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Abstract: As a new tumor therapeutic strategy, adaptive therapy involves utilizing the competition
between cancer cells to suppress the growth of drug-resistant cells, maintaining a certain tumor
burden. However, it is difficult to determine the appropriate time and drug dose. In this paper, we
consider the competition model between drug-sensitive cells and drug-resistant cells, propose the
problem of drug concentration, and provide two state constraints: the upper limit of the maximum
allowable drug concentration and the tumor burden. Using relevant theories, we propose the
best treatment strategy. Through a numerical simulation and quantitative analysis, the effects of
drug concentrations and different tumor burdens on treatments are studied, and the effects of cell-
to-cell competitive advantage on cell changes are taken into account. The clinical dose titration
method is further simulated; the results show that our therapeutic regimen can better suppress the
growth of drug-resistant cells, control the tumor burden, limit drug toxicity, and extend the effective
treatment time.

Keywords: problems in pharmacology; drug toxicity; tumor burden; state constraints; optimal control

MSC: 37M05

1. Introduction

In most countries and regions across the world, cancer is the leading cause of death;
prostate cancer is the second largest cancer in men. How to better treat it has become a
long-standing problem. The maximum tolerated dose (MTD) treatment is commonly used
in clinics, but MTD treatment leads to massive drug-sensitive cell death and a significant
increase in drug-resistant cells, ultimately leading to treatment failure [1]. After continuous
studies, Gatenby et al. [2] proposed adaptive therapy to exploit competition between cancer
cells, maintain a certain tumor burden, and suppress the growth of drug-resistant cells.
For adaptive therapy [3], compared with MTD, the administration resulted in a decrease in
drug-sensitive cells, an increase in drug-resistant cells and drug withdrawal, an increase
in sensitive cells, a decrease in drug-resistant cells, and the use of drugs to control the
number of drug-sensitive cells, further affecting drug-resistant cells. Therefore, by choosing
the appropriate dose and treatment time, we maintain a certain tumor burden, suppress
drug-resistant cells, and extend the effective treatment time. However, it is difficult to
determine the drug dose and treatment period.

Cunningham et al. [4] proposed the Lotka–Volterra model of the interaction between
cancer cells,and analyzed an optimal control problem to reach a certain stable point, provid-
ing the optimal dose. Liu et al. [5] established a competition model between drug-sensitive
and drug-resistant cancer cells and proposed a new dynamic optimization problem with
constraints to establish an adaptive treatment scheme for prostate cancer; the control vari-
able was the drug dose and the drug dose played a role in the kinetics as well as in the
concentration. However, in the actual course of treatment, the drug may have to reach
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a certain level to have an effect; the drug concentration is not equal to the drug dose.
Therefore, it is necessary to consider the drug concentration, but the competition model
ignored the drug concentration factor. In fact, most prostate cancer treatment models do
not take this into account [6,7].

Drugs not only kill cancer cells but also affect healthy cells. Therefore, in the process
of treatment, one also needs to consider drug toxicity. Ledzewicz et al. [8] analyzed
cancer chemotherapy models in which the pharmacokinetics equation was introduced
to minimize damage to myeloid cells from chemotherapy; they analyzed the effect of
the pharmacokinetics equation on chemotherapy dose. Urszula et al. [9] modified the
mathematical model; they mainly considered the tumor volume and angiogenesis ability,
using multiple treatment schemes to minimize the tumor volume. They provided the
solutions of several potential mathematical models. Liadis et al. [10] used mathematical
models to describe the pharmacokinetics, antitumor efficacy, and toxicity of anticancer
drugs, providing a schedule for administration, optimizing drug doses, minimizing tumor
burden, and limiting toxicity. Poh Ling Tan et al. [11] considered a mathematical model
of cancer chemotherapy, proposed an objective, provided several different constraint
conditions, proposed two control problems, and obtained the satisfied exact solution.

