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Abstract: In this study, we explore the implications of a third-order differential subordination in
the context of analytic functions associated with fractional differential operators. Our investigation
involves the consideration of specific admissible classes of third-order differential functions. We
also extend this exploration to establish a dual principle, resulting in a sandwich-type outcome.
We introduce these admissible function classes by employing the fractional derivative operator
Dα

zSN ,Sϑ(z) and derive conditions on the normalized analytic function f that lead to sandwich-type
subordination in combination with an appropriate fractional differential operator.
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1. Introduction

Complex numbers have been provided in the past for solving real cubic equations,
which paved the way for the emergence of an interesting theory called the theory of
functions of a complex variable (complex analysis). The history of this discipline goes
back to the 17th century. Pivotal scientists include Riemann, Gauss, Euler, Cauchy, Mittag–
Leffler, and others. In the 19th century, Riemann proposed the delightful Riemann mapping
theorem in 1851, which led to the birth of a significant and attractive theory, the Geometric
Function Theory (GFT) [1]. It has developed remarkably and has implementations in
operator theory, differential inequality theory, and other scientific fields. In 1907, Koebe [1]
employed a univalent (one-to-one) function defined on an open unit disk to refine the
Riemann mapping theorem. Later, Linde

..
of [1] presented the subordinate concept in 1909.

This idea is utilized to analyze two complex functions in terms of the Schwarz function. In
this regard, differential subordination theory on a complex domain is the generalization
of differential inequality theory on a real domain, which is a substantial theme that Miller
and Mocanu excitingly discussed in 1978 [2], 1981 [3], and 2000 [4]. In 2003, Miller and
Mocanu [5] developed the dual idea of differential subordination theory, namely differential
superordination. Actually, differential subordination and superordination are essential
tools in GFT utilized in investigations to acquire sandwich outcomes. In 2011, Antonino
and Miller [6] extended the differential subordination formula of the second order to the
third order. In 2014, Tang et al. [7] presented the dual idea of third-order differential
superordination by utilizing admissible functions. They also investigated third-order
differential subordination and superordination outcomes for meromorphically p-valent
functions involving a complex operator. In addition, sandwich outcomes were also yielded.
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This theory is very significant, and several complex analysts have contributed outstandingly
to investigating the connected problems, such as Ibrahim et al. [8], Srivastava et al. [9],
Tang et al. [10], Ghanim et al. [11,12], Al-Janaby et al. [13], Lupas and Oros [14], Morais and
Zayed [15], Attiya et al. [16], Ghanim et al. [17], Mishra and Gochhayat [18], and others.

In 2015, Ibrahim et al. [8] defined a new operator by using a convolution tool between
a fractional integral operator and the Carlson Shaffer operator to study the properties of the
subordination and superordination. In 2021, Morais and Zayed [15] extended a fractional
derivative operator for higher-order derivatives for certain analytic multivalent functions.
In 2021, Lupas and Oros [14] studied subordination and subordination properties using
the fractional integral of the confluent Hypergeometric function. In 2022, some other
researchers worked on some subordination and subordination properties [19–21].

The fractional integral operator is a mathematical concept used in various fields of
science and engineering. It has applications in several domains. The integration of a
fractional calculus into physical models has been accomplished in recent decades. The use
of the generalized Mittag–Leffler function has also been employed in both mathematical and
physical contexts since it naturally represents solutions to fractional integral and differential
equations. A fractional order calculus is often used in several practical applications, for
example [22–26]. This work makes a contribution to the field of mathematical applications
by using fractional operators in the resolution of differential equations. Additionally, it
highlights the significance of these operators in the domains of physics and engineering,
especially for the development of geometric function theory, a specialized area within
complex analysis.

The approach of subordination is applied to relevant types of admissible functions.
Antonino and Miller [6] define the admissible functions as follows:

LetH(U) be the class of functions which are regular in the open unit disk, U = {z : z ∈ C
and |z|< 1}, whenever a ∈ C and n ∈ N (for C is the complex plane and N is a positive
integer), and let

H[a, n]= {ϑ ∈ H(U ) : ϑ (z)= µ+µκ zκ+µκ+1 zκ+1 + . . .},

which is called the class of the regular functions in the unit disk U and suppose that
H0 = H[0, 1] andH1 = H[1, 1].

