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Abstract: Despite the significant number of classification studies conducted using plant images,
studies on nonlinear motion blur are limited. In general, motion blur results from movements of the
hands of a person holding a camera for capturing plant images, or when the plant moves owing to
wind while the camera is stationary. When these two cases occur simultaneously, nonlinear motion
blur is highly probable. Therefore, a novel deep learning-based classification method applied on
plant images with various nonlinear motion blurs is proposed. In addition, this study proposes
a generative adversarial network-based method to reduce nonlinear motion blur; accordingly, the
method is explored for improving classification performance. Herein, experiments are conducted
using a self-collected visible light images dataset. Evidently, nonlinear motion deblurring results in a
structural similarity index measure (SSIM) of 73.1 and a peak signal-to-noise ratio (PSNR) of 21.55,
whereas plant classification results in a top-1 accuracy of 90.09% and F1-score of 84.84%. In addition,
the experiment conducted using two types of open datasets resulted in PSNRs of 20.84 and 21.02 and
SSIMs of 72.96 and 72.86, respectively. The proposed method of plant classification results in top-1
accuracies of 89.79% and 82.21% and F1-scores of 84% and 76.52%, respectively. Thus, the proposed
network produces higher accuracies than the existing state-of-the-art methods.

Keywords: nonlinear motion; motion deblurring; deep learning; plant image classification; generative
adversarial network

MSC: 68T07; 68U10

1. Introduction

In this study, we conducted two different experiments such as an image deblurring
and a classification. In the image deblurring method, nonlinear motion blur is considered.
First, we reduce blurring from images which occurred in a nonlinear way. Second, the
images restored via the image deblurring method are classified into 28 classes via the
classification method. In addition, plant (flower and leaf) images were used in this study.
The total number of classes of the plant images is 28.

Moreover, there have been previous studies on classification applied to plant images [1–9].
In image-based studies, classification can be performed by extracting the color and pattern
information of plants from the acquired images. However, the extraction of such informa-
tion when motion blur occurs in an image is slightly challenging. Motion blur can occur
via plant movements owing to wind or via the movements of a camera as the hand holding
the camera may shake. Furthermore, extracting color and pattern information of plants
becomes extremely challenging when both these movements occur simultaneously in an
image. Generally, natural motion blur is nonlinear. However, studies on plant image-based
classifications considering nonlinear motion blur are limited. Thus, this study proposed a
plant image-based nonlinear motion deblurring method and examined the improvement
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in plant image classification through the proposed deblurring methods. A deep learning
method named the “generative adversarial network” (GAN) [10] is used in our plant image-
based nonlinear motion deblurring method (PI-NMD), whereas another deep learning
method named “convolutional neural network” (CNN) [11] based on residual blocks was
used in our plant image-based classification method (PI-Clas). The details of our methods
are described in Section 3. Our contributions are explained in the following:

- Numerous studies on plant image-based research have been conducted; however,
plant image classification studies considering nonlinear motion blur are limited. This
is the first study to perform plant image classification considering nonlinear motion
blur.

- This study newly proposed the novel PI-NMD network, in which a blurred image
(300 × 300 × 3) obtained by generating nonlinear motion blur is used as an input. Our
PI-NMD network uses nine residual blocks and generates a deblurred image based on
the residual features in the blurred image.

- This study proposed the novel PI-Clas network in which a deblurred image is used
as an input. Our PI-Clas network uses 12 residual blocks and performs classification
using the image restored based on residual features.

- The proposed PI-NMD and PI-Clas models, as well as the visible light plant image
database, are disclosed through [12] to be used by other researchers.

The rest of the paper is organized as follows. Section 2 presents detailed expla-
nations of previous plant image-based studies including classification, deblurring, and
segmentation-based methods. Section 3 explains the PI-NMD and PI-Clas methods in
detail, in which layers of structures are explained with tables and figures. Section 4 presents
the experimental results including ablation studies, testing, training, and comparisons. In
Section 5, a discussion of the study is provided with error cases of the methods. Finally, the
conclusion is provided in Section 6.

