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Abstract: The average sizes Li, and their dispersion Wi along the i-th axis, of crystallites in powders are
used to determine X-ray diffraction sizes, Di XRD, averaged over crystallite columns within the BWA
method. Numerical calculations have been carried out for an orthorhombic lattice of crystallites, such as
LiFePO4, NMC, having a Lamé’s g-type superellipsoid shape. For lognormal distributions, the analytical
expression for the normalized coefficient Kn has been found: Kn = Di XRD/Li =

(
Kg,0 + KgW2), where

Kg,0 is a constant at W→0, Kg is a constant depending on the g -type shape. The dependences of
Di XRD are also calculated for normal distribution. A fairly simple equation can be obtained as a result
of analytical transformations in the framework of experimentally validated approximations. However,
a simpler way is to carry out numerical computer calculations with subsequent approximation of the
calculated curves. Using the obtained analytical expressions to control technologies from nuclear
fuel to cathode materials will improve the efficiency of flexible energy network, especially storage in
autonomous and standby power plants.

Keywords: crystallites in powders; Lamé’s shape; X-ray sizes; Bertaut–Warren–Averbach; normal
distributions; lognormal distribution; energy storage; energy optimization
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1. Introduction

Scherrer began studying the shape of X-ray lines (LPA—line profile analysis) to de-
termine the sizes of nanometer objects in 1918. The history is described in [1,2], and the
latest results in [3]. In 1950, Bertaut [4], and Warren and Averbach [5] showed that the total
diffraction intensity is the sum of individual diffractions from columns perpendicular to
the planes that make up the crystallite. The magnitude of the size-induced broadening of
diffraction reflections depends not only on the average sizes of crystallites, but also on the
statistics of their distributions. The situation is described in detail in [4–9] and the following
equation is assumed to hold:

Di XRD ≡ Di(Mi) =
1
V

∫
Mi dV = KnLi (1)

where Mi is the length of the column along the i-th direction, V is the crystallite volume, Kn
is the normalization coefficient of value Di XRD per crystallite linear size along the i-th axis.
The result of averaging for a single ellipsoid, i.e., for a powder with a small dispersion, is
obtained via integration [6–9]. In the case of crystalline powders with a non-orthorhombic
lattice, it is necessary to take into account the angles between the axes [9].

Thus, the task of using the BWA method is reduced to determining the normalized
coefficient Kn by integrating (1) and summing over all crystallites, taking into account their
shape, as well as the statistics of their distributions.
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Based on TEM and SEM studies [2,7,10,11], various size distribution functions: lognor-
mal, normal, gamma, and Poisson are normally used, more precisely, their one-dimensional
projections onto some linear dimension. The first two of them can be used in their
three-dimensional versions with pairwise correlations between sizes along the coordi-
nate axes [12–14], while for the last two, such a possibility is not “transparent and easily
accessible” [15–17]. In some exceptional cases, analytical approximations of distributions
with a large dispersion of sizes may be useful [11]. This is probably also due to the fact that
in some ranges of dispersion and average sizes, the lognormal distribution is visually close,
for example, to the gamma distribution (see Supplementary Materials).

Currently, a large number of programs for processing diffractograms and determining
Di XRD have been developed. First of all, it is necessary to take into account the instru-
mental contribution to diffraction line width [18,19], and then the general microstructure
refinement of all peak profiles (WPPM—whole powder pattern modeling) procedure can be
used [3,10,11]. The size–strain line broadening analysis can be combined with evaluating
the crystallographic texture of various nanosized powders [20–22] in the Rietveld refine-
ment software, in a technique known as Material Analysis Using Diffraction (MAUD) [23].
In TOPAS 3.0 v1 (Bruker) software, anisotropic crystallite size analysis is also implemented.
The accuracy of the double-Voigt approach and the dimensional parameters obtained for
triaxial ellipsoids, elliptic cylinders, and cuboid is discussed in [24,25].

Thus, there is a fairly reliable procedure for determining the X-ray diffraction sizes of
anisotropic powders, in which their size distribution is assumed to be known a priori, or
by inspecting histograms obtained by counting a small number of particles. In the absence
of more complete information about the three-dimensionality of these distributions, the
use of the BWA method in the form of Equation (1) loses its meaning due to a large error.
The known value of the coefficient Kn can reduce the error, which is very useful for more
precise control of technology and predicting the target parameters of powders.