Also, let A denote the class of analytic functions in U and have the normalized form

ϑ (z) = z + ∑∞
κ=2 µκ zκ , (z ∈ U ) (1)

For two functions ϑ1 and ϑ2 analytic in U , the function ϑ1 is subordinate to ϑ2, written
as

ϑ1 < ϑ2 in U or ϑ1 (z) < ϑ2(z) (z ∈ U )

if there exists a function w analytic in U with w(0) = 0 and |w(z)| < 1 satisfying

ϑ1(z) = ϑ2(w(z)), for (z ∈ U ).

In particular, if the function ϑ2 is univalent in U , then
ϑ1 (z) < ϑ2(z) (z ∈ U ) is equivalent to ϑ1 (0) = ϑ2(0) and ϑ1 (U ) ⊂ ϑ2(U ).

Definition 1 ([6]). Let T : C4 ×U → C and suppose that the function h(z) is univalent in U . If
the function p (z) is analytic in U and satisfies the following third-order differential subordination:

T
(

p(z), zp′(z), z2ωp ′′ (z), z3p ′′′ (z); z
)
< k (z), (2)

then p(z) is called a solution of the differential subordination (2).

In addition, a given univalent function q(z) is referred to as a dominant of the solutions
of the differential subordination (2); or, to put it another way, it is a dominant if p(z) < q(z)
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for every p(z) satisfying (2). A dominant
∼
q (z) that satisfies

∼
q (z) < q(z) for all dominants q(z)

of (2) is said to be the best dominant.

Definition 2 ([7]). Let T : C4 × U → C and let the function k (z) be univalent in U . If the
functions p(z) and T

(
p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z

)
, are univalent in U and satisfy the

following third-order differential superordination

q(z) < T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)

, (3)

then p(z) is referred to as a differential superordination solution according to (3). An analytic
function q(z) is defined as a subordinant of the solutions of the differential superordination provided
by (3) (or, in simpler terms, a subordinant) if q(z) < p(z) for all p(z) satisfies (3).

The best subordinate of the differential superordination provided by (3) is a univalent
subordinate

∼
q (z) that fulfills q (z) <

∼
q (z) for all subordinates q(z) of (3).

Definition 3 ([27]). The fractional derivative of order α is defined for function f by

Dα
z ϑ(z) =

1
Γ(1− α)

d
dz

∫ z

0

ϑ(ζ)

(z− ζ)α dζ, 0 ≤ α < 1. (4)

Let ϑ be a regular function in a simply connected region of the complex z-plane C
involving the origin and the multiplicity of (z− τ)−α is extracted by demanding log(z− τ)
to be real when (z− ζ) > 0, α > 0.

Dα
z zγ =

Γ(γ+ 1)
Γγ− α+ 1

zγ−α, γ > −1, 0 ≤ α < 1

SN ,Sϑ(z) =
zα+1

Γ2 + α
Nρ, σ(z) =

1
Γ2 + α

∞

∑
n=0

Γ(ρ+ σn)
Γ(ρ) Γ(n+ 1)

zn+α+1

Np, σ(z) =
∞

∑
n=0

Γ(ρ+ σ κ)

Γ(ρ) Γ(κ + 1)
zκ , (z, ρ ∈ C; 0 < R(σ) ). (5)

Then, by using SN ,Sϑ(z), we consider a new complex linear operator Dα
zSN ,Sϑ(z):

A → A which has the following convolution definition:

Dα
zSN ,S= Dα

z zγ ∗SN ,S= z + ∑∞
κ=2

Γ(ρ+ σ( κ − 1)Γ(κ + α + 1)
Γ(2 + α)Γ(ρ)Γn Γ(κ + 1)

zκ (6)

Dα
zSN ,Sϑ(z) = Dα

zSN ,S∗ϑ(z)= z + ∑∞
κ=2

Γ(ρ+ σ( κ − 1)Γ(κ + α + 1)
Γ(2 + α)Γ(ρ)Γκ Γ(κ + 1)

aκ zκ

z
(
Dα

zSN ,Sϑ(z)
)′

=
N
∂
Dα

zSN+1,Sϑ(z)−
(
N
∂
− 1
)
Dα

zSN ,Sϑ(z). (7)

The following specific cases related to the operator Dα
zSN ,∂ϑ(z) are also introduced

by assumption values of the parameters. We obtain

1. D1
zM1,1ϑ(z) = z + ∑∞

κ=2
(κ+1)

2 µκ zκ ;

2. D1
zM2,1ϑ(z) = z + ∑∞

κ=2
κ( κ+1)

2 µκ zκ .