2. Related Works
2.1. Plant Image-Based Classification Methods

Herein, we review existing classification research based on plant images. A previous
work on rice yield image classification [1] utilized an unmanned aerial vehicle (UAV) plat-
form with a hyperspectral camera and the XGBoost algorithm. It performed a classification
based on an image dataset acquired using UAV and utilized intensity saturation images
as inputs in the training and testing phases. Another study on soybean yield image clas-
sification [2] utilized support vector machine (SVM) with a radial basis function (SVMR)
and a drone equipped with a camera. Here, the images acquired using a drone and camera
were classified into three classes, gray, light tawny, and tawny pubescence. Moreover, a
study on plant and plant disease classification [3] conducted various experiments on the
PlantDoc database [13] and proposed a novel attention-augmented residual (AAR) network.
The proposed AAR included a stacked pre-activated residual block and attention block,
which extract deep coarse-level features and salient feature sets, respectively. Additionally,
another study conducted on the PlantDoc database [4] utilized a DenseNet-121 model, in
addition to a lightweight architecture and Fastai framework for plant and plant disease
classification. Another study [5] on the PlantDoc database utilized an optimal mobile
network-based convolutional neural network (OMNCNN) for plant and plant disease
classification. It also used the MobileNet model as a feature extraction technique, and the
extracted features were classified into respective classes by an extreme learning machine-
based classifier. For plant and plant disease classification [6], they applied the PlantDoc
dataset and multiple deep learning techniques (MobileNetV1, MobileNetV2, NASNetMo-
bile, DenseNet121, and Xception). The results, i.e., the probabilities, obtained from each
method were then summed using unweighted mean, weighted mean, and unweighted
majority methods to obtain the final result. However, 3-ensemble CNNs (3-EnsCNNs) and
5-EnsCNNs exhibited the best performance in plant datasets including and not including
leaf diseases, respectively. A trilinear convolutional neural network model (T-CNN) in
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plant and plant disease classification [7] method was proposed, and experiments have been
performed using PlantVillage [14] and PlantDoc datasets for comparison. In the experi-
ments, they compared and analyzed the pre-trained model refined using the PlantVillage
dataset, the pre-trained model with ImageNet, the pre-trained model refined using the
PlantDoc dataset, and the pre-trained model refined using both PlantVillage and PlantDoc
datasets. In [8], images were acquired using a UAV, a high-resolution (HR) image was
created through super-resolution reconstruction (SRR) from the acquired images, and classi-
fication was performed. Three experiments for plant disease classification were conducted
using HR, low-resolution (LR), and SRR images to compare their performance. Then, the
performance of a super-resolution convolutional neural network (SRCNN) was compared
with conventional methods. Images restored via SRCNN underwent classification using
AlexNet. In [9], SRR was performed; subsequently, plant disease image classification was
performed using HR images created using SRR. To perform SRR, a generative adversarial
network (GAN) [10] was utilized; in GAN, 23 residual-in-residual dense blocks were used.
Furthermore, CNNDiag proposed in a previous study was used as a disease classification
method to perform multiclass classification.

As explained in Section 1, motion blur was generated in the image owing to the
movement of a camera, which degraded the classification performance; however, all the
aforementioned methods did not consider nonlinear motion blur. In a previous study
explained in Section 2.2, nonlinear motion blur was considered to improve the plant image
segmentation performance.

2.2. Plant Image-Based Semantic Segmentation Method via Motion Deblurring

In motion deblurring-based weed plant image segmentation [15], the wide receptive
field attention network (WRA-Net) utilizing the light WRA residual block and upgraded
depth-wise separable convolutional blocks was proposed. In addition, the performance of
a semantic segmentation model was enhanced through WRA-Net image restoration. In
plant image restoration, nonlinear motion blur was considered when performing deblur-
ring. However, previously explained methods only performed plant image-based semantic
segmentation, thus presenting a lack of studies on plant image-based classification consid-
ering nonlinear motion blur. Thus, this study first proposed and performed plant image
classification with nonlinear motion deblurring. The abovementioned previous studies are
summarized and compared in Table 1.

Table 1. Summary of existing studies on plant image databases.

Categories Methods Advantages Disadvantages

Motion deblurring and
segmentation WRA-Net [15]

- Provides high-quality
(HQ) image;

- Considers nonlinear
motion blur

- Processing time is high;
- Does not deal with plant

image classification

Classification

XGBoost [1], SVMR [2], AAR [3],
DenseNet-121 [4],
OMNCNN [5], 3-EnsCNNs and
5-EnsCNNs [6], T-CNN [7]

Processing time is low Do not consider nonlinear
motion blur

SRR and classification SRCNN and AlexNet [8], GAN
and CNNDiag [9] Provides HR images

- Does not consider
nonlinear motion blur;

- Processing time is high

Nonlinear motion deblurring
and classification

PI-NMD and PI-Clas (proposed
method)

- Provides HQ images;
- Considers nonlinear

motion blur
Processing time is high
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3. Materials and Methods
3.1. Overall Procedure of the Proposed Method

Flowchart of our method is presented in Figure 1, according to which plant images are
used as inputs to the proposed nonlinear motion deblurring network, PI-NMD; the output
image is then used as an input to the plant classification network, or PI-Clas, to categorize
the data into 28 classes. The structure and detailed description of the proposed PI-NMD
and PI-Clas networks are explained in tables and figures in Sections 3.2 and 3.3.
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Figure 1. Flowchart of the overall system.