In this work, this problem is solved by the following numerical calculations: (1) the
histograms of particle size distributions are simulated using 3D lognormal or normal
functions in the form of a three-dimensional and N-bit matrix, (2) the matrix of averaged
columns of crystallites is calculated with the shape of g-type superellipsoids and the sizes
corresponding to the histogram bins, (3) the value of Di (Mi), defined as the average
column length of the whole powder sample along the i-th axis, is calculated via element-
by-element multiplication of these two matrices and then summing the matrix elements
along the i-th axis.

2. Calculation Model
2.1. Shape of Crystallites

Lamé’s surface of g-type superellipsoids is described by the implicit equation(
2 x3

L3

)g
+

(
2 x2

L2

)g
+

(
2 x1

L1

)g
= 1 (2)

superelipsoids belong to the superquadric family [26](∣∣∣∣2 x
Lx

∣∣∣∣ 2
ε1
+

∣∣∣∣2 y
Ly

∣∣∣∣ 2
ε1

) ε1
ε2

+

∣∣∣∣2 z
Lz

∣∣∣∣ 2
ε1

= 1 (3)

Equation (2) is a special case of (3) with the ratio of powers: ε1 = ε2 = 2/g. The
moduli signs are omitted in Equation (2), since the shapes of LiFePO4 crystallites can be
described even with only g < 30 [14,27] and their 0-th genus topology [28], i.e., excluding
torus-type shapes.

Figure 1 shows anisotropic crystallites and columns M1 along the 1st crystallographic
direction. These forms are also used in the TOPAS Rietveld refinement [25]. Replacing x1

in (2) with M1
2 , for the length M1, we obtain:

M1 = L1
(
1− ((2 x2)/L2)

g − ((2 x3)/L3)
g) 1

g (4)
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Figure 1. LiFePO4 crystallite models: (a) ellipsoid, g = 2, ε1 = ε2 = 1, (b) cuboid g = 30,
g = 30, ε1 = ε2 = 0.2, and (c) elliptical cylinder (bar), ε1 = 1, ε2 = 0.04 with dimensions L1, L2

and L3 M1 along the [010], [100], and [001] axes, respectively. M1—lengths of columns with a cross
section dx2·dx3, for (c) two directions are indicated.

For D1(M1) we obtain:

D1 XRD ≡ D1 (M1) =
1
V

∫
M1 dV =

1
V

x
M1

2dx2dx3 = Kn L1 (5)

where V is the volume of the crystallite. The equality (5) is obtained for an ellipsoidal
crystallite with orthogonal axes, and the coefficient Kn = 3/4 [7,9] results from normalizing
to the average linear length of the crystallites. It will be seen below that in some cases,
the dependence of D1 XRD on only L1 is retained, while Kn depends on the shape of the
crystallites and the parameters of their size distribution. Variants with non-orthogonal axes
are dealt with in detail in [9].

The double integration in (5) is carried out over the integration region Reg of the
central section of the ellipsoid perpendicular to the 1st axis,

Reg =
(
((2 x2)/L2)

g + ((2 x3)/L3)
g)1/g ≤ 1 (6)

The advantage of using Lamé’s superellipsoids is the ability to determine their vol-
ume and cross-sectional area perpendicular to column M1 [26,29], respectively, by using
beta functions

V =
1
g2 L1L2L3B

(
1
g

,
2
g
+ 1
)

B
(

1
g

,
1
g
+ 1
)

(7)

S(010) =
1
g

L2L3B
(

1
g

,
1
g
+ 1
)

(8)

In particular, knowing the mass of the cathode powder, its density and the statistics of
the size distribution of crystallites, with Equations (7) and (8), it is possible to determine the
inner surface of the cathode and use it to improve the accuracy of determining the diffusion
coefficient using the Randles–Sevcik equation [14], as well as for quantitative calculations
of the rate of electrochemical reactions using the Butler–Volmer equation [27]. In this case,
the shape of crystallites must be preliminarily determined by analyzing TEM and SEM
images of crystallites either visually or using software processing methods [29–32].