Definition 4 ([6]). Denote by Q the set of all functions q that are analytic and injective on U \ E(q),
where U = U ⋃

{z ∈ ∂U} and

E(q) =
{

ζ ∈ ∂U : lim
n→∞

q(z) = ∞
}

(8)
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are such that f ′(ζ) 6= 0 for ζ ∈ ∂U
E(q) . Further, let the subclass of Q for which q(0) = a be denoted

by (a),

Q(0) = Q0 and Q(1) = Q1 (9)

Definition 5 ([6]). Let 0 be a set in C, q ∈ H [a, n] with q ′(z) 6= 0 and n ∈ N\{1}. The
class of admissible functions Tn[0, q ] consists of those functions T : C4 ×U → C that satisfy the
following admissibility condition:

T (λ1, λ2, λ3, λ4; z) /∈ 0,

whenever
λ1= q(ζ), λ2 = kzq ′(ζ),

Re
{

λ3

λ2
+ 1
}
≥ kRe

{
1 +

zq ′′ (ζ)
q ′(ζ)

}
,

and

Re
{

λ4

λ2

}
≤ k2Re

{
z2q ′′′ (ζ)

q ′(ζ)

}
where z ∈ U , ζ ∈ ∂ U -E(q) and k ≥ n.

The next lemma is the foundation result in the theory of third-order differential subordination.

Lemma 1 ([6]). p ∈ H[a, n] with n ≥ 2. Also, let q ∈ Q(a) and satisfy the following conditions:

Re
{

ζq ′′ (ζ)
q ′(ζ)

}
≥ 0,

∣∣∣∣ zq ′(z)
q ′(ζ)

∣∣∣∣ ≤ k,

where z ∈ U , ζ ∈ ∂U\E(q) and k ≥ n. I f 0 is a set in C, T ∈ Tn[0, q ] and

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
∈ 0;

then
p(z) < q(z) (z ∈ U ).

Definition 6 ([7]). Let 0 be a set in C, q ∈ H [a, n] with q ′(z) 6= 0 and n ∈ N\{1}. The

class of admissible functions Tn[Ω, q ] consists of those functions T : C4 ×
=
U → C that satisfy the

following admissibility condition,

T (λ1, λ2, λ3, λ4; z) ∈ 0,

whenever

λ1= q(z), λ2 =
zq ′(z)

m
,Re

(
λ3

λ2
+ 1
)
≤ 1

m
Re
{

1 +
zq ′′ (z)
q ′(z)

}
and

Re
(

λ4

λ2

)
≤ 1

m2Re
{

z2q ′′′ (z)
q ′(z)

}
,

and when z ∈U , ζ ∈∂U and m ≥ n.

Lemma 2 ([7]). Let T ∈ T ′n [0, q ]. If the function

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
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is univalent in U , p ∈ Q(a) and p ∈ H[a, n], satisfy the following conditions:

Re
{

ζq ′′ (ζ)
q ′(ζ)

}
≥ 0,

∣∣∣∣ zp′(z)
q ′(ζ)

∣∣∣∣ ≤ m,

where z ∈ U , ζ ∈ ∂U and m ≥ n ≥ 2; then

0 ⊂
{
T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)

: z ∈ U
}

,

implies that
q(z) < p(z), (z ∈ U ).

In this investigation, the fractional calculus concept for complex numbers is utilized,
and a new complex fractional operator of normalized analytic function is stated. Then,
differential subordination theory is employed to admissible functions in order to examine
the condition of the sandwich-type complex of the following form holds:

h1(z) < Dα
zSN ,Sϑ(z) < q2(z)(z ∈ U ),

where q1, q2 are univalent in U and ∅ is a suitable operator.

2. Results Related to the Third-Order Subordination

In this part, we start by considering a given set 0 and a given function q and proceed
to ascertain a set of acceptable operators T so that the condition expressed in Equation (2)
is satisfied. In order to establish the fundamental third-order differential subordination
theorems for the operator Dα

zSN ,Sϑ(z) described using Equation (5), we develop a new
class of admissible functions. These functions will play an important role in the proof.

