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Abstract: Understanding the effect of vortexes on sound propagation is of great significance in
the field of target detection and acoustic imaging. A prediction algorithm of the two-dimensional
vortex scattering is realized based on a finite-difference frequency-domain (FDFD) numerical scheme
with perfectly matched layers (PML). Firstly, the governing equation for flow–sound interaction is
given based on the perturbation theory, and the FDFD program is built. Subsequently, the mesh
independence is verified, and the result has a good convergence when the mesh corresponds to over
15 nodes per wavelength. Then, computational parameters of the PML are discussed to achieve better
absorbing boundary conditions. Finally, the results of this algorithm are compared with previous
literature data. Results show that for different cortex scattering cases, the absorption coefficient
should vary linearly with the density of the medium and the incident wave frequency. When the
thickness of the PML boundary is greater than 2.5 times the wavelength, the PML boundary can
absorb the scattering sound effectively. This provides a reliable algorithm for the numerical study of
the effect of vortexes on sound propagation.

Keywords: perfectly matched layers; sound scattering; vortex scattering; finite difference method;
flow–sound interaction

MSC: 65-02

1. Introduction

When sound waves propagate through vortical flow, the flow–sound interaction
affects the sound propagation [1], resulting in the acoustic scattering phenomena [2–4].
Two-dimensional vortex scattering is a classical model in the understanding of flow–sound
interaction [5–9]. The study of the characteristics of vortex scattering is important for both
exploring the coupling mechanism of flow and acoustic [10] and capturing the features
of the sound propagation in nonlinear flow in engineering, such as sound propagation
through the wake of the aircraft jets and acoustic imaging in medicine.

Numerical algorithms are becoming more accurate [11–15]. Numerical simulation
methods are the main approach to deal with the problem of vortex acoustic scattering [16,17].
Coloninus [18] analyzed the propagation of acoustic waves through a Gaussian vortex
flow based on a high-order numerical scheme. Karabasov [19] solved the Euler equation
with the extended upwind leapfrog scheme and analyzed the acoustic scattering from
steady-state Gaussian vortex and Rankine vortex flow at different Mach numbers. Blanc-
Benon [20] used geometric acoustic theory and parabolic wave equations to simulate the
propagation of acoustic waves through the turbulent flow. Iwatsu and Tsuru [21] used
Cin’s integral method and the compact finite-difference scheme to solve the linear Euler
equations and calculated the scattering acoustic field from the Rankine vortex and Burgers
vortex, respectively. Ke [2] analyzed the acoustic scattering characteristics of plane waves

Mathematics 2023, 11, 3959. https://doi.org/10.3390/math11183959 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11183959
https://doi.org/10.3390/math11183959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7581-7088
https://doi.org/10.3390/math11183959
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183959?type=check_update&version=1


Mathematics 2023, 11, 3959 2 of 11

propagating through the Gaussian vortex and vortex pairs with the WENO scheme, and
the results were consistent with the direct numerical simulation obtained by Coloninus [18].
In the study of underwater vortex scattering, the finite-difference time-domain method
(FDTD) was applied [22–24]. Zhang [25] introduced the simulation of vortex scattering
based on the FDTD method and discussed the directivity of the scattering sound.

To improve the stability in the numerical simulation of vortex scattering, the finite-
difference frequency-domain (FDFD) algorithm with numerical discretization on the stag-
gered grid is introduced to the simulation of vortex scattering.

