) =
v2 + 8v2k2 + k2

kv
+

12kv sin2(ε)

cos2(ε)
+

12kv cos2(ε)

sin2(ε)
. (127)

Family 6: Setting
τ1 = −1, τ2 = 0, τ3 = 1, τ4 = 1,
ς1 = 0, ς2 = 0, ς3 = 1, ς4 = 0,

(128)

in Equation (7), one acquires

ψ(ε) = − 1
eε + 1

. (129)

Then, we surrogate Equation (129) into Equations (90) and (91), and we find an
equation system. Then, we solve this system using mathematical programming software,
and we find the following results:

6.1:

a0 =
k2 + v2 + k2v2

kv
, a1 = 12kv, a2 = 12kv, b1 = 0, b2 = 0. (130)

Surrogating Equation (130) and the found results into Equation (91) leads to

u(ε) =
(k2 + v2) cosh(ε) + k2v2 cosh(ε) + v2 + k2 − 5k2v2

kv(1 + cosh(ε))
. (131)

Family 7: Setting
τ1 = 2− i, τ2 = 2 + i, τ3 = 1, τ4 = 1,

ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,
(132)

in Equation (7), one acquires

ψ(ε) =
sin(ε) + 2 cos(ε)

cos(ε)
. (133)

Substituting Equation (133) and the found results into Equation (91) leads to
7.1:

a0 =
56k2v2 + k2 + v2

kv
, a1 = 0, a2 = 0, b1 = −240kv, b2 = 300kv. (134)
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Substituting Equation (134) and the found results into Equation (91) leads to

u(ε) =
k2v2(−240 sin(ε) cos(ε)− 100 cos4(ε) + 220 cos2(ε) + 56)− (10 cos2(ε)− 1− 25 cos4(ε))(v2 + k2)

kv(−10 cos2(ε) + 25 cos4(ε) + 1)
. (135)

7.2:

a0 =
56k2v2 + k2 + v2

kv
, a1 = −48kv, a2 = 12kv, b1 = 0, b2 = 0. (136)

Substituting Equation (136) and the found results into Equation (91) leads to

u(ε) =
(k2 + v2) cos2(ε) + k2v2(12− 4 cos2(ε))

kv cos2(ε)
. (137)

5. Review on Stability Analysis and Graphical Representations of the Results

The stability property of the solutions is closely related to momentum in the Hamilton
system. From this point of view, the following formula is given for the Hamiltonian system
of the solution:

ηH =
1
2

∫ ε

−ε
u2(ξ)dξ,

where u(ξ) is the solution of the model; then, we calculate the momentum of the Hamilton
system as follows:

∂η

∂ω
|ω=σ> 0,

where σ is optional constant [27–29].
If we substitute k = 0.5 in Equation (15), we obtain the Hamilton system in the square

area of [−1, 1] and do the necessary operations and find the condition as follows:

∂η

∂v
|v=2= 0.7903143020 > 0.

According to the result, we can say that our solution (15) is stable for the assumed
conditions. If we chose the square area of [−2, 2] by the same constants, we obtain the
unstable result.

With the same procedure above, when we substitute k = 0.5, v = 2 Equation (47) in
the square area of [−2, 2] , the stable condition is obtained as follows:

∂η

∂v
|v=2= 0.1161257398− 3.10−10i.

This value is located in the 4th region of the coordinate system, so the result is stable.
If we obtain the Hamilton system for Equation (109) with k = 0.5 in the square area of

[−2, 2], the condition is obtained as follows:

∂η

∂v
|v=2= −35833.30446 < 0.

So, the result is unstable.
Finally, the condition is obtained for Equation (131) as follows:

∂η

∂v
|v=2= 146.8890868 + 1.700745411.10−8i,

where k = 0.5 and the square area of [−2, 2] is assumed. So, the result is stable.
In this part of the paper, we provide graphical representations of some results. These

representations are given by three-dimensional, two-dimensional, and contour plots. All
three-dimensional and contour plots were drawn when k = 0.5 and v = 2. Moreover, the
red line was drawn when t = 0, the green line was drawn when t = 0.5, and the blue
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line was drawn when t = 1 for all two-dimensional plots. Figure 1 depicts graphical
representations of Equation (15) when k = 0.5 and v = 2.

Figure 1. Plots of the Equation (15) when k = 0.5 and v = 2.

Figure 2 depicts graphical representations of Equation (19).