Definition 7. Let 0 be a set in C, q ∈ H [a, n] with q ′(z) 6= 0 and n ∈ Q0 ∩H0. The class of
admissible functions φj[0, q ] consists of those functions ϕ : C4 ×U → C that satisfy the following
admissibility condition:

ϕ(y1, , y2, y3, y4; z) /∈ 0;

whenever y1,= q(ζ), y2 = z
kζq ′(ζ)+(NS −1)q(z)

N
S

,

Re

 y3

(
N (N+1)
S

)
− (N−S) (N+1−S)

S2 y1

y2

(
N
S

)
−
(
N
S − 1

)
y1

−
(

2N + 1
S − 2

) ≥ kRe
{

1 +
ζq ′′ (ζ)
q ′(ζ)

}
,

Re


N (N+1) (N+2)

S2 −3y3

(
(N+1)
S

)(
N (N+1)
S

)
+
[
(3N+3 )(N−S)(N+1−S)−(N−S)(N+1−S)(N+2−S)

S3

]
y1

y2(NS )−(
N
S −1)y1

+
[
(3N+3 )(2N+1−S)−(N−S)(N+1−S)(N+2−S)

S3

]


≤ k2Re
{

z2q ′′′ (ζ)
q ′(ζ)

}
whenever z ∈ U , ζ ∈ U∂-E(q) and k ≥ 2.

Theorem 1. Let ϕ ∈ φι[0, q ]. I f ϑ ∈ A and q ∈ Q0 attain the following situations:

Re
(

ςq ′′ (ς)
q ′(ς)

)
≥ 0,

∣∣∣∣Dα
zMN ,Sϑ(z)

q ′(ς)

∣∣∣∣ ≤ k , (10)

{
ϕ
(
Dα

zSN ,Sϑ(z), Dα
zSN+1,Sϑ(z), Dα

zSN+2,Sϑ(z), Dα
zSN+3,Sϑ(z); z ∈ U

)}
⊂ 0; (11)
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then
Dα

zSN ,Sϑ(z) < h(z).

Proof. Consider an analytic function p(z) in U as:

p(z) = Dα
zSN ,Sϑ(z). (12)

It follows from (7) and (12) that

Dα
zSN+1,Sϑ(z) =

zp′(z) + ( NS − 1) p(z)
N
S

. (13)

A comparable argument is obtained as follows:

Dα
zSN+2,Sϑ(z) =

z2p ′′ (z) +
(

2N+1
S − 1

)
zp′(z) + (N−S) (N+1−S)

S2 p(z)
N (N+1)
S2

, (14)

and

Dα
zSN+3,Sϑ(z) =

z3p ′′′ (z) + 3
(
N+1
S

)
z2p ′′ (z) +

(
(N−S)(N+1−S)((N+2)(2N+1−S))

S2

)
zp′(z) + (N−S)(N+1−S)(N+2−S)

S3 p(z)
N (N+1)(N+2)

S3

. (15)

Now, we will define a transformation from {4 to { using

y1 = λ1, y2 =
λ2 + ( NS − 1)λ1

N
S

, y3 =
λ3 +

(
2N+1
S − 1

)
λ2 +

(N−S) (N+1−S)
S2 λ1

N (N+1)
S2

, (16)

and

y4 =
λ4 + 3

(
N+1
S

)
λ3 +

(
(N−S)(N+1−S)((N+2)(2N+1−S))

S2

)
λ2 +

(N−S)(N+1−S)(N+2−S)
S3 λ1

N (N+1)(N+2)
S3

. (17)

Let T (λ1, λ2, λ3, λ4; z) = ϕ(y1,y2,y3,y4; z)

= ϕ


λ1, λ2+( NS −1)λ1

N
S

,
λ3+( 2N+1

S −1) λ2+
(N−S) (N+1−S)

S2 λ1
N (N+1)
S2

,

λ4+3(N+1
S )λ 3+

(
(N−S)(N+1−S)((N+2)(2N+1−S))

S2

)
λ2+

(N−S)(N+1−S)(N+2−S)
S3 λ1

N (N+1)(N+2)
S3

; z

 (18)

Employing (12) to (15), we yield

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
=

ϕ
(
Dα

zSN ,Sϑ(z), Dα
zSN+1,Sϑ(z), Dα

zSN+2,Sϑ(z), Dα
zSN+3,Sϑ(z); z

)
. (19)

Therefore, evidently, (11) is given as follows:

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
∈ 0
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λ3

