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Abstract: The proliferation of smart devices in the 5G era of industrial IoT (IIoT) produces significant
traffic data, some of which is encrypted malicious traffic, creating a significant problem for malicious
traffic detection. Malicious traffic classification is one of the most efficient techniques for detecting
malicious traffic. Although it is a labor-intensive and time-consuming process to gather large labeled
datasets, the majority of prior studies on the classification of malicious traffic use supervised learning
approaches and provide decent classification results when a substantial quantity of labeled data is
available. This paper proposes a semi-supervised learning approach for classifying malicious IIoT
traffic. The approach utilizes the encoder–decoder model framework to classify the traffic, even
with a limited amount of labeled data available. We sample and normalize the data during the
data-processing stage. In the semi-supervised model-building stage, we first pre-train a model on
a large unlabeled dataset. Subsequently, we transfer the learned weights to a new model, which is
then retrained using a small labeled dataset. We also offer an edge intelligence model that considers
aspects such as computation latency, transmission latency, and privacy protection to improve the
model’s performance. To achieve the lowest total latency and to reduce the risk of privacy leakage,
we first create latency and privacy-protection models for each local, edge, and cloud. Then, we
optimize the total latency and overall privacy level. In the study of IIoT malicious traffic classification,
experimental results demonstrate that our method reduces the model training and classification time
with 97.55% accuracy; moreover, our approach boosts the privacy-protection factor.

Keywords: industrial internet of things; encrypted malicious traffic classification; semi-supervised
learning; edge intelligence

MSC: 68T07

1. Introduction

After the worldwide announcement regarding the fourth industrial revolution, China
put forward the 2025 industrial manufacturing strategy [1]. Although the Industrial Internet
of Things (IIoT) has been booming in recent years, it has also been subject to more and
more cyber attacks and malicious behaviors, which has led to the leakage of sensitive
information, damage to industrial infrastructure, and economic losses [2]. Therefore, the
IIoT security issue needs to be resolved as soon as possible. Detecting malicious traffic
data entering and leaving the IIoT and taking the necessary precautions against malicious
attacks is an effective approach. By monitoring and analyzing network traffic, potential
security threats, anomalous behavior, and intrusion attempts can be detected.

Previous methods for traffic detection, such as traditional deep packet inspection
(DPI) [3,4], have proven effective in identifying malicious unencrypted traffic. However,
the majority of traffic data today is encrypted traffic. As the detection of encrypted malicious
traffic in IIoT can typically be seen as a traffic classification problem [5], port-based and
machine-learning methods are very effective for classifying encrypted malicious traffic [6],
but the accuracy cannot be guaranteed in the face of a significant increase in traffic. Deep-
learning techniques, which are trained to automatically choose traffic features and have a
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larger capacity for learning than that of typical machine-learning techniques, can identify
encrypted harmful traffic in the presence of an enormous amount of encrypted traffic
classification.

In IIoT malicious traffic classification, traditional deep-learning methods are based
on supervised methods [7], which require enough labeled data and sufficient compu-
tational power during training. Unfortunately, capturing and labeling large datasets is
time-consuming and labor-intensive. In contrast, unlabeled data are abundant and easily
available. Therefore, semi-supervised deep-learning methods are more suitable for classi-
fying malicious IIoT traffic [8]. At the same time, semi-supervised learning is better able
to handle noise and labeling errors because the presence of unlabeled data can smooth
and regularize the model, therefore reducing the risk of overfitting. In addition, unlabeled
data can help the model to better adapt to new domains or tasks, therefore improving
the generalization ability. This approach combines supervised and unsupervised learning,
utilizing a small proportion of labeled data as input.

When using deep-learning models for malicious traffic detection [9], the traditional
idea is to transfer large amounts of data from IIoT devices to the cloud for processing [10],
which leads to higher cost and transmission latency; additionally, this method may risk
privacy leakage issues. However, if the model is put locally, it can lead to higher compu-
tational latency due to weak local computing power [11]. Edge servers are introduced to
integrate computation latency, transmission latency, and privacy-protection factors across
local, edge-side, and cloud environments. This integration improves the model’s classifi-
cation efficiency while maintaining the same accuracy in classifying malicious traffic and
reducing privacy leakage concerns.