3.2. Detailed Explanation of Structure of PI-NMD Network

The size of both output and input images in the generator is 300 × 300 × 3. Tables 2–4
present the structures of the generator, discriminator, and a residual block in the generator
network, respectively. Evidently, the generator and discriminator networks consist of input,
(input image), input layer, convolution layer (conv2d), residual block (res_block) [16],
additional operation layer (add), upsampling layer (Up2), and a fully connected layer (FC).
After conv2d_8 in Table 2 and FC layers in Table 3, tanh and sigmoid activation layers
are used, respectively. After the remaining conv2d layers in Tables 2 and 3, a rectified
linear unit (ReLU) [17] and leaky ReLU [18] are used, respectively, whereas in Table 4,
ReLU is used after conv2d_1, whereas the activation function is used after conv2d_2. Nine
res_blocks are used in Table 2. The number of outputs of the FC layer is 1 in Table 3, in
which the output is real if the value is closer to 1 and fake if it is closer to 0. Tables 2–4
further present the filter size, stride size, padding size, and filter number of each layer. The
connection columns indicate the connection between layers. “#” indicates “number of” in
all contents. Parameter numbers of the generator (Table 2) and discriminator (Table 3) are
3,021,638 and 3,369,601, respectively. The structures of the discriminator and generator
networks of PI-NMD are depicted in Figure 2. L2–L13 and L2–L8 in Figure 2 indicate the
layer number in Tables 2 and 3, respectively. In addition, a single FC layer is used in the
discriminator network because the main part of the network comprises convolution layers
which extract various features from the input image. The extracted features at the last
convolution layer are then used in the FC layer to convert them into a value ranging from 0
to 1 by using a sigmoid activation function.

Table 2. Description of the generator network of PI-NMD.

Layer# Layer Type #Filter Filter Size Stride Size Padding Size Connection

1 input_layer 0 0 0 0 input
2 conv2d_1 64 7 × 7 1 3 input layer
3 conv2d_2 128 3 × 3 2 1 conv2d_1
4 conv2d_3 128 3 × 3 2 1 conv2d_2
5 res_block × 9 128 3 × 3 1 1 conv2d_3
6 Up2_1 0 0 0 0 res_block × 9
7 conv2d_4 64 3 × 3 1 1 Up2_1
8 Up2_2 0 0 0 0 conv2d_4
9 conv2d_5 64 3 × 3 1 1 Up2_2

10 conv2d_6 3 7 × 7 1 3 conv2d_5

11 add 0 0 0 0 conv2d_6 &
input_layer

12 conv2d_7 64 4 × 4 1 1 add
13 conv2d_8 3 3 × 3 1 1 conv2d_7

Total number of parameters: 3,021,638
The number of trainable parameters: 3,017,030
The number of non-trainable parameters: 4608
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Table 3. Description of the discriminator network of PI-NMD.

Layer# Layer
Type #Filter Filter Size Stride

Size
Padding

Size Connection

1 input_layer 0 0 0 0 input
2 conv2d_1 64 4 × 4 2 1 input_layer
3 conv2d_2 64 4 × 4 2 1 conv2d_1
4 conv2d_3 64 4 × 4 2 1 conv2d_2
5 conv2d_4 64 4 × 4 2 1 conv2d_3
6 conv2d_5 64 4 × 4 1 1 conv2d_4
7 conv2d_6 64 4 × 4 1 1 conv2d_5
8 FC 1 0 0 0 conv2d_6

Total number of parameters: 3,369,601
The number of trainable parameters: 3,369,601

The number of non-trainable parameters: 0

Table 4. Description of the residual block.

Layer# Layer
Type #Filter Filter

Size
Stride
Size

Padding
Size Connection

1 input_layer 0 0 0 0 input
2 conv2d_1 128 3 × 3 1 1 input layer
3 conv2d_2 128 3 × 3 1 1 conv2d_1

4 add 0 0 0 0 conv2d_2 &
input_layer
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3.3. Detailed Explanation of Structure of PI-Clas Network

The sizes of output and input images in PI-Clas are 28 × 1 and 300 × 300 × 3,
respectively. Tables 5 and 6 present the proposed PI-Clas network and the residual block
used in the PI-Clas network, respectively. As presented in Table 5, conv2d, res_block, FC,
add, max pooling (max_pool), and global average pooling layers are used. Furthermore,
after the FC layer in Table 5 and the conv2d_1 layer in Table 6, softmax [19] and parametric
ReLU [20] are used, respectively. An activation function is not used after the remaining
conv2d layers. The output (class #) of FC is 28. The parameter number of PI-Clas is
3,733,532 and that of PI-NMD and PI-Clas combined is 10,124,771. Figure 3 depicts the
details of structure of the PI-Clas, where L2–L19 represent layer number in Table 5. In
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Table 5, res_blocks at layer# 5, 9, 13, and 17 have different numbers of filters. For example,
the res_block at layer# 5 has 64 filters, whereas the res_block at layer# 9 has 128. Therefore,
depending on which res_block is used, the number of filters of conv2d_1 in Table 6 is
either 64 or 128. Moreover, we used a single FC layer in this network. Here, the extracted
features at the last convolution layer are used in the FC layer to convert them into a vector
of probabilities by using a softmax function.

Table 5. Description of the proposed PI-Clas.