2.2. Crystallite Statistics

In the study of the structural and electrochemical properties of LiFePO4 powders,
lognormal [33–39], normal [40–42], and Weibull [36,37] distributions were observed earlier.
The latter was also used to describe carbon conglomerates of anode electrodes [39,43].
Gamma and lognormal distributions, as noted above [10,11], were used in the analysis
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of specially tested CeO2 powders. There are the following structural and technological
justifications for their use:

1. In [44], it was shown that during the crushing of rocks, a lognormal distribution of
products occurs, which is due to the multifactorial character of the crushing process itself.

2. In [45], the normal distribution arises as a result of aggregative growth and oriented
attachment of nanocrystals.

3. In [43], the Weibull distribution results from the restructuring of the electrode mor-
phology during battery usage.

4. Gamma is associated with exponential and normal distributions. In [46], the gamma
distribution was observed at a constant rate of formation of nuclei near the supersatu-
ration threshold of the solution and also during the formation of raindrops in [47,48].

In the Supplementary Materials, these 4 functions are used to construct the one-
dimensional histograms of size (diameter) distributions for 8000 virtual spherical particles.
They can be used at the first stage of visual selection of the experimental distribution type.

It was noted above that only the lognormal [13,14] and normal [12] distributions can
be used to describe anisotropic particles, taking into account their pairwise covariances
between the sizes. For the remaining two, they can also be adjusted to lognormal and
normal with smaller errors compared to those arising when covariances are not taken
into account.

In [49], marginal size distributions of crystallites in LiFePO4 powders were determined
along all three crystallographic axes, and in [14], the parameters of the 3-dimensional
lognormal function fLM

(
L
)

were determined:

fLM
(

L
)
=

1

L1L2L3

√
(2π)3detΛ

exp
[
−1

2

(
ln L− ln L

)T
Λ−1

(
ln L− ln L

)]
(9)

where L =

L1
L2
L3

—crystallite sizes, L =

L1
L2
L3

—their mean values,

Λ =

 W2
1 r12W1W2 r13W1W3

r21W2W1 W2
2 r23W2W3

r31W3W1 r32W3W2 W2
3

—matrix of correlation moments; the off-diagonal

elements are covariances between the marginal distributions, for example,
Cov12 = Cov21 = r12W1W2 between the 1st and 2nd; r12 is the correlation coefficient
between them. The possible values of r12 range from 0 to 1.

Below we also use the normal distribution fN
(

L
)

in the form [15]

fN
(

L
)
=

1√
(2π)3detΛ

exp
[
−2
(

L− L
)T

Λ−1
(

L− L
)]

(10)

The most significant difference between (10) and (9) is the linear scale used in (10), and
the dimension of the dispersion: in (9) the dispersion W is dimensionless, and in (10), it has
the dimension of length. In the calculations, it will be normalized to the average length
along the i-th direction, which makes the calculations more general.

2.3. X-ray Size Calculation

According to (1), the X-ray diffraction size D1 (M1) along the 1st axis is the average
of the lengths of the columns M1, as shown in Figure 1, over all powder crystallites. We
obtain it by averaging over the i-th crystallite using integration (5) over the cross section (6)
followed by averaging over all N powder crystallites using function (9) or (10). To achieve
this, we use the Mathematica 12.0 software for element-by-element matrix multiplication
and their summation in the following form, for example, for the lognormal distribution:

D1(M1) = Total
[(

fLN ◦ D1 (M1)
]

(11)
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where Lin, Ljn, and Lkn are the sizes of crystallites along the [010], [100], and [001] axes,
respectively, the index n varies from 1 to N, also for Normal fN . The crystallite volumes VN
in Equation (6) will be represented by a 3-dimensional matrix (7), depending on the g-type
of superellipsoid, in particular for an ellipsoid with g = 2, VN = π

6 Lin ∗ Ljn ∗ Lkn· · · f in
(8) stands for the discretization of function (9) or (10) in the form of a matrix normalized to 1,
each element of which is the probability of superellipsoid presence with the corresponding
size in the powder.

Thus, the task of Equation (11) is to determine the dependence of the coefficient Kn in
(5), on g–the type of superellipsoids and on the following parameters of the lognormal (9) or
normal (10) distributions: Li–average sizes, Wi–dispersion, and rik–correlation coefficients
of the matrix Λ.

3. Results of Calculations and Discussion

In the presence of a large number of parameters, it is necessary to establish their hier-
archy, evaluate their possible ranges, and also determine the number of bins (discreteness
or dimension) of the histograms [50,51], which is equal to the matrix dimensions used
in (11) in our case. It has been verified that the bin number should be at least 15–20 for
a small discretization error, comparable to the errors of powder structural studies (see
Supplementary Materials).