To enhance the security performance of IIoT and tackle the challenge of detecting
malicious traffic, we propose an IIoT malicious traffic classification method. Our method
aims to accurately identify malicious traffic within a significant volume of encrypted traffic
while minimizing the need for manual feature extraction. To achieve this, we employ a
deep-learning model as the classification model. At the same time, to resolve the problem
of difficult labeling of real captured traffic, we choose a semi-supervised learning approach.
In addition, to address the problems of high latency of model training and classification
and the associated privacy leakage during the process, we choose to introduce an edge
intelligence model. In summary, our proposed method is an EI-based approach to classify
malicious traffic for IIoT. The main contributions of this paper are as follows:

(1) Our proposal involves a semi-supervised deep-learning method capable of classi-
fying malicious traffic in IIoT. This method leverages a significant quantity of unlabeled
data alongside a small portion of labeled data.

(2) We propose a method to improve the performance of classification models using
edge intelligence. This method considers the computational latency, transmission latency,
and privacy-preserving factors during model training and classification.

(3) We model the latency and privacy protection of the edge intelligence model for
local, edge, and cloud separately. Then, we optimize them by quantifying the total latency
and total privacy level.

(4) Experiments reveal that, compared to that of the previous IIoT malicious traffic
classification methods, our method achieves a classification accuracy of 97.55% when
using the UNSW-NB15 dataset while minimizing overall latency and the danger of privacy
leakage.

2. Related Work

Network traffic is essential for capturing the behavior process of a network [12], con-
taining comprehensive information about the entire communication between source and
destination hosts. Analyzing network traffic can not only understand network bandwidth
and allocate bandwidth but also evaluate current network capacity utilization. In particular,
by analyzing traffic patterns, abnormal behaviors, and malicious traffic characteristics,
security issues can be discovered promptly. The traffic data of IIoT exhibit distinct char-
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acteristics, including dynamism, volume, and temporal dependence. For the study of
IIoT traffic classification, a part of the research approach utilizes the methods of traffic
classification in traditional networks, mainly based on machine learning and deep learning.

Although machine learning is effective at classifying malicious traffic, it necessitates
the labor and time-intensive human extraction of features. Fu et al. [1] uses clustering to
detect anomalous traffic in IIoT, and in the paper, they propose a hierarchical detection
method that first statistically analyzes the detected traffic frequencies and then detects the
traffic attributes using a clustering algorithm. Niu et al. [13] proposes an adaptive random
forest algorithm (IARF) that is capable of adaptively updating parameters when dealing
with new types of malicious traffic, and it is also sensitive to traffic information with a
few malicious samples. Ikram et al. [14] proposes an MNSWOA IPM RF method, which
divides the traffic classification problem into feature selection and classification prediction,
and improves the feature selection part using the whale optimization approach and ideal
point method. Yan et al. [15] proposes a small-scale learning algorithm HCA-MBGDALRM,
which improves the processing speed of the dataset through a parallel framework, while
still addressing the problem of data skewing.

Deep learning has the advantage of automatic feature selection, which can optimize
the problem of the manual feature extraction part of machine learning. Moreover, deep
learning is capable of handling complex data and exhibits excellent scalability and flexibility.
Transfer learning and pre-trained models in deep learning also demonstrate remarkable
performance in practical applications. Researchers classify deep-learning-based anomalous
traffic detection into three categories: supervised learning, semi-supervised learning, and
unsupervised learning [16]. The main difference between the three methods is whether the
input dataset is labeled, and recent research on IIoT malicious traffic classification is mainly
focused on fully supervised learning.