Layer# Layer Type #Filter Filter
Size

Stride
Size

Padding
Size Connection

1 input_layer 0 0 0 0 input
2 conv2d_1 64 3 × 3 1 0 input_layer
3 conv2d_2 64 3 × 3 1 0 conv2d_1
4 max_pool_1 0 2 0 0 conv2d_2
5 res_block × 3 64 3 × 3 1 1 max_pool_1
6 conv2d_3 128 3 × 3 1 0 res_block × 3
7 conv2d_4 128 3 × 3 1 0 conv2d_3
8 max_pool_2 0 2 0 0 conv2d_4
9 res_block × 3 128 3 × 3 1 1 max_pool_2

10 conv2d_5 128 3 × 3 1 0 res_block × 3
11 conv2d_6 128 3 × 3 1 0 conv2d_5
12 max_pool_3 0 2 0 0 conv2d_6
13 res_block × 3 128 3 × 3 1 1 max_pool_3
14 conv2d_7 128 3 × 3 1 0 res_block × 3
15 conv2d_8 128 3 × 3 1 0 conv2d_7
16 max_pool_4 0 2 0 0 conv2d_8
17 res_block × 3 128 3 × 3 1 1 max_pool_4
18 GAP 0 0 0 0 res_block × 3
19 FC class # 0 0 0 GAP

Total number of parameters: 3,733,532

Table 6. Description of the residual block.

Layer# Layer
Type #Filter Filter

Size
Stride
Size

Padding
Size Connection

1 input_layer 0 0 0 0 input
2 conv2d_1 64/128 3 × 3 1 1 input layer
3 conv2d_2 64/128 3 × 3 1 1 conv2d_1

4 add 0 0 0 0 conv2d_2 &
input_layer
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3.4. Details of the Self-Collected Dataset and Experimental Setup

Here, we conducted experiments using TherVisDb [12], which consists of different
types of rose and rose leaf images. This dataset (TherVisDb) was acquired in the summer
of 2022. In this study, we used only the visible light images of this dataset and did not
use the thermal infrared images. Figure 4 depicts sample images. Table 7 lists image
numbers for each class of TherVisDb and the plant names used in the experiment, where
“#Image” indicates the number of images, Sets 1 and 2 indicate the split of the dataset for
two-fold cross-validation, and the validation set represents the image numbers used in
the validation phase. Environmental information at the time of acquiring images, along
with the hardware and software information, are as follows: humidity (91%); wind speed
(3 m/s); temperature (30 ◦C); ultra-fine dust (22 µg/m3); fine dust (24 µg/m3); ultraviolet
index (8); image size (640 × 512 × 3); depth (24); image extension (bmp); class number
(28); and camera sensor (Logitech C270 [21]). As the images in the dataset were large and a
single image contained numerous plants, a cropping operation was performed to create
more images of 300 × 300. Furthermore, overlapping was applied during the cropping
operation. Image numbers per class in the dataset were listed in Table 7; the extension
of images was changed from “bmp” to “png.” Images in training sets were augmented
by using conventional operations (flipped horizontally and rotated three times by 90◦).
Subsequently, the nonlinear image-blurring method used in [22] was applied to create
blurred images in the TherVisDb database. In detail, in the image-blurring method, random
trajectories generation was used, in which blur kernels are generated by applying pixel
interpolation to vector trajectory. This method can generate motion blur kernels with
random trajectories. In other words, this method can simulate more realistic kernels with
different levels of nonlinearity. The trajectory generation was made by using the Markov
process, which was described as a pseudo code in Algorithm 1 in ref. [22]. In the algorithm,
they set the number of iterations, the max length of the movement, and the probability of
the impulsive shake to 2000, 60, and 0.001, respectively. In this study, we tuned only two
parameters, namely, the number of iterations, and the probability of impulsive shaking. In
Section 4.2.1, the experimental results obtained by tuning the parameters are compared.

Figure 4. Sample images of TherVisDb dataset: (a) Alexandra; (b) Echinacea Sunset; (c) Rosenau;
(d) White Symphonie; (e–h) corresponding blurry images.
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Table 7. Description of classes and dataset split.

Class Index Class Names #Image Set 1 Set 2 Validation Set

1 Alexandra 120 54 54 12
2 Belvedere 48 21 21 6
3 Blue river 136 61 61 14
4 Charm of paris 136 61 61 14
5 Cleopatra 152 68 68 16
6 Cocktail 112 50 50 12
7 Duftrausch 176 79 79 18
8 Echinacea sunset 64 28 28 8
9 Eleanor 144 64 64 16
10 Elvis 224 100 100 24
11 Fellowship 208 93 93 22
12 Goldeise 144 64 64 16
13 Goldfassade 184 82 82 20
14 Grand classe 264 118 118 28
15 Just joey 72 32 32 8
16 Kerria japonica 104 46 46 12
17 Margaret 112 50 50 12
18 Oklahoma 312 140 140 32
19 Pink perfume 120 54 54 12
20 Queen elizabeth 120 54 54 12
21 Rose gaujard 312 140 140 32
22 Rosenau 304 136 136 32
23 Roseraie du chatelet 352 158 158 36
24 Spiraea salicifolia l 64 28 28 8
25 Stella de oro 48 21 21 6
26 Twist 288 129 129 30
27 Ulrich brunner fils 120 54 54 12
28 White symphonie 280 126 126 28

Total 4720 2111 2111 498

In addition, the specification of our computer device is as follows: CPU (Intel(R)
Core(TM) i7-6700 CPU@3.40 GHz (8 CPUs)); GPU (Nvidia TITAN X (12,233 MB)); and
RAM (32,768 MB). The software specifications are as follows: OpenCV (v.4.3.0) [23]; python
(v.3.5.4) [24]; Keras API (v. 2.1.6-tf) [25]; and TensorFlow (v.1.9.0) [26].