Meanwhile, the construction of an acoustic absorption boundary is especially impor-
tant for numerical simulation. By adding several absorption layers around the computa-
tional domain, the perfectly matched layers (PML) can decrease the boundary reflection and
thus turn the infinite domain into a finite domain. For acoustic propagation in the moving
flow, PML can be used as the acoustic absorbing boundary [26]. The acoustic absorp-
tion effect of PML depends on the absorption coefficient, and setting a proper absorption
coefficient improves the acoustic absorption [27]. Moreira [28] solved the propagation
equation of acoustic waves in uniform and inhomogeneous medium using the frequency-
domain finite-difference method combined with PML and analyzed the influence of the
PML absorption coefficient on the acoustic absorption effect. Jie [29] adopted PML for the
broadband scattering model of the underwater target and set different absorption coeffi-
cients according to the frequency of the incident wave. It shows that the acoustic absorption
effect works well at each frequency. Park [30] applied the PML to solve the 2D Helmholtz
equation and symmetrically discretized the PML matrix, which can effectively reduce the
computational resource. However, the effect of PML on the calculation of vortex scattering
and the suitable value of parameters for vortex scattering simulation are unclear, such as
the effect of the relative thickness of PML, the size of the computational domain, and the
vortex core radius. In order to study the above issues quantitatively, we have introduced
an attenuation term in the equation of motion in this paper, which increases from the inner
to the outer boundary, instead of the diffusion term multiplied by the attenuation factor
according to the aforementioned works. This method can ensure energy absorption, and
the attenuation variation inside the PML layers is relatively smooth. This ensures the
precision of numerical simulations regarding the scattering of vortex acoustics.

In this paper, a FDFD algorithm combined with the PML is established to evaluate the
acoustic scattering caused by a vortex, and the relevant parameters suitable for 2D vortex
acoustic scattering are specially discussed and determined. In the end, the validated results
agree well with the reference results. In Section 1, a two-dimensional vortex scattering
model is introduced. In Section 2, the numerical scheme to solve the perturbation equation
is given. In Section 3, the algorithm is introduced, and the grid independence is verified. In
Section 4, the relationship between the PML absorption coefficient, PML layers, and Mach
number is explored, and the algorithm is verified. Section 5 contains the conclusion.

2. Vortex Scattering Model

In this paper, the classical two-dimensional Burgers vortex model is used. The
schematic diagram of vortex scattering is shown in Figure 1:

The tangential velocity of the vortex flow is [2]:

vθ =
Γ

2π

[
1− exp(− βr2/a2

)]
, (1)

where a is the radius of the vortex core. r is the distance from the point in the flow to the
center of the vortex core. β = 1.256431 is a constant chosen so that the maximum velocity
occurs at r/a = 1. Γ = 2.8πLc0Ma is the circulation of the vortex. The Mach number
Ma = (vθ)max/c0 is the ratio of the maximum velocity to the sound speed.
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Figure 1. Schematic of the acoustic scattering by a vortex.

The sound pressure of the incident plane wave is defined as [31]:

pin = pasin(2π f t− kx), (2)

where pa is the amplitude of the incident wave, f is the frequency, k is the wavenumber, x
is the x-direction coordinate, and t is the time.

3. Governing Equations

For vortex flow with a low Mach number, the amplitude of acoustic variables is
assumed to be smaller than the fluid variables. Therefore, based on the first-order perturba-
tion method, the Navier–Stokes equations can be separated into two parts based on the
magnitude. Then, the wave equation of the flow–sound interaction is obtained.

For flow without external force, according to the isentropic adiabatic principle, the
governing equations can be simplified [32]:

∂p
∂t

= −ρc2∇ · u− (u · ∇)p, (3)

∂u
∂t

= −1
ρ
∇p + υ∇2u− (u · ∇)u, (4)

where ρ, u, and p represent the density, velocity and pressure of the flow, respectively. υ is
the kinematic viscosity, and c is the sound speed.

Assuming that the magnitude of the acoustic variable is much smaller than the corre-
sponding fluid variable [33], p and u can be defined as follows:{

p = p0 + δp, |δp| << p0
u = u0 + δu, |δu| << |u0|

, (5)

where p0 and u0 represent the pressure and velocity of the flow without the acoustic
disturbance, respectively. δp and δu are the perturbed acoustic pressure and velocity
generated by the sound wave.