Wang et al.’s method [17] achieves 86.6% accuracy in classifying 12 traffic types
using a one-dimensional convolutional neural network (1D-CNN). Lin et al. [18] presents
a cryptographic traffic recognition scheme called TSCRNN. This scheme utilizes CNN
to extract abstract spatial features and introduces stacked bidirectional LSTM to learn
temporal features. Zainudin et al. [19] proposes a method that can detect DDoS attacks in
IIoT well, combining an effective feature selection method XGBoost. Shahin et al. [20] uses
the LSTM model when detecting malicious traffic, and enhances the LSTM with CNN and
full convolution neural network (FCN).

There is an increasing amount of research on edge intelligence. Edge intelligence
technologies are maturing and being applied in a wide range of scenarios. Zhao et al. [21]
proposes a model of IoT encrypted flow detection based on edge intelligence, which reduces
the time for establishing the model. Zeb et al. [22] proposes a new edge-native framework
for intelligently predicting data traffic, and Mohammed et al. [23] also introduces the
concept of edge intelligence when classifying IoT traffic. From the above, when edge
intelligence is combined with malicious traffic classification of the IIoT, it can also improve
the training efficiency of the classification model and reduce the probability of privacy
leakage. Qi et al. [24] proposes a blockchain-driven traffic classification method for edge
computing in addressing normal traffic classification for IIoT, which effectively reduces time
overhead and memory usage. In addition, edge intelligence can also reduce bandwidth
requirements, enhance offline functionality, improve system reliability, and save network
costs. These advantages can provide technical support for industrial IoT security.

In our approach, we exploit features such as the temporal correlation of IIoT traffic
data, classify them using deep learning, an automatic feature extraction method, and
semi-supervised learning models to reduce the dependence on labeled datasets, and finally
introduce edge intelligence to improve the efficiency of model training and classification
and to reduce the probability of privacy leakage. The methods in the above literature are
summarized in Table 1.
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Table 1. Literature summary.

Paper Machine
Leaning Deep Leaning Supervised Unsupervised Semi-Supervised EI

Fu [1] 3 3
Niu [13] 3 3

Ikram [14] 3 3
Yan [15] 3 3
Latif [25] 3 3
Wang [17] 3 3

Shapira [26] 3 3
Lin [18] 3 3

Zainudin [19] 3 3
De [27] 3 3

Shahin [20] 3 3
Zhao [21] 3 3 3
Zeb [22] 3 3 3

Mohammed [23] 3 3 3
Qi [24] 3 3 3
Hu [28] 3 3

Ning [29] 3 3

Our Method 3 3 3

3. Methodology

Overall, our strategy involves classifying malicious traffic for IIoT traffic data, which
contains four components. The first part is data processing, where we sample the captured
traffic information in three different ways, and then select time series features and basic
features in the data for normalization. The second part is the pre-training model in the semi-
supervised training model, where we present the encoder–decoder model architecture for
encoding in the pre-training phase and use unlabeled data as the input to the pre-training
model. The third part is the re-training model in the semi-supervised training model.
During re-training with a small quantity of labeled data, this model transfers the parameters
and weights from the pre-training model. The re-training step includes decoding; then, the
classifier outputs the traffic classes. The fourth part is the edge intelligence model. In this
model, we build latency models and privacy-preserving models for cloud, edge, and local
areas to improve the training and classification efficiency of the semi-supervised model by
optimizing the total latency and privacy level, while reducing the risk of privacy leakage.
The overall model architecture is shown in Figure 1.

Figure 1. The framework of Malicious Traffic in IIoT.



Mathematics 2023, 11, 3951 5 of 17

3.1. Data Processing

Since the traffic density is very high in real scenarios, it is necessary to sample the data.
Data sampling can not only save computational resources and accelerate model training but
also balance the bias and variance of the model, improving its generalization ability while
maintaining data representativeness. Among various sampling methods, we selected three
sampling methods that are feasible in practical applications to compare the effects, namely
random sampling, systematic sampling, and clustered sampling. Random sampling means
the traffic packets are sampled with equal probability. Systematic sampling means that
the first traffic packet is selected randomly and that the other traffic packets are selected
using a fixed sampling interval. Cluster sampling means we use the sub-packet groups of
the overall traffic packet as the sampling unit, and the whole traffic packet is divided into
several sub-packet groups, called clusters; then, a complete cluster is randomly selected as
the sampling sample. The pattern diagrams of the three sampling methods are shown in
Figure 2.