Therefore, in the course of cancer treatment, one needs to consider how to determine
the dose and treatment time, take into account the drug toxicity, suppress the number of
drug-resistant cells, and extend the limited treatment time. Based on Liu et al. [5], we
describe the drug concentration effect on treatment. Because of the side effects of the
drug, we consider the toxicity of the drug, and provide the maximum allowable drug
concentration. At the same time, because excessive tumor burden will lead to treatment
failure, the maximum tolerable tumor burden is presented. Therefore, the treatment
process is constrained by drug toxicity and tumor burden. Under the two constraints,
the optimal control problem is proposed to optimize the drug dose and treatment time,
so that the number of drug-resistant cells at the terminal time and the drug cost are the
lowest in the limited time. Using the numerical simulation and quantitative analysis,
the optimal treatment time and dose are obtained. The number of tumor cells, optimal
dose, and treatment time are analyzed at different tumor-loading levels, further simulating
the dose titration protocol proposed by Cunningham et al. [4]. The results show that when
the tumor burden is 150%, treatment starts, with the maximum tolerated dose initially
administered. When the maximum allowable drug concentration is reached, the dose is
reduced; with intermittent dosing at moderate doses, this is optimal. It can maintain a
certain tumor burden, reduce the number of drug-resistant cells at the terminal moment,
and reduce drug costs, further limiting drug toxicity.

The structure of this article is as follows. In the second part, we propose a Lotka–
Volterra model to describe the interaction between cancer cells, consider the drug concen-
tration problem, present the first-order linear pharmacokinetics equation, present two state
constraints, and propose an optimal control problem. In the third part, the state constraints
are analyzed and the optimal control structure is given. In the fourth part, through the
numerical simulation, we present the best treatment time and the drug dose, analyze the
different cancer cell upper-limit levels, consider the effects of intercellular competition and
drug concentration on cells, compare the dose titration method, and present a summary. In
the fifth part, we present a conclusion.

2. Optimal Control Problem with Control Variables and Two State Constraints

First, Liu et al. [5] established a Lotka–Volterra model between drug-sensitive and
drug-resistant prostate cells.

dT1(t)
dt

= λ1T1

[
1− (a11T1 + a12T2)(1 + αβ(t))

K1

]
− µ1T1,

dT2(t)
dt

= λ2T2

[
1− a21T1 + a22T2

K2

]
− µ2T2,

(1)
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where T1 represents drug-sensitive cells, T2 represents drug-resistant cells, λ1 and λ2
represent the net growth rate of cells, K1 represents the environmental capacity of drug-
sensitive cancer cells, K2 represents the environmental capacity of drug-resistant cancer
cells, µ1 and µ2 represent the natural mortality of cells, α represents the patient’s sensitivity
to the targeted drug, β is the drug dose, (aij)2×2 represents competition between sensitive
and resistant cells.

In cancer treatment, medication is a drug dose. In the above model, the effect of
the drug dose is considered; that is, after medication, the number of sensitive cells is
reduced, thus affecting the drug-resistant cells. Drug concentration refers to the constant
accumulation of drug doses in the body’s blood. When the drug concentration is too low, it
may not be enough to kill enough sensitive cells. When the drug concentration is too high,
it may affect normal cells and harm the human body. Therefore, it is essential to consider
the effect of drug concentration on treatment. We propose the following model.

dT1(t)
dt

= λ1T1

[
1− (a11T1 + a12T2)(1 + αc(t))

K1

]
− µ1T1,

dT2(t)
dt

= λ2T2

[
1− a21T1 + a22T2

K2

]
− µ2T2,

dc(t)
dt

= − f c + kβ.

(2)

For drug concentration and continuous drug dose infusion, a process of self-clearance and
accumulation occurs, so the corresponding model is proposed, where f and k represent
kinetics of drug concentration c in vivo,

Optimal Control of Prostate Cancer

The state equation is constrained by the control variable

0 ≤ β(t) ≤ 1, (3)

considering drug toxicity limits and tumor burden, the following two state constraints
are proposed:

c− cmax ≤ 0, (4)

T1 + T2 − θ ≤ 0, (5)

where cmax is the maximum allowable drug concentration, θ is the initial maximum tumor
burden (the drug-sensitive and drug-resistant cell numbers indicate the tumor burden).
Hansen et al. [12] proposed that, in adaptive therapy, according to the PSA’s (prostate cancer
index) 50% rule treatment, and inspired by this, we propose that the initial maximum tumor
burden is 150% of the initial tumor burden (the values for cmax and θ are given below).

Denote the state variable x = (T1(t), T2(t), c(t)) ∈ R3 by considering the objective

J(x, β) = φ
(

T2(t f )
)
+
∫ t f

0
β(t)dt. (6)

where φ represents the number of resistant cells at the end of treatment. t f represents the
number of resistant cells at the end of treatment.

This objective function (6) represents the number of drug-resistant cells and the cost of
the drug to be minimized at the end of a limited treatment time.