We consider δp = δρc2, so that p0 and u0 satisfy the following formulas:

∂p0

∂t
= −ρ0c2∇ · u0 − (u0 · ∇)p0, (6)

∂u0

∂t
= − 1

ρ0
∇p0 + υ∇2u0 − (u0 · ∇)u0, (7)

For low Mach number flow, the following assumptions are met: (1) |δu| << |u0| << c,
(2) the time scale of the flow is much larger than the period of the incident acoustic wave,
and (3) the influence of the acoustic disturbance on the flow is negligible. The vortex
scattering phenomenon caused by the flow–sound interaction is then mainly controlled
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by the nonlinear term. By retaining the term and neglecting the high-order amount, the
simplified governing equation of acoustic disturbance can be obtained:

∂δp
∂t

= −ρ0c2∇ · δu− (u0 · ∇)δp, (8)

∂δu
∂t

= − 1
ρ0
∇δp− (u0 · ∇)δu− (δu · ∇)u0, (9)

where ρ0 is the density of the medium.
The above time domain equation can be transformed into a frequency domain equation.

It can be assumed that δp and δu satisfy δp = δpa · ejωt, δu = δua · ejωt respectively, and
then Equations (8) and (9) can be transformed into:

jωδpa = −ρ0c2∇ · δua − (u0 · ∇)δpa, (10)

jωδua = −
1
ρ0
∇δpa − (u0 · ∇)δua − (δua · ∇)u0, (11)

where ω is the circular frequency.
The PML is adopted as the acoustic absorption boundary, as shown in Figure 2. The

computational domain is a square with N-layers PML. In order to effectively absorb the
sound, the attenuation factor of the i-th layer satisfies the following formula:

σ(i) = σmax(
i− 1
N − 1

)
2
, (12)

where σmax is the maximum absorption coefficient.
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Obviously, in the PML, Equation (11) can be modified to:

jωδua = −
1
ρ0
∇δpa − (u0 · ∇)δua − (δua · ∇)u0 −

σ

ρ0
δua, (13)

It can be seen from Equation (13) that the attenuation term adds an attenuation factor
to the velocity of the particle inside the PML layers.

4. Numerical Method and Mesh Independence
4.1. Numerical Method for Acoustic Scattering

To ensure the accuracy of the simulation, the finite difference scheme with the stag-
gered grid is applied to solve Equations (10) and (11). Sound pressure δp corresponds
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to each staggered node. The velocity components in the x and y direction, respectively,
correspond to the node with ∆x/2 offset in the x-direction and ∆y/2 offset in the y-direction
from the pressure node. The two-dimensional staggered mesh is shown in Figure 3.
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Equations (10) and (11) can be rewritten as:
∂δuax

∂x = 1
dx (δuax(i, j)− δuax(i− 1, j)),

∂δuay
∂y = 1

dy (δuay(i, j)− δuay(i, j− 1)),
∂δpa
∂x = 1

dx (δpa(i, j)− δpa(i− 1, j)),
∂δpa
∂y = 1

dy (δpa(i, j)− δpa(i, j− 1)),

(14)

where δuax and δuay are the amplitudes of velocity in x- and y-axis direction, respectively,

δpa is the amplitude of sound pressure. Moreover, ∂δpa
∂x and ∂δpa

∂y are the partial differential
of sound pressure.

4.2. Mesh Independence

This section performs the study of mesh independence. We compare the results from
different mesh with the different number of grid nodes (10, 15, and 20) per wavelength.
The sound scattering directivity results of these cases are compared in Figure 4. δprms is the
effective scattered sound pressure, θ is the azimuth. It can be seen from the figure that the
solution has a very good convergence when the mesh corresponds to over 15 nodes per
wavelength.
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5. Discussion of PML Parameters
5.1. Relationship between Layer Numbers and Absorption Coefficient

Firstly, the effect of the absorption coefficient on the result for a given number of
PML layers is discussed. By choosing sufficient thickness of PML as 75 layers (5 times
the wavelength) and changing σmax from 200 to 30,000 kg/(m3 · s) , the sound scattering
directivity results of different cases are compared in Figure 5.
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We define the relative error as follows:

err =
p′m − pm

pm
, (15)

where p′m is the effective scattered sound pressure at the monitoring point m of the test.
pm is the theoretical value of effective scattered sound pressure at the monitoring point m.

As can be seen from Figure 5, obvious fluctuations in the backward scattering region
arise with an absorption coefficient too small or too large. When the attenuation is too small
(200 kg/(m3 · s)), the PML boundary absorbs less acoustic energy, resulting in excessive
reflection. When the attenuation is too large, the boundary behaves like a rigid boundary
and results in a stronger reflection. Therefore, an appropriate absorption coefficient should
be chosen.