Figure 2. The pattern diagrams of the three sampling methods.

After sampling the traffic data, the time series features in the encrypted traffic are
extracted, including the source port, the destination port, the payload size, the window
size, and the traffic duration. Then the data are normalized, and the input features are
scaled to values in the range [−1, 1].

3.2. Pre-Training Model

CNNs were chosen for both the pre-training and re-training models because of their
shift-invariant property, which allows CNNs to capture the output traffic pattern even if it
is shifted to another input region. At the same time, CNN reduces the amount of calculation
through local connections. Due to weight sharing, the network can use the same weights
at different locations for the feature extraction mechanism, thus reducing the number of
parameters that need to be trained.

During the pre-training stage of the model, an encoder is employed to convert the
input sequence into a fixed-length vector. Subsequently, in the re-training model, a de-
coder is utilized to transform the vector into an output sequence. The encoder–decoder
approach [30], also known as Seq2Seq, is characterized by its end-to-end learning algorithm.

In the encoder–decoder architecture [31] of the Seq2Seq model, given an input se-
quence x = {x1, x2, . . . , xm} with length m, the model generates a target sequence y =
{y1, y2, . . . , yn} with length n. Figure 3 illustrates this architecture, where the encoder
hidden states: {h0, h1, . . . , hm}, the decoder hidden states: {s0, s1, . . . , sn}, the contextual
sequence c = Encoder(x1, . . . , xm).
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Figure 3. The encoder–decoder architecture of the Seq2Seq model.

To tackle the issue of suboptimal final classification caused by lengthy input sequences,
the model [32] incorporates an attention mechanism. Attention mechanism allows the
model to allocate different attention weights to different parts of the input data. By doing
so, the model can focus more on the information relevant to the current task while ignoring
irrelevant information. Additionally, the attention mechanism helps the model suppress
noise and interference, which further enhances the model’s performance. This updated
Seq2Seq model, depicted in Figure 4, addresses the problem effectively.

Figure 4. The Seq2Seq-model with attention mechanism.
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In the attention model, each context sequence is a weighted sum of all hidden state
vectors of the encoder as

ci =
m

∑
j=1

αijhj (1)

The input sequence is mapped into multiple context sequences c1, c2, c3, . . . , cn, where
ci is the context information corresponding to the output yi (where i = 1, 2, 3, . . . , n). When
the decoder predicts the output yi, its result depends on the matching context sequence c1
and its previous hidden state, i.e.,

yi = Decoder(ci, s1, . . . , si−1), i = 1, . . . , n (2)

Figure 5 shows the architecture of the CNNs-based pre-training model, which is
encoded in the pre-training phase.

Figure 5. Pre-training model.

3.3. Re-Training Model

The weights learned by the pre-trained model are transferred to the retrained model,
which is then retrained with a small, labeled dataset and finally decoded for classifica-
tion. Since many traffic patterns have been observed as part of the pre-trained model,
adding a small amount of manually labeled data during re-training can accomplish a fast
classification task that makes re-training converge faster.

To avoid experimental chance, we choose a five-fold cross-validation method by
dividing the traffic package into five parts, taking one of them as the test set each time and
the remaining four as the training set; we cycle through the validation five times.

The final classifier selected the softmax classifier, which solved the multi-classification
problem, i.e., it can classify normal traffic and different types of malicious traffic. The
softmax function formula is as follows.

Softmax(zi) =
ezi

∑C
c=1 ezc

(3)

where (zi) is the output value of the i-th node, and C is the number of output nodes, i.e.,
the number of classified categories.

Recent neural networks commonly employ cross-entropy as the loss function for
classification problems [33]. Extensive experiments have confirmed that utilizing cross-
entropy as the loss function is indeed a superior choice.