3.1. Lognormal Distribution

Parameter ranges. For high-quality LiFePO4 powders, the parameters of the function
fLN
(

L
)

fall in the following ranges: L1,2,3 ∼40 ÷ 500 nm, W1,2,3 ~0.3 ÷ 0.6,
r12,13,23~0.4 ÷ 0.7 [27].

To explain the calculation algorithm, the test results for 8000 crystallites and a 20-bin
distribution histogram, through analogy with [27,49], are shown in Figure 2. Supplementary
Materials contains similar figures and numerical values of 6-bit matrices, which were used
to check and control the stages of calculations and to determine the discretization error.
From Figure 2b, it can be seen that the histogram of X-ray diffraction size distribution shifts
to the region of large sizes. This usually occurs with an increase in the dimensionality of
the averages: from 1D to 3D. The linear dependence of D1 XRD on L1 exactly corresponds to
the value of Kn =
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Figure 2. (a) Histogram simulation of ellipsoid crystallite size distribution (g = 2) along the [010]
axis and its approximation by the dashed curve of the lognormal distribution with the parameters,
L1 = 320 nm, W1 = 0.5, r12 = r13 = r23 = r. Right axis averaging over the columns in each histogram
bin. (b) Histogram of distributions of X-ray diffraction sizes and the total value of histogram bars.
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Dependences of Kn on correlation coefficients. The calculations illustrated in Figure 2
ignore the dependence of Kn on the correlation coefficients rij and on their anisotropy. Figure 3
shows the results of testing these assumptions and draws the following conclusions:
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Figure 3. Dependences of Kn on the correlation coefficients r and dispersion W1 of lognormal
distribution for ellipsoids g = 2 (a) and close to cuboids for g = 30 (b) using 20-bit histograms. For
W1 = 0.6, calculations are shown using 30-bit histograms for W2 = W3 = 0.5 (o) and W2 = W3 = 0.7 (�).

1. After normalization D1
(

L1
)
, the coefficients Kn do not depend on the values of

the average sizes L1 in the tested range from 80 to 600 nm, i.e., the normalization
significantly expands the universality of the developed calculation procedure.

2. A weak dependence of Kn on r is observed at r < 0.7, i.e., in the range of values ob-
served in high-quality LiFePO4 samples. However, as shown in [27], this dependence
is quite significant for the values of their electrochemical capacitances. Therefore, here
and below, the calculations are performed for the value, r12 = r13 = r23 = r = 0.5.

3. The observed dependence at r > 0.7 is related to the histogram discreteness. Only in
this region can the anisotropy of crystallite sizes along other crystallographic direc-
tions affect the calculation results. It also expands the universality of the developed
calculation procedure.

Dependencies of Kn on the dispersion W1. Figure 4 shows the results of calculations
that can already be directly used in the development of technology for electrode crystalline
powders with a higher accuracy in determining their structural parameters compared to
those previously used in [14,27] to determine the block structure of crystallites [49], to
assess the potential of the developed technologies, and to optimize it [14]. From Figure 4,
the following conclusions can be drawn:
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Figure 4. Dependences of Kn on lognormal dispersions W1 at r = 0.5 for ellipsoids (a) and cuboids
(b) using 6-, 20- and 30-bit histograms: (�), (�) and (o), respectively. The red dot (�) is taken from SI.
The straight line is an approximation by the equations shown in the figures.
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1. For the lognormal crystallite size distribution the following analytical expression for
Kn is found

Kn = (Kg,0 + Kg W2) (12)

where Kg,0 is a constant at W→0, and Kg is a constant, depending on the g-type shape.
The values of these constants are collected in Table 1.

2. Equation (12) is valid up to the values of W1~0.6. For larger values, it is necessary to
increase the bit length of the histograms, which is possible with a 2 ÷ 3-fold increase
in the number of measured particles. On the other hand, the error of using 6-bit
histograms with 2 ÷ 3-fold smaller number of particles (up to 1000 ÷ 2000) will be no
more than 1%.