In order to analyze the attenuation of sound pressure inside the PML layers, the
distribution of effective scattering sound pressure of the PML boundary is shown in
Figure 6. When σmax = 200 kg/(m3 · s), the scattered sound pressure is not completely
attenuated in PML layers, and the distribution along the PML layers shows significant
fluctuations. When σmax = 1000–15,000 kg/(m3 · s), the scattered acoustic pressure in
PML layers can be attenuated smoothly, and the larger the absorption coefficient is, the
fast it attenuates. When σmax = 30,000 kg/(m3 · s), the scattered acoustic pressure can be
completely attenuated in PML layers, but local fluctuations occur near the first layer of the
PML layers, which produces a strong reflection into the internal computational domain.
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It can be seen that the appropriate absorption coefficient should satisfy the follow-
ing conditions: the scattered acoustic pressure inside the PML layers can be completely
attenuated, and no strong reflection is produced in the internal computational domain.
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Another problem that should be considered is that too many PML layers bring low
computing efficiency. Figure 7 shows the variation in the calculation time with the number
of PML layers. As can be seen from the figure, when the number of PML layers increases,
the calculation time also increases rapidly.
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Based on this study of this section, when a larger number of layers is chosen, a better
acoustic absorption can be obtained, but it may have a larger calculation load. Therefore, a
reasonable number of layers should be chosen, which will be analyzed shortly.

5.2. Dimensionless Analysis of PML Parameters

This section analyzes the relationship between the absorption coefficient and related
parameters based on the dimensionless analysis method. There are eight related physical
quantities, namely medium density ρ0, sound speed c0, incident wave frequency f , number
of nodes per wavelength n, the size of the computational domain L, Mach number Ma,
vortex core radius a, number of PML layers N, and PML absorption coefficient σmax. We
choose ρ0, f , c0 as the basic quantity. the dimensional relationship is:

σmax

ρ0 f
= g(

N
n

,
L f
c0

,
a f
c0

, Ma), (16)

where g(N
n , L f

c0
, a f

c0
, Ma) is a function. N

n is the ratio of the thickness of the PML boundary to

the wavelength. L f
c0

is the ratio of the size of the computational domain to the wavelength.
a f
c0

is the ratio of the radius of the vortex to the wavelength.
The absorption coefficient relationship is (17):

σmax = ρ0 f g(
N
n

,
L f
c0

,
a f
c0

, Ma), (17)

In Equation (17), N
n is the main parameter characterizing the thickness of the PML

boundary. From Equation (1), it can be seen that the flow velocity distribution is deter-
mined using L, Ma, a, therefore L f

c0
, a f

c0
, and Ma can be regarded as the main parameters

characterizing the flow velocity.

5.3. Parameters of Flow

In this section, the relationship between the absorption coefficient and the flow field
velocity parameters L f

c0
, a f

c0
, and Ma are analyzed. Since a large L causes a large amount of

calculations, we first analyze L f
c0

, then a f
c0

, and finally Ma with proper L. The frequency is
set to be 85 Hz, the sound speed is 340 m/s, the number of nodes per wavelength is 15, and
σmax = 5000 kg/(m3 · s).

5.3.1. Size of the Computational Domain

This section discusses the influence of the size of the computational domain on the
simulation. The effective scattering attenuation distribution in the PML with different
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sizes of calculation domains (2.5, 5.0, 10.0) is shown in Figure 8. Results show that sound
pressure is completely attenuated within the same number of layers, and there is no obvious
local fluctuation. The size of the computational domain has little effect on the choice of
PML parameters. Therefore, the following analysis of PML parameters can use a smaller
calculation domain to reduce computational cost.
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Figure 8. Scattering sound distribution in the PML boundary with different sizes of computational
domains.