The CNNs-based re-training model architecture is shown in Figure 6. Table 2 shows
the model architecture parameters.

Figure 6. Re-training model.
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Table 2. Structure of the CNNs model.

- Conv1 Conv2 Pool3 Conv4 Pool5 FC6 FC7

Number of filters/neurons 32 32 - 64 - 64 32
Kernel size 5 5 3 3 3 - -

3.4. Edge Intelligence Framework

Edge intelligence (EI) technology synergistically combines the computing capabilities
of end devices and edge servers, harnessing the complementary strengths of local and high
computing. As a result, it effectively minimizes latency and reduces energy consumption
during the inference of deep-learning models [34]. Ref. [35] Edge intelligence is classified
into six levels, from level one to level six, with an increasing percentage of edge intelligence
involvement. As the EI level increases, the number of data offloads and path lengths
decrease, which then leads to a decrease in transmission waiting for the time for data
offloading, an increase in data confidentiality, and a decrease in WAN bandwidth cost;
however, computational latency and energy consumption increase [35]. Figure 7 shows the
comparison of the six capabilities corresponding to the cloud, edge, and device sides.

Figure 7. Comparison of cloud, edge, and device-side capabilities.

As shown in Figure 7, the advantage of edge intelligence is that diversity, scalability,
reliability, and latency are better. Meanwhile, privacy can be protected; however, although
cloud-side execution has strong computational power, the data transmission process in-
creases the transmission latency and raises the risk of privacy leakage. For local device-side
execution, although the data transmission process is reduced, which reduces the transmis-
sion latency and risk of privacy leakage, the computational power is insufficient and adds
considerable computation time. Edge intelligence combines the advantages of cloud and
local, which can better serve the model.

Many factors affect the choice of cloud, edge, and local. We consider three main
aspects, namely calculation delay, transmission delay, and privacy protection. Among
them, the calculation delay and transmission delay are established as delay models, and
the privacy-protection model is established at the same time. Finally, we choose the scheme
with the better two models.

3.4.1. Latency Model

When the task is executed locally [36], the cause of the delay is mainly the computa-
tional delay in executing the task TL(t), which is highly related to the working frequency
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of the local Central Processing Unit (CPU) of user devices [37]. The local computational
latency of the device TL(t) can be represented as

TL,C(t) = A(t) · αL(t) · L f−1
L (t) (4)

where A(t) denotes the total task volume, αL(t) denotes the ratio of tasks processed locally,
L refers to the necessary CPU cycles for executing the one-bit task [38], and fL(t) denotes
the corresponding CPU-cycle frequency of the user device [39].

When tasks are offloaded to the edge server [40], the edge server has abundant
computational resources to reduce computational latency compared to that of the local
device, but it adds additional transmission latency during the offloading process. Therefore
the latency of task offloading to the edge server includes both computation latency and
transmission latency [41].

The computational latency of the edge server TE,C(t) can be described as

TE,C(t) = A(t) · αE(t) · L f−1
E (t) (5)

The transmission latency of the edge server TE,O(t) can be formulated as

TE,O(t) =
A(t) · αE(t)[

ω log2

(
1 + h(t)p(t)

N0ω

)] (6)

where ω is the channel bandwidth of the user device, h(t) denotes the channel gain, p(t) is
the transmit power of the user device, and N0 represents the power spectral density.

In summary, the total latency of the edge server TE(t) is the accumulation of computa-
tion latency and transmission latency [42].

TE(t) = TE,C(t) + TE,O(t) (7)

When tasks are offloaded to cloud servers, cloud servers have the most computational
power compared to that of local devices and edge servers, but have the longest data transfer
distance, incurring greater transfer latency and more noise interference during transmission.
The latency of task offloading to cloud servers also includes two components.