Then, we consider the optimal control problem. We minimize the objective function
under state Equation (2), control variable (3), and state constraints (4) and (5).

3. Minimum Principle: Necessary Optimality Condition

Gollmann et al. [13,14] proposed a method to extend the state constraint from hybrid
control to a pure state constraint. Buskens et al. [15] provided the necessary optimality
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conditions for optimal control problems. Poh Ling Tan et al. [11] obtained the augmented
Hamiltonian function by directly connecting the state constraints with the multipliers η1 and
η2. Referring to the correlation theory, we consider the state constraint problem and obtain
the optimality conditions of the optimal control problem by using the correlation theory.

3.1. State Constraints

For the drug concentration constraint c− cmax ≤ 0, consider the equation of state

·
c = − f c + kβ,

it can explicitly contain the control variable and satisfy the regularity condition

∂

∂β

·
c(t) = k 6= 0,

for the drug concentration constraint, the maximum allowable drug concentration is reached

when the drug is continuously administered, c = cmax, we can obtain
·

c(t) = 0. We obtain the
boundary drug dose

β1 =
f
k

cmax.

For the cancer cells constraint, T1 + T2 − θ ≤ 0. We introduce a new variable S(x). Let
S(x) = T1 + T2 − θ. We consider the first derivative:

0 = S
′
(t) = T

′
1(t) + T

′
2(t)

= λ1T1

[
1− (a11T1 + a12T2)(1 + αc(t))

K1

]
− µ1T1

+ λ2T2

[
1− a21T1 + a22T2

K2

]
− µ2T2

= (λ1 − µ1)T1 + (λ2 − µ2)T2 −
λ1a11T1

2

K1
− λ1a11T1

2αc
K1

− λ1a12T1T2

K1
− λ1a12T1T2αc

K1
− λ2a21T1T2

K2
− λ2a22T2

2

K2
,

from the first derivative of the number of cancer cells, we can see that the control variable
β(t) does not appear. We consider the second derivative:

0 = S
′′
(t) = (λ1 − µ1)T1

′
+ (λ2 − µ2)T2

′ − 2λ1a11T1

K1

− 2λ1a11T1αc
K1

+
λ1a11T1

2αc f
K1

− λ1a11T1
2αkβ

K1

− λ1a12T1
′
T2

K1
− λ1a12T2

′
T1

K1
− λ2a21T1

′
T2

K2

− λ2a21T2
′
T1

K2
− 2λ2a22T2

K2
− λ1a12T1

′
T2αc

K1

− λ1a12T2
′
T1αc

K1
+

λ1a12T1T2α f c
K1

− λ1a12T1T2αkβ

K1
,

S
′′
(t) = (λ1 − µ1)

2T1 + (λ2 − µ2)
2T2 −

(λ1 − µ1)λ1a11T1
2

K1
− (λ1 − µ1)λ1a11T1

2αc
K1

− (λ1 − µ1)λ1a12T1T2

K1
− (λ1 − µ1)λ1a12T1T2αc

K1
− (λ2 − µ2)λ2a21T1T2

K2
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− (λ2 − µ2)λ2a22T2
2

K2
− 2λ1a11T1

K1
− 2λ1a11T1αc

K1
+

λ1a11T1
2αc f

K1

− (λ1 − µ1)λ1a12T1T2

K1
− λ1a11T1

2αkβ

K1
− (λ1 − µ1)λ1a12T1T2αc

K1

+
λ1a12T2

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − µ2)λ1a12T1T2

K1
+

λ1a12T1

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
− 2λ2a22T2

K2

+
λ1a12T1T2α f c

K1
− λ1a12T1T2αkβ

K1
− (λ1 − µ1)λ2a21T1T2

K2

+
λ2a21T2

K2

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − µ2)λ2a21T1T2

K2
+

λ2a21T1

K2

(
λ2a22T2

2

K2
+

λ2a21T1T2

K2

)

+
λ1a12T2αc

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − µ2)λ1a12T1αc
K1

+
λ1a12T1αc

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
,

furthermore, we find that the control variable β(t) appears explicitly in the second deriva-
tive. Therefore, there exists a second-order state constraint satisfying the regularity condition.