4. Experimental Results
4.1. Details of Training Setup

For the proposed PI-NMD, the learning rate, epoch number, batch size, optimizer,
and loss were set to 0.0001, 150, 8, adaptive moment estimation (ADAM) [27], and binary
cross-entropy [28], respectively, whereas for the proposed PI-Clas, they were set to 0.0001,
100, 8, ADAM, and categorical cross-entropy [29], respectively. The validation accuracy
curves and training loss curves of PI-NMD and PI-Clas are depicted in Figure 5. The
training loss curves of the PI-NMD of each epoch are presented in Figure 5a, whereas
the validation loss curves of the PI-NMD of each epoch are presented in Figure 5b. The
validation loss curves and training loss curves of the PI-Clas of each epoch are presented
in Figure 5c, whereas the validation accuracy curves and training accuracy curves of the
PI-Clas of each epoch are depicted in Figure 5d. The training accuracy and loss graphs in
Figure 5 indicate that our network was trained sufficiently. In addition, the validation loss
and accuracy graphs in Figure 5 indicate that the overfitting did not occur.
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an enlarged region in a red box; (b) validation losses of PI-NMD with an enlarged region in a red box;
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As shown in Figure 5a,b, loss values of the generator network decrease until epoch
150 by very little. For example, in Figure 5a, the loss values of the generator network are
0.56147 and 0.53380 at epoch 115 and 150, respectively. A validation loss value is also
decreased at epoch 150 than 115. Therefore, for obtaining the higher accuracy on the image
deblurring, a model obtained at epoch 150 was used in this study. In cases of classification
(Figure 5c,d), we set the epoch number to 100 as a default number. However, the highest
validation accuracy was obtained at epoch 74. Therefore, we used a model obtained at
epoch 74.

4.2. Testing with Self-Collected TherVisDb Dataset
4.2.1. Ablation Study

Herein, the following experimental results were obtained from the ablation study.
Equations (1) and (2) [30,31] are used to calculate the testing accuracy of PI-NMD. Further-
more, Equations (3)–(5) are used to calculate the testing accuracy of PI-Clas.

PSNR = 10log10

 2552(√
∑M

j=1 ∑N
i=1(X(I,j)−YIi,j))2

)2

MN

, (1)

where X and Y indicate the high-quality image and deblurred image, respectively. Moreover,
M and N indicate the width and height of image, respectively.

SSIM =
(2µYµX + C1)(2σXY + C2)

(µY
2 + µX

2 + C1)(σY
2 + σX

2 + C2)
, (2)

where σX indicates standard deviation; µX indicates mean value; C1 and C2 are positive
constants; and σXY is a covariance of high-quality image and deblurred image.

TPR = (#TP)/(#TP + #FN), (3)

PPV = (#TP)/(#TP + #FP), (4)

where #FP, #TP, #TN, and #FN denote the numbers of false positive, true positive, true
negative, and false negative, respectively. These values were used to compute the true
F1-score [32], positive predictive values (PPV), and positive rate (TPR), as follows:

F1 = 2 × (PPV × TPR)/(PPV + TPR). (5)

Training and experiments were performed using various PI-NMD structures to design
the structure of PI-NMD; the deblurring results of variants of PI-NMD are comparatively
presented in Table 8. Method-1 to Method–5 used different numbers of residual blocks.
As is evident from Table 8, Method-3 exhibited the highest accuracy. Thus, Method-3
was applied in the next experiment. As is evident from Table 8 and Figure 6, the results
of Method-3 were the highest; thus, subsequent experiments were conducted using this
structure.

Table 8. Comparison of deblurring accuracies via variants of PI-NMD on a blurred image dataset.

Methods #res_block PSNR SSIM

Method-1 10 20.08 72.90
Method-2 11 19.35 72.81
Method-3

(proposed) 9 21.55 73.10

Method-4 8 18.98 72.76
Method-5 7 18.61 72.71
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Figure 6. Examples of images deblurred via PI-NMD. From top to bottom, images of Grand
Classe, Echinacea Sunset, and Queen Elizabeth: (a) blurry images; deblurred images generated
via (b) Method-1, (c) Method-2, (d) Method-3 (proposed), (e) Method-4, and (f) Method-5.

Training and experiments were performed using various PI-Clas structures to design
the structure of PI-NMD. The classification results of variants of the PI-Clas are compar-
atively presented in Tables 9 and 10; in this experiment, an original HQ image dataset
was used. Evidently, Method-6 exhibited the highest results. In addition, identical experi-
ments were conducted using a blurred image dataset. As is evident from Tables 11 and 12,
Method-6 demonstrated the highest results again; therefore, this structure was applied
when conducting subsequent experiments. In subsequent experiments, various blurred
datasets were created and used in the deblurring experiment.

Table 9. Comparison of classification accuracies via variants of PI-Clas on an original HQ image
dataset.