The computational latency of a cloud server TC,C(t) can be formulated as

TC,C(t) = A(t) · αC(t) · L f−1
C (t) (8)

The transmission latency of the cloud server TC,O(t) can be defined as

TC,O(t) =
A(t) · αC(t)[

ω log2

(
1 + h(t)p(t)

N0ω

)] (9)

In summary, the total latency of the cloud server TC(t) is the accumulation of compu-
tation latency and transmission latency

TC(t) = TC,C(t) + TC,O(t) (10)

3.4.2. Privacy Preservation Model

As the data transition is from local execution to edge server offloading, and eventually
to cloud server offloading, the distance of data transmission increases significantly, resulting
in a reduced level of data privacy and confidentiality. Therefore, the following privacy-
protection model is established, which is different from the encryption-based approach in
cryptography. The overall privacy level P is represented by the following formula, The
smaller the value of P, the higher the privacy level.

P = (PLαL + PEαE + PCαC) ∗ 10 (11)
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where PL denotes the privacy level when the task is executed locally and takes values in
the range [0, 0.1], PE denotes the privacy level when the task is offloaded to the edge server,
and the values range from [0.1, 0.5], and PC denotes the privacy level when the task is
offloaded to the cloud server, and the values range from [0.5, 1]. A higher privacy level
indicates a higher chance of privacy leakage, and conversely, a lower privacy level indicates
a lower chance of privacy leakage.

4. Experiments
4.1. Experimental Setup

We implemented the classification model using GPU-accelerated Python 3.7.0 and Py-
Torch, with CPU frequencies of 2.4 GHz (local device), 2.7 GHz (edge server), and 3.3 GHz
(cloud server), corresponding to the experimental hardware platforms. Additionally, we
assume that the local, edge, and cloud environments have the same task scheduling priori-
ties when running the classification model and that the resources in each environment are
capable of meeting the corresponding requirements.

We completed most of our experiments based on the UNSW-NB15 dataset which was
created by the Cyber Range Laboratory of the Australian Cyber Security Center [43]. The
dataset consists of 1,776,851 training data points and 761,508 test data points, which include
nine families of attacks.

To verify the generality of our approach, we also conducted experiments on other
datasets. One is the CTU-13 dataset, which is an IIoT network traffic dataset. Another
dataset is the BoT-IoT dataset of IoT network traffic captured in recent years, which contains
both normal traffic and botnet traffic [44]. Three different datasets, the UNSW-NB15 dataset,
CTU-13 dataset, and BoT-IoT dataset, are denoted by D1, D2 and D3, respectively. The data
volume and its proportion of attack types of the three datasets are shown in Table 3.

Table 3. Samples of different families in three data sets.

Data Set Total Family Sessions Percentage

Normal 2,218,761 87.41%
Generic 215,481 8.49%
Exploits 44,525 1.75%

D1 2,538,395 Fuzzers 24,246 0.95%
DoS 16,353 0.64%
Reconnaissance 13,987 0.55%
Analysis 2677 0.11%
Backdoors 2329 0.09%

Background Flows 2,753,290 97.47%
D2 2,824,636 Botnet Flows 39,933 1.41%

Normal Flows 30,387 1.07%
C&C Flows 1026 0.03%

DDoS 1,954,760 71.37%
DoS 519,706 18.77%

D3 2,739,000 Service Scanning 231,627 8.66%
OS Fingerprinting 23,364 0.85%
Normal 9543 0.35%

We used four metrics to evaluate the classification performances of the various meth-
ods, including accuracy (AC), precision (PR), recall (RC), and F1 [18].

Accuracy (AC) =
TP + TN

TP + TN + FP + FN
(12)

Precision (PR) =
TP

TP + FP
(13)

Recall(RC) =
TP

TP + FN
(14)
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F1 = 2× Precision × Recall
Precision + Recall

(15)

where TP, FP, TN, and FN refer to true positives, false positives, true negatives, and false
negatives, respectively.

There are also two evaluation metrics for latency and privacy level, which are defined
from Formulas (6)–(13).