λ2
+ 1 =

 y3

(
N (N+1)
S

)
− (N−∂) (N+1−∂)

S2 y1

y2

(
N
S

)
−
(
N
S − 1

)
y1

−
(

2N + 1
S − 2

),

and

λ4
λ2

=
N (N+1) (N+2)

S2 −3y3

(
(N+1)
S

)(
N (N+1)
S

)
+
[
(3N+3 )(N−S)(N+1−S)−(N−S)(N+1−S)(N+2−S)

S3

]
y1

y2(NS )−(
N
S −1)y1

+
[
(3N+3 )(2N+1−S)−(N−S)(N+1−S)(N+2−S)

S2

]
Hence, evidently, the admissibility situation for ϕ ∈ φι[0, q ] in Definition 6 is equiv-

alent to an admissibility situation for T ∈ T 2[D, h ]. Thus, by means of Definition 4 and
Lemma 1 with n = 2, and by using (10), we acquire

Dα
zSN ,Sϑ(z) < q(z).

This completes the theorem.
The next outcome is an expansion of Theorem 1 to the state when the behavior of q(z)

is on ∂U . �

Corollary 1. Let 0 ⊂ C and q(z) be univalent in U , q(0) = 0. Let ϕ ∈ φι[0, qσ] for some σ ∈
(0, 1) where qσ(z) = q(σz). If ϕ ∈ A attains

Re
(

ςqσ
′′ (ς)

qσ
′(ς)

)
≥ 0,

∣∣∣∣Dα
zSN+1,Sϑ(z)

qσ
′(ς)

∣∣∣∣ ≤ k

and
ϕ
(
Dα

zSN ,Sϑ(z), Dα
zSN+1,Sϑ(z), Dα

zSN+2,Sϑ(z), Dα
zSN+3,Sϑ(z); z

)
∈ 0,

then
Dα

zSN ,Sϑ(z) < q(z), where z ∈ U .

Proof. Theorem 1 leads to
Dα

zSN ,Sϑ(z) < qσ(z).

Therefore
qσ(z) < q(z) (z ∈ U ).

This completes the proof of Corollary 1.
If 0 6= C is a simply connected domain, then 0 = h(U ) for some conformal mapping

(z) of U onto 0. In this case, the class φj[h(U ), q] is written as φj[h , q]. The next result is an
immediate implication of Theorem 1. �

Theorem 2. Let ϕ ∈ φj[0, q ]. I f ϑ ∈ A and q ∈ Q0 attain the situations, then

Re
(

ςqσ
′′ (ς)

q ′(ς)

)
≥ 0,

∣∣∣∣Dα
zSN+1,Sϑ(z)

q ′(ς)

∣∣∣∣ ≤ k. (20)

Also, if

ϕ
(
Dα

zSN ,Sϑ(z), Dα
zSN+1,Sϑ(z), Dα

zSN+2,Sϑ(z), Dα
zSN+3,Sϑ(z); z

)
< (z), (21)

then Dα
zSN ,Sϑ(z) < q(z) (z ∈ U ).

The conclusion presented is a direct outcome of Corollary 1.
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Corollary 2. Let 0 ⊂ C and q(z) be univalent in U , q(0) = 0, and let ϕ ∈ φj[h , qσ] for some
σ ∈ (0, 1) where qσ(z) = q(σz). I f ϑ ∈ A attains

Re
(

ςqσ
′′ (ς)

qσ
′(ς)

)
≥ 0,

∣∣∣∣Dα
zSN+1,Sϑ(z)

qσ
′(ς)

∣∣∣∣ ≤ k, where z ∈ U and ς ∈ ∂U r E(qσ)

and

ϕ
(
Dα

zSN ,Sϑ(z), Dα
zSN+1,Sϑ(z), Dα

zSN+2,Sϑ(z), Dα
zSN+3,Sϑ(z); z

)
< h(z),

then Dα
zSN ,Sϑ(z) < q(z) (z ∈ U ).

The next outcome produces the best dominant of the differential subordination
Equation (21).

Theorem 3. Let h be univalent in U . Further, let ϕ : C4 ×U −→ C and T be given by (18).
Consider the differential equation

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
= h(z), (22)

Which has a solution q(z) with q(0) = 0, which attains (10). If ϑ ∈ A attains (21) and

ϕ
(
Dα

zSN ,Sϑ(z), Dα
zSN+1,Sϑ(z), Dα

zSN+2,Sϑ(z), Dα
zSN+3,Sϑ(z); z

)
is analytic in U , then

Dα
zSN ,Sϑ(z) < q(z)(z ∈ U )

and q(z) is the best dominant.