∂

∂β
S
′′
(t) = −λ1a11αkT1

2 + λ1a12αkT1T2

K1
6= 0,

hence, for boundary control T1 + T2 = θ, we have S
′′
(t) = 0, and obtain the dose:

β2 =
K1

λ1a11αT1
2k + λ1a12αT1T2k

(λ1 − µ1)
2T1 + (λ2 − µ2)

2T2 −
(λ1 − µ1)λ1a11T1

2

K1

− (λ1 − µ1)λ1a11T1
2αc

K1
− (λ1 − µ1)λ1a12T1T2

K1
− (λ1 − µ1)λ1a12T1T2αc

K1

− (λ2 − µ2)λ2a21T1T2

K2
− (λ2 − µ2)λ2a22T2

2

K2
− 2λ1a11T1

K1
− 2λ1a11T1αc

K1

+
λ1a11T1

2αc f
K1

− (λ1 − µ1)λ1a21T1T2

K1
− (λ2 − µ2)λ1a12T1T2

K1

+
λ1a12T2

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

+
λ1a12T1

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
− 2λ2a22T2

K2
+

λ1a12T1T2α f c
K1

+
λ2a21T2

K2

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

+
λ2a21T1

K2

(
λ2a21T2

2

K2
+

λ2a21T1T2

K2

)
− (λ1 − µ1)λ1a12T1T2αc

K1

− (λ1 − µ1)λ2a21T1T2

K2
− (λ2 − µ2)λ2a21T1T2

K2
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+
λ1a12T2αc

K1

(
λ1a11T1

2

K1
+

λ1a11T1
2αc

K1
+

λ1a12T1T2

K1
+

λ1a12T1T2αc
K1

)

− (λ2 − µ2)λ1a12T1αc
K1

+
λ1a12T1αc

K1

(
λ2a21T1T2

K2
+

λ2a22T2
2

K2

)
.

The drug dose in the boundary state is obtained.

3.2. Optimal Control Structure

Let us denote σ = (σ1, σ2, σ3) ∈ R3. References [9,16]. The Hamilton function is given
by the Pontryagin’s minimum principle.

H(x, σ, β) = β(t) + σ1(t)
(

λ1T1

(
1− (a11T1 + a12T2)(1 + αc(t))

K1

)
− µ1T1

)
+ σ2(t)

(
λ2T2

(
1− a12T1 + a22T2

K2

)
− µ2T2

)
+ σ3(t)(− f c + kβ),

connect the state constraints using multipliers η1 and η2 to the Hamiltonian mechanics:

H(x, σ, β, η1, η1) = H(x, σ, β) + η1(c− cmax) + η2(T1 + T2 − θ),

let (x, β) be the optimal solution. Then, there are adjoint functions and multiplier functions
satisfying the following conditions:

(I) Adjoint differential equations

·
σ(t) = −Hx(t, x, β(t), σ(t), η(t)).

(II) Transversality conditions
·

σ
(

t f

)
=

∂φ
(

t f

)
∂x

.

(III) Minimizing conditions

H(t, x, β∗(t), σ(t), η(t)) ≤ H(t, x, β(t), σ(t), η(t)).

(IV) Complementarity conditions

η1(t) ≥ 0, η1(t)(c− cmax) = 0,

η2(t) ≥ 0, η2(t)(T1 + T2 − θ) = 0.

The adjoint equation is obtained via the above theoretical analysis

˙σ1(t) = −1− σ1(t)(λ1 − µ1) + σ1(t)
2λ1a11T1(1 + αc)

K1

+ σ1(t)
λ1a12T2(1 + αc)

K1
+ σ2(t)

λ2a21T2

K2
− η2,

˙σ2(t) = −1− σ1(t)
λ1a12T1(1 + αc)

K1
− σ2(t)(λ2 − µ2)

+ σ2(t)
λ2a21T1

K2
+ σ2(t)

λ2a22T2

K2
− η2,
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˙σ3(t) = −σ1(t)
λ1a11T1

2α

K1
+ σ1(t)

λ1a12T1T2α

K1
+ σ3(t) f − η1, (7)

the optimal control structure is obtained via the Pontryagin’s minimum principle

∂H
∂β

= 0,

we can obtain the switching function

γ(t) = 1 + λ3(t)k,

we further obtain the control structure

β∗(t) =


1 γ(t) > 0,
βi γ(t) = 0,
0 γ(t) < 0.