4.2. Experimental Results and Analysis

We compare the total latency and the privacy level of model training and classification
under six scenarios during the experiment to make the classification model lower the total
latency and minimize the risk of privacy leakage after incorporating edge intelligence. The
classification model is divided into two parts, executed on local devices, edge servers, and
cloud servers, respectively. The ratio parameters of the six scenarios are shown in Table 4,
and the changes in the two evaluation metrics corresponding to different scenarios are
shown in Figure 8.

Table 4. Parameter values.

Scenario αL(t) αE(t) αC(t)

1 0 0 1
2 0 0.5 0.5
3 0.5 0 0.5
4 0 1 0
5 0.5 0.5 0
6 1 0 0

Figure 8. Variation of total latency and privacy level in different scenarios.

The definitions of total latency and privacy level are given in 3.4. Figure 8, shows
that these six scenarios have advantages and disadvantages in terms of total latency and
privacy-protection issues. The total latency of scenarios 1, 2, and 4 is lower and not much
different, and the threshold of privacy level is set to 5. When the privacy level is lower than
5, privacy confidentiality is better, and the possibility of privacy leakage is lower. Therefore,
scenarios 2–6 have a lower likelihood of privacy leakage.

Edge intelligence is introduced to reduce the total latency while reducing the possibility
of privacy leakage. Combining these two factors, scenario 2 and scenario 4 are more suitable
for the model in this paper. Additional metrics to evaluate our approach under scenarios 2
and 4.
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When sampling the flow samples, the three sampling methods, random sampling, sys-
tematic sampling, and whole-group sampling, are compared; the accuracy after systematic
sampling is found to increase as the training sample grows larger, but random sampling
and whole-group sampling do not. We speculate that the increased randomness of random
sampling loses some of the key information, making it more difficult to fit the model to
the true distribution, and whole-group sampling can only observe the local distribution.
Whole-group sampling can observe only local traffic patterns, which has certain limitations.
The final accuracy of the three sampling methods is shown in Figure 9.

(a) D1 (b) D2 (c) D3

Figure 9. Classification accuracy corresponding to the three sampling methods.

As depicted in Figure 9, the final accuracy for the three datasets tends to stabilize
around 97% as the number of training samples increases when utilizing systematic sam-
pling. Among the datasets, D1 achieves the highest classification accuracy of 97.55%. The
other two sampling methods do not learn the traffic pattern comprehensively when the
training set is small, resulting in low classification accuracy. However, with the increase
in the training set, the accuracy of D1 and D3 increased more obviously, and the increase
in D2 was less significant because the distribution of key information in D2 was more
concentrated. In summary, our model can determine the use of systematic sampling.

Figure 10 displays the results of experiments that were conducted on three datasets
using systematic sampling and altering the number of labeled samples. The four evaluation
metrics (AC, PR, RC, and F1) are shown to be stable at high levels regardless of the
percentage of labeled samples, which suggests that our technique has some degree of
generalizability. Specifically, at a labeled sample proportion of 1%, D1 and D3 demonstrate
the highest classification accuracy, while at a labeled sample proportion of 5%, D2 exhibits
the highest classification accuracy.

(a) D1 (b) D2 (c) D3

Figure 10. Trends of AC, PR, RC, and F1 with increasing proportion of marker samples.

4.3. Comparison

For the identical dataset, we compare our method with the fully supervised CNN
(sCNN) for malicious traffic classification. In scenarios with a low proportion of labeled



Mathematics 2023, 11, 3951 13 of 17

samples, our method achieves high levels of accuracy (AC), precision (PR), recall (RC), and
F1 score. As the proportion of labeled samples continues to increase, the accuracy of the
fully supervised CNN approaches that of our method. Figure 11 illustrates the trend of the
four evaluation metrics as the proportion of labeled samples increases.

Figure 11. Trends of AC, PR, RC, and F1 with increasing proportion of marker samples.

From Figure 11, our method produces the best classification when the proportion
of labeled data is between 1% and 5%, but the fully supervised CNN cannot reach the
classification requirement at this time, knowing that the classification accuracy of the fully
supervised CNN can be maintained at approximately 97% when the proportion of labeled
data is above 50%, which illustrates the necessity of using unlabeled data for pre-training to
learn traffic patterns. Additionally, our approach achieves the desired goal that malicious
traffic can be classified even using a small number of labeled datasets.