Proof. Theorem 1 leads to q is dominant of (21). Since q attains (22), it is also a resolution
of (21). Thus, q will be dominated by all dominants. Therefore, q is the best dominant. �

In light of Definition 6 and the specific case q(z) = Mz (M > 0), the admissible class
of functions φj[0, q ] indicated by φj[0, M ] ] is stated as:

Definition 8 Let 0be a set in C and M > 0; the admissible class of function φj[0, M] includies
ϕ : C4 ×U → C which attain the f ollowing :

ϕ


Meiθ ,

(
(K+(NS −1))Meiθ

N
S

)
, 1 +

L+( 2N+1
S −1)K+(N+1

S −1)(NS −1)Meiθ

(NS )(
N+1
S )

,

N+3(N+1
S )L+

[
(N−S)(N+1−S)+(N+2)(2N+1−S)

S2

]
K+
[
(N−S)(N+1−S)(N+2−S)

∂3

]
Meiθ

N (N+1)(N+2)
S3

, z

 /∈ 0, (23)

where z ∈ U ,
Re
(

Le−iθ
)
≥ (k− 1)k M,

and
Re
(

Ne−iθ
)
≥ 0 for all real θ ∈ R; k ≥ 2.

Corollary 3. Let ϕ ∈ φj[0, M]. I f ϑ ∈ A attains the following situation:∣∣Dα
zSN+1,Sϑ(z)

∣∣ ≤ kM, z ∈ U ; k ≥ 2; M > 0,

and

ϕ
(
Dα

zSN ,Sϑ(z),Dα
zSN+1,Sϑ(z),Dα

zSN+2,Sϑ(z),Dα
zSN+3,Sϑ(z); z

)
∈ 0,
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then ∣∣Dα
zSN ,Sϑ(z)

∣∣ < M.

In the specific case 0 = q(U ) = {τ : |τ| < M }, (M > 0), the class φj[0, M] is simply
symbolized by φj[M].

Corollary 4. Let ϕ ∈ φj[M]. I f ϑ ∈ A attains the following situation:∣∣Dα
zSN+1,Sϑ(z)

∣∣ ≤ kM.

Also if∣∣Dα
zSN ,Sϑ(z), Dα

zSN+1,Sϑ(z), Dα
zSN+2,Sϑ(z), Dα

zSN+3,Sϑ(z); z
∣∣ < M,

we obtain ∣∣Dα
zSN ,Sϑ(z)

∣∣ < M.

Corollary 5. Let k ≥ 2, 0 6= N ∈ C and M > 0. I f ϑ ∈ A attains the following situation:∣∣Dα
zSN+1,Sϑ(z)

∣∣ ≤ kM.

Also, if ∣∣Dα
zSN+1,Sϑ(z)−Dα

zSN ,Sϑ(z)
∣∣ ≤ M

N
S

we obtain ∣∣Dα
zSN ,Sϑ(z)

∣∣ < M.

Proof. Let ϕ(y1, y2, y3, y4; z) = y2−y1 and 0 ∈ h(U ),
whenever

h(z)=
Mz
N
S

(M > 0).

Apply Corollary 3 to demonstrate that ϕ ∈ φι[0, M]; the admissibility condition (23)
achieves the next condition:

ϕ(y1, y2, y3, y4; z) =

∣∣∣∣∣ (k− 1)Meiθ

N
S

∣∣∣∣∣ ≥ M∣∣∣NS ∣∣∣ .
When z ∈ U , k ≥ 2 and θ ∈ R, the required result follows from Corollary 3. �

Definition 9. Let 0 be a set in C, q ∈ Q1 ∩H1. The class of admissible functions φj,1[0, q ] consists
of those functions ϕ : C4 ×U → C that satisfy the following admissibility condition:

ϕ(y1, y2, y3, y4; z) /∈ 0,

where

y1 = q(ζ), y2 =
βζq ′(ζ) + (NS )q(ζ)

N
S

,

Re



(
N+1
S

)
(y3 − y1)

y2 − y1
−
(

2N + 1
S

) ≥ kRe
{

1 +
ζq ′′ (ζ)
q ′(ζ)

}
,

and
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Re

{
(N+1
S )(N+2

S )(y4−y1)+
[(

1+ (N+1)
S

)
(N+1
S )

]
3(y3−y1)

y2−y1
+
(

1 + (2N+1)
S

)[
3
(

1 + (N+1)
S

)
−
(

1 + (N+1)
S

)]
+(

(N+1)
S

)(
(N )
S

)}
≤ k2Re

{
ζ2q′′′ (ζ)

q′(ζ)

}
,

whenever z ∈ U , ζ ∈ ∂U -E(q) and k ≥ 2.