Methods TPR PPV F1

Method-1 84.73 89.40 87.35
Method-2 87.47 90.66 89.22
Method-3 91.12 92.33 91.71
Method-4 92.03 92.75 92.33
Method-5 89.29 91.50 90.46

Method-6 (proposed) 93.86 93.59 93.58

Table 10. Comparison of classification accuracies via variants of PI-Clas on an original HQ image
dataset.

Top-1 Top-5 Top-10

Method-1 84.73 95.19 97.88
Method-2 87.47 96.46 98.51
Method-3 91.12 98.15 99.36
Method-4 92.03 98.57 99.58
Method-5 89.29 97.30 98.94

Method-6 (proposed) 93.86 99.42 100
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Table 11. Comparison of classification accuracies via variants of PI-Clas on a blurred image dataset.

Methods TPR PPV F1

Method-1 77.84 65.18 64.49
Method-2 79.14 67.00 66.97
Method-3 80.86 69.42 70.29
Method-4 81.29 70.03 71.11
Method-5 80.00 68.21 68.63

Method-6 (proposed) 82.15 71.24 72.77

Table 12. Comparison of classification accuracies via variants of PI-Clas on a blurred image dataset.

Top-1 Top-5 Top-10

Method-1 77.84 85.02 91.64
Method-2 79.14 87.12 92.38
Method-3 80.86 89.92 93.38
Method-4 81.29 90.62 93.62
Method-5 80.00 88.52 92.88

Method-6 (proposed) 82.15 92.02 94.12

Furthermore, Tables 13–15 present the results of conducting experiments using various
datasets created by adjusting the parameters (Lmax and pb) of the nonlinear image-blurring
method explained in a DeblurGAN study [22], where Lmax and pb represent the max range
of movement and probability of big shake, respectively.

Table 13. Comparison of deblurring accuracies via PI-NMD on variants of the blurred image dataset.

Lmax/pb PSNR SSIM

60/0.01 16.34 64.81
60/0.005 18.55 68.37
30/0.01 20.76 72.18
30/0.005 21.55 73.10

Table 14. Comparison of classification accuracies via PI-NMD + PI-Clas on blurred datasets blurred
with variants of parameters.

Lmax/pb TPR PPV F1

60/0.01 83.10 87.97 91.40
60/0.005 85.80 90.24 93.75
30/0.01 88.66 93.12 96.45
30/0.005 90.09 78.64 84.84

Table 15. Comparison of classification accuracies via PI-NMD + PI-Clas on blurred datasets blurred
with variants of parameters.

Lmax/pb Top-1 Top-5 Top-10

60/0.01 84.03 72.84 78.98
60/0.005 86.86 75.07 81.01
30/0.01 88.97 77.47 83.36
30/0.005 90.09 94.71 97.60
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To summarize the ablation study conducted as set out above, Tables 8–12 present
the experimental results of the ablation study conducted to design structures of plant
image deblurring and classification methods, respectively. Tables 13–15 present the results
of experiments conducted using datasets in which the images were blurred using the
two methods.

4.2.2. Comparisons with the Existing Studies

Experiments were conducted to compare our method with the existing motion deblur-
ring and classification methods using the existing open datasets. Section (Comparison with
the Existing Plant Image Deblurring Methods) provides the comparison results of previous
motion deblurring methods, and Section (Comparison with the Existing Plant Image Classi-
fication Methods) provides the comparison results of previous plant classification methods.
However, owing to the limited number of studies on plant image-based nonlinear motion
deblurring, other similar methods were compared in this section.

Comparison with the Existing Plant Image Deblurring Methods

PI-NMD was compared with other existing image deblurring methods (Blind-DeConV [33],
Deblur-NeRF [34], and DeblurGAN [22]), and the accuracies are presented in Tables 16 and 17.
In this comparative experiment, all methods were trained by using the self-collected dataset
with the same training duration (epochs). Only deblurring accuracies were compared in
Table 16, whereas the classification accuracies using the images restored via the deblurring
methods are listed in Table 17. The classification was compared using the proposed PI-Clas
network. As TPR is identical to the Top-1 accuracy in all cases [35], the Top-1 accuracy was
not separately marked.

Table 16. Comparison of motion deblurring accuracies via the PI-NMD and existing methods.

Methods PSNR SSIM

Blind-DeConV [33] 17.83 67.87
Deblur-NeRF [34] 20.01 72.15
DeblurGAN [22] 20.89 72.41

PI-NMD (proposed) 21.55 73.10

Table 17. Comparison of classification results via existing deblurring methods and PI-Clas.

Methods TPR PPV F1 Top-5 Top-10

Blind-DeConV [33] + PI-Clas 87.36 72.26 80.34 92.66 95.49
Deblur-NeRF [34] + PI-Clas 88.91 76.30 82.50 93.17 96.25
DeblurGAN [22] + PI-Clas 89.84 77.99 84.15 94.01 96.67

PI-NMD + PI-Clas 90.09 78.64 84.84 94.71 97.60

The images restored using our and existing methods are depicted in Figure 7. As is evi-
dent from Tables 16 and 17 and Figure 7, the highest deblurring and classification accuracies
were achieved via the proposed method. In other words, previous methods [22,33,34] were
used to remove motion blur from blurry images. The output images (deblurred images) of
the various methods [22,33,34] were classified via PI-Clas. The classification results were
compared in Table 17.
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Comparison with the Existing Plant Image Classification Methods

Next, PI-Clas was compared with existing classification methods ((AAR network [3],
OMNCNN [5], T-CNN [7], AlexNet [8], and CNNDiag [9]), and the results are compara-
tively presented in Tables 18–20. Only classification was performed in Tables 18 and 19,
whereas deblurring and classification were performed in Table 20. Table 18 presents the
accuracies of HQ images, Table 19 shows the accuracies of blurred images, and Table 20
shows the accuracies of deblurred images. Classification performance was compared in all
experiments. Evidently, the highest classification accuracy was achieved via the proposed
method.