At the same time, we compare our method with four other recent industrial IoT
malicious traffic classification methods, which are KTDA-ConvLaddernet Ning et al. [29],
IAPF Niu et al. [13], TSCRNN Lin et al. [18], and method of Zhao et al. [21]. These methods
are introduced in related work.

The AC, PR, RC, and F1 pairs of the above four methods are shown in Table 5, and the
comparison of total delay and total privacy level is shown in Figure 12.

Table 5. Comparison between our method and other methods.

Algorithms AC PR RC F1

Our Method 97.55% 95.21% 98.01% 96.59%
KTDA-ConvLaddernet [29] 97.19% 95.13% 95.99% 95.56%

IAPF [13] 97.04% 94.23% 97.71% 95.94%
TSCRNN [18] 94.15% 90.77% 95.01% 92.84%
Method of [21] 90.28% 88.47% 85.98% 87.21%

The following expands the comparison between the above four recent malicious traffic
classification methods of the industrial Internet of Things and our methods:

KTDA-ConvLaddernet is similar to our method in the use of datasets, and it is also a
method to train the model using a small proportion of labeled data, so we also compare
the accuracy of the two methods when the labeled dataset accounts for 1–5% of the total
dataset. As a result, the accuracy of KTDA-ConvLaddernet is 0.2–0.7% lower than that of
our method. Thus, our method has a better classification effect. Simultaneously, compared
with the total delay of model establishment and privacy level, the total delay of KTDA-
ConvLaddernet is approximately 2.4 times that of our method, and it needs long-distance
data transmission when using cloud computing, which has a great risk of privacy leakage.
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Figure 12. Comparison between our method and other methods.

IARF uses the random forest model in machine learning to improve the output. It has
a good classification effect when the dataset is small, and the total delay in establishing the
model is approximately 1.6 times that of our method. However, the model needs a large
amount of labeled data, and features need to be extracted manually. At the same time, like
KTDA-ConvLaddernet, it has a great risk of privacy leakage. TSCERNN’s performance on
the UNSW-NB15 dataset is not as good as the first two methods, and its accuracy is 3.4%
different from our method. The total delay is approximately 2.2 times that of our method,
and the risk of privacy leakage is also great. The method of Zhao et al. [21] introduces edge
intelligence to accelerate the model and to reduce the risk of privacy leakage simultaneously,
but it does not consider the edge server and other cooperation, which is approximately
1.8 times our method in total delay and 7.25% different from our accuracy method. Thus, it
cannot classify malicious traffic in the UNSW-NB15 dataset well.

5. Conclusions

Aiming to classify malicious traffic within a mixture of encrypted traffic data from
the Industrial Internet of Things, we propose a semi-supervised deep-learning method
that achieves more accurate classification. The method achieves a classification accuracy of
97.55%, precision of 95.21%, recall rate of 98.01%, and F1 rate of 96.59%. Compared to fully
supervised classification methods, our approach improves accuracy by 2.55% while using a
lower proportion of labeled data, aligning better with the characteristics of real-world IIoT
traffic data.

During model optimization, we propose a cloud-side collaboration scheme consider-
ing factors such as computing delay, transmission delay, and privacy protection. Through
comparison with six different training scenarios, we calculate the total delay and pri-
vacy level associated with model training and classification. The results indicate that the
introduction of edge intelligence reduces the total delay and the risk of privacy leakage.

Moving forward, we plan to further optimize our proposed model. This includes more
accurately determining the proportion of offloading to local-edge-cloud, as well as incorpo-
rating the energy consumption of all three parties in the comprehensive performance index.
Additionally, we will continue to investigate methods for implementing active defense to
protect the security of IIoT after classifying malicious traffic.
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EI Edge Intelligence
CNN/CNNs Convolutional Neural Network
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