Theorem 4. Let ϕ ∈ φj,1[0, q ]. I f ϑ ∈ A and q ∈ Q1 attain the following situations:

Re
(

ςq ′′ (ς)
q ′(ς)

)
≥ 0,

∣∣∣∣Dα
zSN+1,Sϑ(z)

q ′(ς)

∣∣∣∣ ≤ k (24)

and

{
ϕ

(Dα
zSN ,Sϑ(z)

z
,
Dα

zSN+1,Sϑ(z)
z

,
Dα

zSN+2,Sϑ(z)
z

,
Dα

zSN+3,Sϑ(z)
z

; z ∈ U
)}
⊂ 0. (25)

Then,
Dα

zSN ,Sϑ(z)
z

< q(z).

Proof. Consider an analytic function p(z) as:

p(z) =
Dα

zSN ,Sϑ(z)
z

. (26)

It follows from (7) and (26) that

Dα
zSN+1,Sϑ(z)

z
=

zp′(z) + (NS )p(z)
N
S

. (27)

A comparable argument is obtained as follows:

Dα
zSN+2,Sϑ(z)

z
=

z2p ′′ (z) +
(

1 + 2N+1
S

)
zp′(z) +

(
N+1
S

)(
N
S

)
p(z)(

N+1
S

)(
N
S

) (28)

and

Dα
zSN+3,Sϑ(z)

z

=
z3p′′′ (z)+3(1+N+1

S )z2p′′ (z)+((NS )(
N+1
S )+(N+2

S +1)( 2N+1
S +1))zp′(z)+(NS )(

N+1
S )(N+2

S )p(z)

(NS )(
N+1
S )(N+2

S )
.

(29)

Then, consider the transformation from {4 to { using

y1 = λ1, y2 =
λ2 + (NS ) λ1

N
S

,

y3 =
λ3 +

(
2N+1
S + 1

)
λ2 +

(
N
S

)(
N+1
S

)
λ1(

N
S

)(
N+1
S

) , (30)

and
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y4 =
λ4 + 3

(
1 + N+1

S

)
λ3 +

((
N
S

)(
N+1
S

)
+
(
N+2
S + 1

)(
2N+1
S + 1

))
λ2 +

(
N
S

)(
N+1
S

)(
N+2
S

)
λ1(

N
S

)(
N+1
S

)(
N+2
S

) . (31)

Let T (λ1, λ2, λ3, λ4; z) = ϕ(y1,y2,y3,y4; z)

= ϕ

 λ1,
λ2+( NS ) λ1

N
S

,
λ3+( 2N+1

S +1)λ2+(NS )(
N+1
S )λ1

(NS )(
N+1
S )

,

λ4+3(1+N+1
S ) λ3+((NS )(

N+1
S )+(N+2

S +1)( 2N+1
S +1))λ2+(NS )(

N+1
S )(N+2

S )λ1

(NS )(
N+1
S )(N+2

S )
; z

 (32)

By means of (26) to (29) and (32), we yield

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
=

ϕ

(Dα
zSN ,Sϑ(z)

z
,
Dα

zSN+1,Sϑ(z)
z

,
Dα

zSN+2,Sϑ(z)
z

,
Dα

zSN+3,Sϑ(z)
z

; z ∈ U
)

. (33)

Therefore, evidently, (25) is given as follows:

T
(

p(z), zp′(z), z2p ′′ (z), z3p ′′′ (z); z
)
∈ 0

λ3

λ2
+ 1 =


(
N+1
S

)
(y3 − y1)

y2 − y1
−
(

2N + 1
S

),

and

λ4

λ2
=

(
N+1
S

)(
N+2
S

)
(y4 − y1) +

[(
1 + (N+1)

S

)(
N+1
S

)]
3(y3 − y1)

y2 − y1

+

(
1 +

(2N + 1)
S

)[
3
(

1 +
(N + 1)
S

)
−
(

1 +
(N + 1)
S

)]
+

(
(N + 1)
S

)(
(N )

S

)
.