Table 1. Equation (12) constants depending on the g-type superellipsoid shape.

g 2 4 6 8 10 30 50

Kg,0 0.75 0.90 0.945 0.9654 0.9763 0.9966 0.9988
Kg 0.38 0.46 0.483 0.4938 0.4993 0.504 0.509

3.2. Normal Distribution

Parameter ranges. The examples of 20-bit histograms for 8000 particles given in
Supplementary Materials show their main feature: at W > 1, the proportion of small-sized
particles increases due to the impossibility of negative values of the particle size, and at
W < 1, it is located entirely on the positive part of the abscissa axis. Thus, the average
dimensions of L1,2,3 ~40–500 nm and the value of the normalized dispersion covering the
point W = 1 were used in the calculations.

Dependences of Kn on the correlation coefficients. Based on Figure 5, the following
conclusions are made:
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Figure 5. Dependences of Kn on the correlation coefficient r and the dispersion W1 for ellipsoids
(a) and bodies close to cuboids (b) using 20-bit normal distribution histograms. For the solid lines,
W1 = W2 = W3. For W1 = 2, the calculations are shown for W2 = W3 = 1.4 (o) and W2 = W3 = 2.6 (�).

1. At a small W < 0.5–0.8, there is no dependence of Kn on r and W, as well as no depen-
dence of the calculated values D1 (M1) on the values of the distribution parameters
along the second and third axes, as is observed in Figure 3 for the values of r > 0.7 of
lognormal distributions. The values of Kn calculated at small W, up to nearly 1, can
be considered universal constants equal to Kg,0, with a small error (Table 1).

2. For large W up to 2, the dependences along the 2nd and 3rd axes are significantly
weak. In particular, as can be seen from Figure 5, for the curves with W = 2, the 30%
changes in the values of dispersion lead to much smaller changes of less than 3%
in Kn.

Thus, the calculations with equal parameters along all three axes can be considered
accurate. With anisotropic deviations of up to 30% in the distribution parameters at large
W, the error of 3% can occur.
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Dependences of Kn on dispersion W1. Figure 6 shows the results of calculations that
can also be directly used in the development of technology for electrode crystalline powders
with normally distributed crystallite sizes to determine block structure [49], assess the
potential of the developed technologies, and optimize it [14].
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As can be seen from Figure 6, the solid lines for W1 = W2 = W3 can be approximated
by two straight lines in the region, W1 < 2.4, that intersect at the point, W = 1. Analytically,
the situation can be described by the so-called piecewise-continuous function [52]:

Kn = Kg,0

{
1 ; W < 1

2
3 + 1

3 W ; W = 1÷ 2
(13)

here the values of the constants, Kg,0, are the same as in Table 1.
Obviously, the rather simple Equations (12) and (13) can be obtained as a result of

analytical transformations within the framework of the corresponding approximations.
However, a simpler way was to carry out numerical calculations with subsequent approxi-
mation of the calculated curves.

4. Sequence of Practical Application to Optimize the Technology

The use of Kni coefficients for studying real powder crystallites and optimizing their
technology can be carried out in the following sequence of stages:

1. According to [49], it is necessary (i) to determine the X-ray diffraction size Di(Mi)
using measurements and fairly reliable MAUD refinement software, (ii) to determine
particle distribution of transverse Ls and longitudinal Lb sizes in their TEM images,
(iii) to decompose into three marginal distributions of linear sizes L[hkl] along three
crystallographic directions, using the calculated values of the coefficients Kni, as well
as information about their relative value Di(Mi), for example, as they increase. This
approach also allows the quantitive estimation of the percentage of composite particles,
which consist of several crystallites and contain small- and large-angle boundaries.

2. Thus, we obtain 3D marginal distributions of linear crystallite sizes Li. Next, it
is necessary to determine the parameter Λ matrix of correlation moments of the
3D lognormal (9) or normal (10) functions. To do this, according to [14], we use
correlators between transverse Ls and longitudinal Lb dimensions as trial ones and,
through inverse calculations, adjust them with the Mathematica 12 program to obtain
marginal distributions using a trial 3D N-bit matrix obtained by discretizing the
function fLM

(
L
)

(9) or fN
(
L
)

(10).
3. Thus, having obtained all the parameters of the 3D crystallite size distribution function,

it is possible to use it to describe the physical parameters of crystallite powders, in
particular, by using the example of electrode powder electrochemical properties and
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their cathode rate capability [14]. Directly for 1D LiFePO4 diffusion, it is necessary to
average the capacitance over crystallite column length along [010] and then over all
powder crystallites.