For the control problem mentioned in the study, we consider the initial number of
cancer cells. Step 1. First, the maximum dose is administered. As a result, the number
of sensitive cells decreases, drug-resistant cells increase, and the drug concentration goes
up. When drug concentration reaches the maximum allowable drug concentration, the
drug is withdrawn, and the time is recorded. At this time, the number of sensitive cells
increases and the number of drug-resistant cells decreases. Step 2. When the number
of cancer cells reaches the initial maximum tumor burden, the drug is re-administered.
This leads to a decrease in the number of sensitive cells, an increase in the number of
drug-resistant cells, output time, continuous circulation, and intermittent treatment of
cancer. This approach takes into account the concentration of the drug, avoids high or low
doses, and takes into account the burden on the tumor. The number of sensitive cells is
controlled by selecting the optimal treatment time and drug dosage, which further inhibits
the number of drug-resistant cells and prolongs the effective treatment time.

In this paper, three treatment cycles are considered, and the following control struc-
tures are given:

β(t) =



1 0 ≤ t < t1,

β1 t1 ≤ t < t2,

0 t2 ≤ t < t3,

β2 t3 ≤ t < t4,

0 t4 ≤ t < t5,

β3 t5 ≤ t < t6,

0 t6 ≤ t < t7,

β4 t7 ≤ t < t8,

0 t8 ≤ t < t f .

(8)

4. Numerical Simulation

Li et al. [17] proposed a control parameter vectorization method to solve the final con-
trol problem of free time. Feng et al. [18] proposed a visual version of MISER software 3.3,
which is convenient for the practical application of optimal control theory and technology.
There are many studies on how to solve nonlinear optimal control problems [19–21]. We
use the discretization method to deal with the optimal control problem. We consider the
optimal duration of the treatment and dosage in a limited period of time.

In the therapeutic period [t0, t f ], we solve the state equation in the forward direction
and the co-state equation in the reverse direction. Refer to the parameter mentioned by
Liu et al. [5], µ1 = 0.001, µ2 = 0.0005, a12 = 0.1. Some are not given and we set λ1 = 0.26,
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λ2 = 0.3, a11 = 0.1, a21 = 0.58, a22 = 0.2, K1 = 5000, K2 = 500, f = 1.4657, k = 5, η1 = 0.1,
η2 = 0.1, T1(0) = 1000, T2(0) = 50, cmax = 2.68, θ = 1575, t0 = 0, t f = 42.

The optimal treatment time and dose are obtained via a numerical simulation.
Optimal dose: β1 = 0.7856, β2 = 0.7857, β3 = 0.7857, β4 = 0.7857.
Optimal treatment time: t1 = 0.8, t2 = 3.4, t3 = 8.8, t4 = 14, t5 = 19.8, t6 = 25,

t7 = 31, t8 = 36.2.
We can obtain T2(t f ) = 91.7164, J = 106.9731.
Among them, Figure 1 shows the time-varying curves for the drug concentration and

drug dose, Figure 2 shows the time-varying curves for the number of sensitive versus
resistant cells, and Figure 3 shows the tumor burden change curves. Using the necessary
optimality condition, the terminal time covariance is obtained via the covariance equation.

λ1(t f ) = 0, λ2(t f ) = 1, λ3(t f ) = 0,

the initial value of the covariant is obtained via the numerical simulation,

λ1(0) = −1.2372, λ2(0) = −8.9337, λ3(0) = −199.7054,

and the adjoint variables λk(t), k = 1, 2, 3, are displayed in Figures 4 and 5.

0 5 10 15 20 25 30 35 40

t

0

0.5

1

1.5

2

2.5

c(
t)

(A) Drug concentration c(t)

0 5 10 15 20 25 30 35 40

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(t
)

(B) Drug dose (t)

Figure 1. (A) Denotes the drug concentration, (B) denotes the drug dose.
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(A) Drug-sensitive cells T
1
(t)
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t
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20
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80
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120

140

160

180

200

T
2
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(B) Drug-resistant cells T
2
(t)

Figure 2. (A) Denotes the drug-sensitive cells, (B) denotes the drug-resistant cells (tumor burden
is 150%).
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Figure 3. Number of cancer cells.
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Figure 4. (A) Denotes adjoint variables λ1, (B) denotes adjoint variables λ2.
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500

1000
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)

Figure 5. Denotes adjoint variables λ3.

Figure 1B shows that the drug dose was initially presented at the maximum tolerated
dose; when the maximum allowable drug concentration was reached, the drug dose was
reduced with intermittent dosing, controlling for the number of cancer cells. Figure 2
shows that the number of sensitive cells decreased and the number of resistant cells
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increased after administration. After drug withdrawal, sensitive cells increased, resistant
cells decreased, the number of cancer cells showed periodic changes, drug-resistant cells
increased slowly with the prolongation of treatment time. Figure 3 shows that the tumor
burden is maintained at a certain level.