Hence, evidently, the admissibility situation for ϕ ∈ φj,1[0, q ] in Definition 8 is
equivalent to an admissibility situation for T ∈ T 2[0, q ]. Thus, by means of Definition 4
and Lemma 1, we acquire

Dα
zSN ,Sϑ(z)

z
< q(z).

This completes the desired outcome. �
The next outcome is an expansion of Theorem 4 to the following theorem stated below.

Theorem 5. Let ϕ ∈ φj ,1[k , q ]. I f ϑ ∈ A and q ∈ Q1 attain the following situations:

Re
(

ςq ′′ (ς)
q ′(ς)

)
≥ 0,

∣∣∣∣Dα
zSN+1,Sϑ(z)

z q ′(ς)

∣∣∣∣ ≤ k, (34)

and(
ϕ

(Dα
zSN ,Sϑ(z)

z
,
Dα

zSN+1,Sϑ(z)
z

,
Dα

zSN+2,Sϑ(z)
z

,
Dα

zSN+3,Sϑ(z)
z

; z ∈ U
))

< h(z). (35)

Then,
Dα

zSN ,Sϑ(z)
z

< q(z). (z ∈ U )
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Using Definition 9 and q(z) = Mz (M > 0), the class φj,ι[0, q ] of admissible functions
is expressed as follows:

Definition 10 ([7]). Let 0 be a set in C and M > 0; the admissible class of function φj,ι[0, M]

includes ϕ : C4 ×U → C which attain the following:

ϕ


Meiθ ,

(
(K+(NS ))Meiθ

N
S

)
,

L+( 2N+1
S +1)λ2+(NS )(

N+1
S )Meiθ

(NS )(
N+1
S )

,

N+3(1+N+1
S ) L+((NS )(

N+1
S )+(N+2

S +1)( 2N+1
S +1))K+(NS )(

N+1
S )(N+2

S )Meiθ

(NS )(
N+1
S )(N+2

S )
, z

 /∈ 0, (36)

Re
(

Le−iθ
)
≥ (k− 1)k M,

and
Re
(

Ne−iθ
)
≥ 0 (for all real θ ∈ R and k ≥ 2).

Corollary 6. Let ϕ ∈ φj,1[0, q ]. I f ϑ ∈ A and attains the following situations:∣∣∣∣Dα
zSN+1,Sϑ(z)

z

∣∣∣∣ ≤ kM, (z ∈ U ; k ≥ 2; M > 0)

and

ϕ

(Dα
zSN ,Sϑ(z)

z
,
Dα

zSN+1,Sϑ(z)
z

,
Dα

zSN+2,Sϑ(z)
z

,
Dα

zSN+3,Sϑ(z)
z

; z
)
∈ 0,

then ∣∣∣∣Dα
zSN ,Sϑ(z)

z

∣∣∣∣ < M, (z ∈ U ).

Corollary 7. Let ϕ ∈ φj,1[0, q ]. I f ϑ ∈ A and q ∈ Q1 attain the following situations∣∣∣∣Dα
zSN+1,Sϑ(z)

q ′(ς)

∣∣∣∣ ≤ kM, z ∈ U and k ≥ 2, M > 0,

and∣∣∣∣ϕ(Dα
zSN ,S (ϑz)

z
,
Dα

zSN+1,Sϑ(z)
z

,
Dα

zSN+2,Sϑ(z)
z

,
Dα

zSN+3,Sϑ(z)
z

; z ∈ U
)∣∣∣∣ < M,

then ∣∣∣∣Dα
zSN ,Sϑ(z)

z

∣∣∣∣ < M (z ∈ U ).

3. Conclusions

The investigation of third-order differential subordination and differential superordi-
nation for s\analytic functions through the use of fractional differential operators represents
a profound and extremely specific domain within the field of mathematics. This integra-
tion of fractional differential operators with third-order differential subordination and
superordination is a highly specialized and advanced area of mathematical research. It
requires a deep understanding of complex analysis, fractional calculus, and the properties
of analytic functions. Researchers in this field aim to establish relationships that will help
analyze and compare the behavior of analytic functions in complex domains, considering
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the higher-order derivatives, which can have significant implications in various scientific
and engineering applications.
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