Table 18. Comparison of classification results via existing methods and PI-Clas on the original HQ
image dataset.

Methods TPR PPV F1 Top-5 Top-10

AAR network [3] 91.11 88.97 89.29 98.22 100
OMNCNN [5] 92.21 90.82 91.80 98.51 100

T-CNN [7] 93.03 92.20 92.69 98.71 100
AlexNet [8] 91.08 88.53 89.12 98.18 100

CNNDiag [9] 92.15 91.46 91.89 98.68 100
PI-Clas 93.86 93.59 93.58 99.42 100
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Table 19. Comparison of classification accuracies via existing methods and PI-Clas on the blurred
image dataset.

Methods TPR PPV F1 Top-5 Top-10

AAR network [3] 78.78 64.14 71.84 87.67 90.72
OMNCNN [5] 80.13 66.98 72.21 89.23 92.81

T-CNN [7] 81.14 69.11 72.49 90.74 93.48
AlexNet [8] 78.64 63.05 71.24 87.41 90.35

CNNDiag [9] 81.01 67.22 72.35 90.05 93.15
PI-Clas 82.15 71.24 72.77 92.02 94.12

Table 20. Comparison of classification accuracies via existing methods and PI-Clas on the deblurred
image dataset via PI-NMD.

Methods TPR PPV F1 Top-5 Top-10

PI-NMD + AAR network [3] 85.75 70.40 78.22 90.46 94.38
PI-NMD + OMNCNN [5] 88.09 72.87 80.53 93.00 95.83

PI-NMD + T-CNN [7] 89.08 76.88 82.62 93.45 96.60
PI-NMD + AlexNet [8] 84.85 70.38 77.98 90.10 94.18

PI-NMD + CNNDiag [9] 88.43 73.41 81.02 93.41 96.00
PI-NMD + PI-Clas 90.09 78.64 84.84 94.71 97.60

4.3. Testing with Open Datasets

Deblurring and classification experiments were conducted using the existing open
datasets PlantDoc [13] and PlantVillage [14]. As our dataset (TherVisDb) does not include
plant disease images, only healthy plant images from the two open datasets were used. The
number of healthy plant images in PlantDoc was 847 and that of classes was 10. The number
of healthy plant images in PlantVillage was 15,084 and that of classes was 12. Our dataset
and these two datasets were combined in the training phase, whereas these two datasets
were used separately during the testing phase. Figure 8 shows sample images. Table 21
provides the accuracies of using the existing deblurring methods. Table 22 provides the
classification accuracies of using the images restored via the existing deblurring methods.
Finally, Table 23 presents the classification accuracies of using the images restored via
PI-NMD and the existing classification methods. Evidently, the highest deblurring and
classification accuracy was achieved via the proposed method.
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Table 21. Comparison of motion deblurring accuracies via the PI-NMD and existing methods on the
open datasets.

Methods
PlantVillage [14] PlantDoc [13]

PSNR SSIM PSNR SSIM

Blind-DeConV [33] 17.46 67.02 17.56 67.43
Deblur-NeRF [34] 19.50 71.40 19.18 71.37
DeblurGAN [22] 20.63 71.85 20.54 71.52

PI-NMD 20.84 72.96 21.02 72.86

Table 22. Comparison of classification accuracies via the PI-Clas on deblurred image datasets via
PI-NMD and other methods on the open datasets.

Methods
PlantVillage [14] PlantDoc [13]

TPR PPV F1 TPR PPV F1

Blind-DeConV [33] + PI-Clas 86.39 71.96 80.21 79.24 64.21 71.52
Deblur-NeRF [34] + PI-Clas 88.21 75.80 82.48 80.78 67.60 73.98
DeblurGAN [22] + PI-Clas 89.30 77.05 83.94 81.64 69.70 75.57

PI-NMD + PI-Clas 89.79 78.48 84.00 82.21 69.78 76.52

Table 23. Comparison of classification results via existing methods and PI-Clas on deblurred image
datasets via the PI-NMD on the open datasets.