4. The task of optimizing the powder and improving its properties can be described as
follows, particularly for electrode powders, dividing it into two subtasks:

a. Achieving a large rate capability (and capacity) at big times, or increasing the
rate capability at small times;

b. Decreasing electrical relaxation time to increase the rate capability at small
times, which is not directly solved through the technology of particles, but is
necessary by improving the quality of their coatings [27].

5. Conclusions

The BWA (Bertaut–Warren–Averbach) method is an important tool for studying the
structure of crystalline powders, namely, for relating the anisotropic X-ray diffraction
sizes of crystallites to their anisotropic linear sizes (1). First, the lengths of the columns
are averaged over the volume of a typical crystallite. Here, the anisotropic shape of the
crystallite is important. Second, the lengths of the columns are averaged over all crystallites
of the powder under study. Here, the distribution of crystallites over their anisotropic
linear dimensions is important. A sign of these averaging is the presence of a relation for
the dimensions (length)4/(length)3. In particular, therefore, the result of averaging over a
crystallite is divided by the volume of this crystallite. Using these principles of the BWA
method, the following results have been obtained:

1. Numerical calculations have been carried out for the crystallites with orthorhombic
lattice, such as LiFePO4 and NMC. The shape of the crystallites was approximated
with the Lamé’s g-type superellipsoids, including cuboids at large g > 20 ÷ 30. The
values of the dimensional parameters of the powders were close to the ones ob-
served experimentally.

2. In the presence of anisotropy, Equations (12) and (13) can be normalized to the length
of the crystallite along its i-th axis; the normalized (dimensionless) distribution disper-
sions can also be used for lognormal and normal distributions. The universality of the
results is limited by the discreteness of the matrices, which is due to the discreteness
of the experimental histograms of crystallite sizes in the powders under study.

3. For lognormal distributions, the coefficient Kn depends weakly on the correlation pa-
rameter r for r < 0.7, i.e., in the range of values observed in high-quality LiFePO4 sam-
ples. The observed dependence at r > 0.7 is related to the discreteness of the histograms
and to the effect of crystallite size anisotropy along other crystallographic directions.

4. For the lognormal size distribution of crystallites, the following universal analytical
expression for Kn (12) was found, which is applicable up to values of W1~0.6. For
larger values, it is necessary to increase the bit number of the histograms, which
requires a 2–3-fold increase in the number of measured particles.

5. For normal distributions with small W < 0.5–0.7, there is no dependence of Kn on
r and W, and the calculated values, D1 (M1), are independent of the values of the
distribution parameters along the second and third axes. The calculated Kn for small
W ≤ 1 can be considered as a universal constant.

6. For normal distributions at large W ≤ 2, the dependences of Kn on the parameters
of other axes are significantly weak, in particular, for the curves with W1 = 2, 30%
changes in dispersions along the second and third axes lead to much smaller changes
in Kn of no more than 3%.

7. For normal distributions, the dependences of Kn on W for the ratios, W1 = W2 = W3, can
be approximated by two straight lines that intersect at the point of W = 1. Analytically,
the situation can be described by the so-called piecewise continuous function (13).

8. For gamma and Poisson distributions, mathematically reliable ways to describe corre-
lations between sizes along different coordinate axes are lacking. In some cases, these



Mathematics 2023, 11, 3963 10 of 12

distributions are visually close to the lognormal and normal functions, which can be
used instead of gamma and Poisson.

9. An elliptical cylinder (bar) (shown in Figure 1c) can be described as a combination of an
ellipsoid with M1 columns along the x1 axis and a cuboid with M2 columns along x3.

10. The use of the BWA method is carried out on the example of LiFePO4 and is justified
by the fact that this compound has been studied quite well, so the development stages
and final conclusions can be varied. In the other case of crystalline powders with a
non-orthorhombic lattice, it is necessary to take into account the angles between the
axes [9]. In this case, it becomes possible to widely use the BWA method for studying
various crystalline powders: other electrode and atmospheric contaminants [47], as
well as nuclear fuel and materials [53,54].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/math11183963/s1, Figure S1 about lognormal, normal, gamma
and Weibull distributions, Figures S2 and S3 about checking and controlling the stages of numerical
calculations, Figure S4 about the dependence on the number of digits N of the column length,
Figure S5 about comparing curves with 20 and 30 histogram sizes.
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