Competition between cancer cells.
Adaptive therapy utilizes competition among cancer cells to maintain a certain tumor

burden. Thus, we think more about competition between cells. When a11 = 0.8, there is too
much competition between sensitive cells; as shown in Figure 6, we can see that sensitive
cells can inhibit drug-resistant cells during the initial phase of treatment, and the number
of drug-resistant cells slowly increases. In the later period of treatment, the number of
sensitive cells decreased sharply and the number of drug-resistant cells increased because
of the competition between sensitive cells.

0 5 10 15 20 25 30 35

t

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
1
(t

)

(A) Drug-sensitive cells T
1
(t)

0 5 10 15 20 25 30 35

t

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
2
(t

)

(B) Drug-resistant cells T
2
(t)

Figure 6. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a11 = 0.8).

When a12 = 0.8, as shown in Figure 7, we can see that at the initial stage of treatment,
sensitive cells show cyclical changes, and resistant cells slowly increase; at later stages of
treatment, sensitive cells lose their competitive advantage, and drug-resistant cells increase.
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Figure 7. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a12 = 0.8).

When a21 = 0.2, as shown in Figure 8, we can see that sensitive cells can inhibit
drug-resistant cells at the initial stage of treatment, and at the later stage of treatment,



Mathematics 2023, 11, 4025 11 of 17

drug-resistant cells increase dramatically; compared with a12, drug-resistant cells are more
numerous, reducing the duration of treatment.
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Figure 8. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a21 = 0.2).

When a22 = 0.8, as shown in Figure 9, it shows a downward trend in the number of
drug-resistant cells but an increase in the number of sensitive cells, resulting in a rapid
reach of the tumor burden and subsequent treatment failure.
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Figure 9. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (when a22 = 0.8).

Drug concentration
This study proposed the effect of drug concentration on therapy. We further considered

the model proposed by Liu et al, considering only the effect of drug dose on therapy.
Adjusting for λ1 = 0.1, as shown in Figure 10, we found an overall upward trend in
sensitive cells and a decrease in drug-resistant cells, this resulted in the sensitive cells
rapidly reaching the maximum tumor burden, leading to treatment failure. The results
showed that the drug was not enough to kill a large number of sensitive cells, resulting in a
competitive advantage of sensitive cells over drug-resistant cells. Compared with Figure 9,
we can see that the number of drug-resistant cells can be more effectively controlled and
the stable tumor burden can be maintained by considering the drug concentration.
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Figure 10. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells.

4.1. Consider the Tumor Burden as 110%

The drug dosage is unchanged and the treatment time is optimized.
Optimal treatment time. t1 = 0.8, t2 = 3.4, t3 = 7.4, t4 = 12.6, t5 = 17.4, t6 = 22.6,

t7 = 27.8, t8 = 33.
We can obtain T2(t f ) = 471.0447, J = 486.1442.
Figure 11 shows the curve of sensitive and resistant cells over time at 110% tumor bur-

den; we can see that the killing rate of drug-sensitive cells increases with the prolongation
of treatment time, and the number of drug-resistant cells shows an overall declining trend.
The number of drug-resistant cells increases, which indicates that the sensitive cells do not
inhibit the drug-resistant cells well in the later stage of treatment.
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Figure 11. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 110%).

Compared to a starting treatment, when the tumor burden is 150%, the treatment
time is shortened and more resistant cells are generated. The reason for the significant
increase in the number of drug-resistant cells may be that the drug dose is too large, killing
too many sensitive cells, resulting in the later period of treatment, cell-to-cell competition
weakens, and the number of drug-resistant cells increases. Therefore, we further optimize
the drug dose.

Drug dose. β1 = 0.7856, β2 = 0.7, β3 = 0.7, β4 = 0.7.
We can obtain T2(t f ) = 143.3169, J = 157.0795.
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Changes in drug-sensitive cells affect drug-resistant cells because high doses kill too
many drug-sensitive cells. Therefore, we reduce the drug dose, as shown in Figure 12,
as the drug dose decreases over time. The number of drug-sensitive cells shows an up-
ward trend, while the number of drug-resistant cells significantly decreases. Therefore,
when the patient’s maximum tolerated tumor burden is small, the dose is relatively small,
suppressing the number of resistant cells. However, compared with 150% tumor burden,
the number of drug-resistant cells remain larger at the end of the treatment period, despite
the reduced cost of the drug.
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Figure 12. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 110%).