Methods
PlantVillage [10] PlantDoc [5]

TPR PPV F1 TPR PPV F1

PI-NMD + AAR network [3] 85.26 69.54 77.78 77.44 61.71 69.29
PI-NMD + OMNCNN [5] 87.46 72.24 79.74 79.59 64.57 72.06

PI-NMD + T-CNN [7] 88.30 76.30 82.54 80.54 68.25 73.85
PI-NMD + AlexNet [8] 85.10 69.21 77.13 77.12 61.15 69.02

PI-NMD + CNNDiag [9] 88.00 74.45 81.26 80.08 66.42 72.92
PI-NMD + PI-Clas 89.79 78.48 84.00 82.21 69.78 76.52

4.4. Processing Time

The processing times of PI-NMD and PI-Clas are listed in Table 24. Evidently, the
frame rate of PI-NMD was 18.6 FPS, whereas that of PI-Clas was 19.37 FPS. The table also
presents the giga floating-point operations per second (GFLOPs [36]), parameter numbers,
model size, and number of operations of each model.

Table 24. Computation time, GFLOPs, number of parameters, model size, and numbers of multipli-
cation and addition per image of each model.

Model Processing
Time (ms) GFLOPs #Parameters

(M)
Model Size

(MB)

#Multiplication-
Addition

(Giga)

PI-NMD 55.37 49.1 3.02 12.05 49.22
PI-Clas 51.62 40.8 3.73 44.13 40.78

Total 107.09 89.9 6.75 56.18 90.00

5. Discussion

Nonlinear motion deblurring and classification were performed using plant image
datasets in this study. The proposed PI-NMD uses a blurred, low-quality image as input
and generates a deblurred, higher-quality image, as shown in Figure 6. As presented in
Tables 14 and 15, the proposed PI-Clas method uses the deblurred images of the PI-NMD
as input, thus demonstrating higher performance compared with the methods that do not
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use the PI-NMD (Tables 10 and 11). Consequently, as explained in Sections 4.2.2 and 4.3, a
higher performance compared with that of previous studies was obtained.

Figures 9–11 show error cases of PI-Clas. Images that were improperly restored via
PI-NMD resulted in classification errors of PI-Clas. The images contained noises (blue
and red pixels), as shown in Figures 9 and 10. The incorrectly classified images during
classification generally contained such noises. As shown in Figure 9, noises were observed
in all images in the early stages of the training epoch; noise was particularly noticeable
in the image of Spiraea salicifolia L. (Figure 9d). Further, noise decreases as the number of
training epochs increases. Therefore, noise was relatively weak and eventually disappeared
in the image of other classes. However, considering the nature of the Spiraea salicifolia L.
image (Figure 9d), the noise was relatively strong and eventually faded; nevertheless, it
did not completely disappear. Hence, the number of training epochs should increase or the
hyperparameters and network should be further adjusted during training. The noise in the
image on the far right-hand side in Figure 9d is enlarged in Figure 10, and the examples of
correctly and incorrectly classified images are shown in Figure 11.
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The Grad-CAM [37] heatmaps obtained from the final addition layer of the PI-Clas
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tively. Moreover, the heatmaps are compared in Figure 15. Evidently, the deblurred
image-based heatmap obtained from the proposed map was more similar to the original
image-based heatmap than to the blurred image-based heatmap depicted in Figure 15.
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Figure 13. Example of heatmaps obtained using blurred images: (a) Blue River; (b,c) Echinacea
Sunset; (d) Alexandra.
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6. Conclusions

We proposed nonlinear motion deblurring and classification methods based on plant
image datasets and performed relevant experiments using the TherVisDb dataset, which
includes different types of rose and rose leaf images. Classification experiments have been
performed based on the plant image using the TherVisDb dataset, and our method exhib-
ited higher accuracies of 90.09% (top-1 score) and 84.84% (F1 score) compared with those of
existing methods. Furthermore, nonlinear motion deblurring experiments were conducted
using plant images in TherVisDb. The proposed deblurring model exhibited higher accu-
racies of 21.55 (PSNR) and 73.10 (SSIM) compared with those of existing methods. This
is because the proposed model was designed based on the ablation study, in which the
structure and hyperparameters of the model were tuned based on experimental results
employing the dataset with nonlinear motion blur (Tables 8 and 13–15). However, the struc-
tures and hyperparameters of the existing methods were not tuned for such datasets in their
experiments. Additionally, an experiment was conducted using PlantVillage and PlantDoc
open datasets. As presented in Tables 13 and 21, the results obtained using open datasets
were lower than those obtained using the self-collected TherVisDb dataset. Moreover, a
plant image classification experiment was conducted using PlantVillage and PlantDoc open
datasets, and the results obtained using them were lower than those obtained using the
TherVisDb dataset. The low accuracy was probably because the PlantDoc open dataset
contains a small number of images, most of which include objects (i.e., other than plants).
In the case of the PlantVillage open dataset, the accuracy was slightly higher because only



Mathematics 2023, 11, 4011 21 of 22

one leaf was included in an image and the background was relatively clean and similar in
each. The classification accuracy increased for the images restored via PI-NMD, as can be
seen in the experimental results in Tables 17, 20 and 23. As shown in Figures 9–11, errors
increased for blue-pixel noise.

In the future, to reduce the classification error observed in Figures 9–11, further
research on nonlinear motion deblurring and classification will be performed to improve
the performance of the proposed method while considering different deep learning-based
image deblurring and classification techniques. Moreover, a study will be conducted using
plant thermal images to explore various methods of improving classification performance.
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