Figure 2. Plots of Equation (19) when k = 0.5 and v = 2.

Figure 3 depicts graphical representations of Equation (29).

Figure 3. Plots of Equation (29) when k = 0.5 and v = 2.

Figure 4 depicts graphical representations of Equation (47).

Figure 4. Plots of Equation (47) when k = 0.5 and v = 2.
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Figure 5 depicts graphical representations of Equation (95).

Figure 5. Plots of Equation (95) when k = 0.5 and v = 2.

Figure 6 depicts graphical representations of Equation (109).

Figure 6. Plots of Equation (109) when k = 0.5 and v = 2.

Figure 7 depicts graphical representations of Equation (131).

Figure 7. Plots of Equation (131) when k = 0.5 and v = 2.

6. Discussion

In this article, seven families of solutions were originated via the GERFM, each dif-
ferent from the other. The obtained exact solutions differ from those obtained in the
literature [23–25]. Equations (15)–(89) offer a variety of different types of solutions by
equating different parameter values. Arbitrary parameters are contained in the obtained
results, and different solutions can be constructed by equating the parameters to unlike
values. Moreover, the depictions of contour, 2D, and 3D plots are formed. Plots 1, 2, and
3 represent dark solitary waves, and Figure 4 represents bright waves. All figures inherit
contour, 2D, and 3D plots for the related results. The red, green, and blue lines are plotted
as t = 0, t = 0.5, and t = 1, respectively, in all 2D figures.

Figure 1 is plotted for the values v = 1, k = 0.5 and β = 0.9999 in Equation (15). This
plot represents a dark soliton solution.
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7. Conclusions

The current paper investigated new exact solutions and their stability analysis via the
Ostrovsky and SRLW equations. The GERFM is utilized to find novel soliton solutions for
the model under examination. We have conducted an analysis of the physical properties of
the produced solutions. When we compared our results with earlier results in the literature,
we obtained a wide family of solutions, and we observe that the movements of our results
are different from one another. The resulting solutions are fresh and innovative, having
not been reported in previous research, and they are treasured for describing nonlinear
physical structures. To further explain the dynamic nature of the solutions, the obtained
solutions are displayed in 3D and 2D graphs. Figures 1–4 illustrate the obtained optical
solitons for various values. One future goal is to identify other exact solutions to this
model utilizing similar integration strategies. We anticipate that the given results will be
valuable in mathematical physics. We plotted 3D, contour, and 2D plots for some results.
Graphical representations are useful for understanding wave motions. Results enhance
the nonlinear dynamical behavior of a given system and demonstrate the effectiveness of
the employed methodology, and they will be beneficial to a large number of engineering
model specialists.

Author Contributions: The study’s conception and design were the results of contributions from all
of the authors. R.T.A., M.K. and N.H.A. prepared the main paper; M.K. plotted figures; and M.K.
checked the paper. Analysis of the results was conducted by all of the authors. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was funded by the Deanship of Scientific Research at Imam Mohammad Ibn
Saud Islamic University (IMSIU) (grant number: IMSIU-RG23140).

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number: IMSIU-RG23140).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, H.; Wang, Z.; Song, K. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression

technique to predict TBM performance. Eng. Comput. 2022, 38, 2469–2485. [CrossRef]
2. Abdollahi, Z.; Moghadam, M.M.; Saeedi, H.; Ebadi, M.J. A computational approach for solving fractional Volterra integral

equations based on two-dimensional Haar wavelet method. Int. J. Comput. Math. 2022, 99, 1488–1504. [CrossRef]
3. Alipour, P. The BEM and DRBEM schemes for the numerical solution of the two-dimensional time-fractional diffusion-wave

equations. arXiv 2023, arXiv:2305.12117v1.
4. Chen, L.; Yang, H.; Song, K.; Huang, W.; Ren, X.; Xu, H. Failure mechanisms and characteristics of the Zhongbao landslide at

Liujing Village, Wulong, China. Landslides 2021, 18, 1445–1457. [CrossRef]
5. Yang, H.Q.; Xing, S.G.; Wang, Q.; Li, Z. Model test on the entrainment phenomenon and energy conversion mechanism of

flow-like landslides. Eng. Geol. 2018, 239, 119–125. [CrossRef]
6. Ozkan, E.M. A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex form. Nonlinear Dyn.

2023, 111, 18419–18437.
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