4.2. Consider the Tumor Burden as 170%

The drug dosage is unchanged and the treatment time is optimized.
Optimal treatment time t1 = 0.8, t2 = 3.8, t3 = 10, t4 = 15.2, t5 = 21.8, t6 = 27,

t7 = 33.8, t8 = 39.2.
We can obtain T2(t f ) = 23.8859, J = 39.4568.
Figure 13 shows the curve of sensitive and resistant cells over time at 170% tumor

burden. It shows that the number of sensitive cells increases significantly with the time of
treatment, showing an overall upward trend. The number of drug-resistant cells increases
at the beginning of treatment, decrease significantly at the end of treatment, and are even
lower than the initial resistant cells. This indicates that, at this time, there are too many
sensitive cells and competitive enhancements of the inhibition of drug-resistant cells.
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Figure 13. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 170%).
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Compared to a tumor burden of 150%, the number of drug-resistant cells is signifi-
cantly lower, but the number of drug-sensitive cells is significantly increased. This could
cause the tumor to reach the maximum tolerable burden more quickly, resulting in treat-
ment failure The reason for this change may be that the drug did not kill enough sensitive
cells, causing the sensitive cells to grow too quickly, so we further optimize the drug dose.

Drug dose. β1 = 0.7856, β2 = 0.84, β3 = 0.84, β4 = 0.84.
We can obtain T2(t f ) = 64.5510, J = 80.9798.
To control drug-sensitive cells, we adjust the drug dose, as shown in Figure 14; as the

drug dose increases, the number of sensitive cells decreases and the number of drug-
resistant cells increases. As a result, the tumor burden increases and the drug dose increases.
Compared with a tumor burden of 150%, during longer treatment periods, the number of
drug-resistant cells is less, but the increasing dose of the drug and the rising cost of the
drug, to some extent, break the limit of drug toxicity and affect normal cells.
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Figure 14. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (tumor burden is 170%).

At the same time, we further simulate the maximum tolerated dose commonly used
in clinical practice.

4.3. Dose Titration Protocol

Cunningham et al. [4] analyzed a widely-used regimen, specifically a dose-titration
treatment approach. In this regimen, the dose is increased by 0.1 when the tumor volume
rises to more than 110% of the target tumor volume. Conversely, if the tumor volume
drops below 90% of the intended maintenance volume, the dose is decreased by 0.1. They
determined the optimal treatment strategy for the drug obtained using the optimization
theory. With reference to the dose titration protocol described above, our study treats the
number of cancer cells as the tumor burden; thus, given an initial dose, if the tumor burden
increases to 150%, the dose increases by 0.1; if it decreases to 50%, the dose decreases by 0.1.

Let us think about a cycle; consider the issue of drug toxicity.
Drug dose: b1 = 0.8, b2 = 0.7,
Drug time: t1 = 4, t2 = 22.2,
We can obtain T2(t f ) = 1595.4672, J = 1687.6672.
The change in the number of cancer cells is shown in Figure 15.
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Figure 15. (A) Denotes drug-sensitive cells, (B) denotes drug-resistant cells (dose titration protocol).

As shown in Figure 15, when the initial dose is set at the maximum tolerated dose
and considering the tumor burden, the number of drug-dose-sensitive cells was effectively
reduced. However, due to a slow reduction in the dose, the number of drug-resistant cells
increased significantly within a shorter treatment period.

Therefore, using dose titration to determine the most beneficial dose might lead to
the rapid killing of sensitive cells, resulting in a loss of competitiveness. Our treatment
protocol, through numerical simulation, directly provides the optimal drug dose. This
controls the number of sensitive cells, inhibits the rapid proliferation of drug-resistant cells,
and extends the treatment time.