5.3.2. Vortex Core Radius

This section analyzes the radius of the vortex core. The incident sound frequency is
85 Hz, the sound speed is 340 m/s, the size of the computational domain is 10 m, and
the radius of the vortex core is from 0.5 to 1.5 m. Therefore a f

c0
is from 0.125 to 0.375. The

effective scattering sound distribution in PML layers is shown in Figure 9. It can be seen
from the figure that the acoustic pressure scattered from different vortex is completely
attenuated within the same number of layers, and there is no obvious local fluctuation. The
vortex core radius has little effect on the choice of PML parameters.
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5.3.3. Mach Number

This section analyzes the relationship between the Mach number and the absorption
coefficient. The frequency is 85 Hz, the sound speed is 340 m/s, the size of the computa-
tional domain is 10 m, and the Mach number is 0.10–0.25. The scattering sound distribution
in PML layers is shown in Figure 10. It can be seen from the figure that the acoustic pressure
is completely attenuated in the same number of layers at different Mach numbers, and
there is no obvious local fluctuation. The Mach number has little effect on the choosing of
PML parameters.

It can be seen from the results in this section that the flow velocity parameters L f
c0

,
a f
c0

, and Ma have little effect on the parameter choosing of the PML boundary. When the
flow velocity increases, the particle velocity increases. If the PML attenuation factor does
not change, the scattered acoustic is attenuated at the same attenuation ratio in the PML
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layers. At the same time, due to the large attenuation factor, the PML absorption coefficient
approximately satisfies the following formula:

σmax = ρ0 f g(
N
n
), (18)
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5.4. Relative Thickness of PML

This section analyzes the effect of PML thickness on acoustic absorption. The number
of nodes per wavelength is chosen to be 15, and the number of PML layers N is from 15 to
75. Therefore, N

n is from 1.0 to 5.0. For different thicknesses, according to the function g ( N
n ),

cases of different absorption coefficients are conducted. The comparison of the directivity of
different cases is shown in Figure 11. It can be seen from the figure that when the thickness
of PML is smaller than 2.5 times the wavelength, there is no obvious reflection.
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In order to ensure effective acoustic absorption while minimizing the amount of
calculation resource, a PML thickness of 2.5 times the wavelength is suggested.

5.5. Comparison with Direct Numerical Simulation (DNS)

In this section, the results obtained by our algorithm are compared with DNS re-
sults [18]. The density of the fluid medium is ρ0 = 1.0 kg/m3, the characteristic radius
of the vortex core is L= 1.0 m, the Mach number is Ma = 0.25, the frequency of the inci-
dent plane wave is f = 85 Hz, the sound speed is c = 340 m/s, and the computational
domain is a 40 m× 40 m square. The monitoring points are 10a away from the center of the
vortex core.

From Section 5.4, we know that when the PML boundary thickness is 2.5 times the
wavelength, the reasonable g(N

n ) is 23.5–40. The scattering sound pressure directivity
compared with the DNS result is shown in Figure 12. It can be seen from the figure that the
results of this method are consistent with the results obtained through DNS [18]; thus, the
algorithm can be used to predict the vortex scattering field.
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6. Conclusions

In this paper, a finite-difference algorithm in the frequency domain combined with
the PML absorbing boundary is developed to simulate acoustic scattering from a two-
dimensional vortex. The mesh independence is verified, and when the mesh corresponds
to over 15 nodes per wavelength, the result has a good convergence. The value of the PML
absorption coefficient and the number of PML layers are analyzed. The limitation of this
algorithm is that it is only applicable to 2D vortex acoustic scattering. But it also provides a
reliable algorithm for the numerical study of the effect of the vortex on sound propagation,
such as target detection and acoustic imaging.

By comparing with the literature data, the accuracy of the algorithm is verified, and
the following conclusions are drawn:

1. In the PML region, when the scattered sound pressure can be completely attenuated
before reaching the outermost boundary and there is no obvious fluctuation near the
boundary between the computational domain and the PML, the scattering sound can
be regarded as fully absorbed.

2. When the thickness of the PML boundary is larger than 2.5 times the wavelength,
a qualified sound absorption effect can be obtained by selecting a suitable PML
absorption coefficient.

3. The algorithm established in this paper can effectively calculate the two-dimensional
vortex scattering. The value of the absorption coefficient of PML is suggested to be
linear with the density of the medium and the frequency of the incident wave. The
Mach number shows little effect on the acoustic absorption effect of PML.
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