Summary
The numerical simulation results show that when the tumor burden is 150%, within the

permissible limit of drug toxicity, the administration of the drug causes drug-sensitive cells
to decrease and drug-resistant cells to increase. Upon withdrawal of the drug, the sensitive
cells increase, and the drug-resistant cells decrease. Throughout the treatment period, the
number of drug-resistant cells increased slowly, and the tumor burden was maintained
at a certain level. The competition between cells affects cell changes, and further analysis
does not take into account the problem of drug concentration when it is not sufficient
to kill sensitive cells, resulting in a significant increase in drug-resistant cells. When the
tumor burden is 110%, the drug dose is reduced, the drug cost is reduced, the treatment
time is shortened, and more resistant cells are produced. When the tumor load is 170%,
the treatment time is prolonged, the number of drug-resistant cells is relatively small,
but it is easy to reach the maximum drug-resistant load. Further increasing the drug dose
will lead to breaking the limit of drug toxicity, affecting healthy cells. For dose-titration
problems, given an initial dose and considering the drug toxicity issue, the strategy involves
gradually increasing or decreasing the drug dose to find the most beneficial amount. When
the initial dose is high, using the magnitude of the tumor burden to adjust the dose might
result in extensive death of sensitive cells, a loss of competitiveness, and a significant rise
in the number of drug-resistant cells. If the initial dose is low, the gradual increase in dose
and failure to eliminate sensitive cells can lead to the rapid proliferation of these cells,
which soon reach the maximum tolerance of the tumor load, leading to treatment failure.
Therefore, the maximum tolerated tumor burden is too large or too small, and the drug
dose is too large or too small, which will affect the effect of treatment. Using mathematical
simulation, our study shows that the initial maximum drug resistance dose is given first;
the drug is discontinued when the maximum allowable drug concentration is reached.
When 150% of the initial tumor burden is reached, the drug is administered, and with
the prolongation of the treatment period, it is optimal to give the drug intermittently at a
moderate dose, which not only maintains a certain tumor burden and inhibits the rapid
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growth of drug-resistant cells, but also limits the drug toxicity and reduces the cost of the
drug; the duration of treatment is prolonged effectively.

However, the maximum tolerable tumor burden varies from patient to patient, and we
only considered the general case. Therefore, how to monitor the patient’s maximum
tolerable tumor burden according to clinical practice is important. Choosing the optimal
treatment time and dosage and implementing individualized treatments are the issues that
will be studied next.

5. Conclusions

During the course of tumor treatment, the generation of drug-resistant cells leads to
the failure of treatment. With adaptive therapy, the goal is to maintain a certain number of
sensitive cells, competitive inhibition resistance, a certain tumor burden, and extend the
duration of treatment. Therefore, it is critical to select the appropriate treatment time and
drug dose. If the dose is too low, it might fail to kill enough sensitive cells, leading to the
quick attainment of the maximum tolerated tumor burden. Conversely, an excessively high
dose may result in the death of a large number of sensitive cells, reducing competition and
inhibiting the growth of drug-resistant cells less effectively. Additionally, an accumulation
of too many drugs could have adverse side effects on the body. We took into consideration
the model of competition between drug-sensitive and drug-resistant cells proposed by
Liu et al. [5], and introduced a pharmacokinetics equation to describe the time course of
drug concentrations in vivo. Because the drug not only kills cancer cells but also has an
effect on healthy ones, it is not possible to cure cancer cells in sufficient doses. Therefore,
in the process of cancer treatment, the issue of drug toxicity is proposed. We look at how
to achieve the ideal cancer cell-killing rate and inhibit the growth of drug-resistant cells
without damaging the healthy cells, and how to select the treatment time and dose to
achieve the optimal therapeutic effect. We propose optimal control problems with two state
constraints: the maximum allowable drug concentration and the maximum tolerated tumor
burden. Firstly, the optimal control structure was obtained by using the optimal control
theory to analyze the control problems. Secondly, the optimal treatment time and drug
dose were obtained by numerical simulation, and the change rule of tumor cells under
different tumor loads and the optimal treatment time and drug dose were given; a dose
titration protocol was further simulated. The results show that when the tumor burden
is at 150%, it is optimal to administer the maximum tolerated dose. Once the maximum
allowable drug concentration is attained, the drug should be given intermittently at a
moderate dose. This strategy helps maintain the tumor burden at a stable level, inhibit the
growth of drug-resistant cells, reduce drug costs, and prolong the drug’s efficacy. These
findings offer insights into the treatment of prostate cancer.

However, our study relies on initial values while focusing on the effects of intercellular
competition factors on treatment, so that initial values and competition coefficients have
a greater impact on treatment outcomes than other factors. At the same time, the drug
concentration change in the human body is worthy of further study. For the treatment
approach proposed in this paper, determining how to tailor it to the individual patient’s
situation remains a topic for a follow-up study.
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