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Abstract: The decentralization and anonymity of blockchain have attracted significant attention.
However, in recent years, there has been a rise in blockchain money laundering incidents, and
anti-money laundering efforts have become crucial within the blockchain space. Blockchain money
laundering differs from traditional financial money laundering as it does not provide account in-
formation, particularly in the case of Bitcoin. This absence of information makes it challenging for
researchers to detect money laundering activities based on transaction data. We propose LB-GLAT,
a novel Long-Term Bi-Graph Layer Attention Convolutional Network, to effectively capture the
topological structure and attribute characteristics of money laundering on the blockchain transaction
graph. LB-GLAT utilizes the transaction graph and the reverse transaction graph to solve the no-loop
problem that results in the inability to capture the destination of blockchain transactions and designs
a long-term layer attention mechanism to alleviate the over-smoothing problem. We implemented a
series of experiments to evaluate LB-GLAT, which achieved state-of-art performance compared with
other methods, presenting an accuracy of 0.9776, a precision of 0.9317, a recall of 0.8494, an F1−score
of 0.8887, and an AUC of 0.9806.

Keywords: anti-money laundering; blockchain; graph attention mechanism; graph neural network

MSC: 68T07; 68T30

1. Introduction

Blockchain has become a hot topic due to its decentralized, immutable, and anony-
mous characteristics [1]. However, the anonymity of blockchain has also hindered govern-
ment and market regulation, leading to increasing illegal activities among criminals using
blockchain to launder money [2]. Money launderers use funds obtained from illicit activi-
ties, such as gambling, drug trafficking, and Ponzi schemes, to purchase cryptocurrencies
for trading on the blockchain, which are converted into legitimate funds [3]. The blockchain
intelligence and forensics company CipherTrace reported that the global amount of bit-
coin used in crimes has reached USD 4.5 billion [4]. Chainalysis, an American blockchain
analysis firm headquartered in New York City, reported that illicit addresses sent nearly
USD 23.8 billion worth of cryptocurrency in 2022, a 68.0% increase compared to 2021 [5].
Blockchain money laundering is becoming more and more rampant. Cryptocurrencies such
as Bitcoin have become a paradise for financial criminals [6].

Currently, international organizations and governments are focusing on blockchain
money laundering. They want to strengthen supervision to curb the occurrence of money
laundering crimes. For example, the Financial Action Task Force updated its report on
the implementation of standards on virtual assets and virtual asset service providers in
2021, calling on countries to strengthen the regulation of virtual assets [7]. Furthermore,
the European Union agreed on the cryptocurrency regulation protocol “Markets in Crypto-
assets” in 2022, which regulates market participants, including trading platforms [8].

Academics, meanwhile, are also paying attention to the topic. The research methods
are divided into two main categories for anti-money laundering: traditional machine
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learning methods and deep learning methods. Some researchers have used traditional
machine learning methods to detect money laundering activities, such as random forest [9],
K-means Clustering [10], and Gaussian mixture models [11]. However, these methods face
serious challenges, such as limited parameters, which may lead to suboptimal performance
and difficulty capturing the transaction topology structure the hides blockchain money
laundering features. Therefore, more and more researchers are focusing on deep learning
methods to solve these problems, especially graph convolutional neural networks (GCNs)
and their variations, which can thoroughly learn the graph topology to improve detection
accuracy further. For example, Weber et al. [12] assessed the detection effect of a GCN model
trained on the Ellipse dataset. Alarab et al. [13] proposed graph convolutional networks
interwoven with a GCN and linear layers for modeling. It is noteworthy that, in contrast to
the user/account graph of the traditional financial field, these researchers mostly employed
a transaction graph. This graph represents transactions as nodes and the flow of transaction
funds as edges, serving as a foundation for detecting money laundering in UTXO-based
(unspent transaction output) blockchains. This stems from the inherent nature of UTXO-
based blockchains, which do not maintain records of account information and balances.
Furthermore, constructing the user/account graph using alternative identifiers like public
keys or wallet addresses is nearly infeasible. Firstly, public keys are not directly stored on
the blockchain. Instead, their hash values are recorded. However, it is worth noting that
the hash value of the same user’s or wallet’s public key may vary. Secondly, wallet data
concerning UTXO-based blockchains are typically housed within exchange platforms or the
user’s wallet software rather than being stored directly on the blockchain. Consequently,
constructing a user/account graph based on wallet addresses is also infeasible.

However, despite these approaches achieving remarkable successes, we also observed
that existing methods treat blockchain in the same way as financial money laundering, with
little regard for the particularities of blockchain data. We analyzed the characteristics of
the UTXO-based blockchain data represented by Bitcoin, the cryptocurrency most heavily
involved in money laundering, and found the following two issues:

• The blockchain transaction graph lacks closed loops, which causes the GCN to fail
to learn where the money is going, reducing the accuracy. For example, in Figure 1a,
the user/account graph of financial transactions has loops due to frequent transac-
tions between accounts, so the sources and destinations of funds can be embedded
using a directed GCN. Nevertheless, if we convert the graph to a transaction graph
of blockchain, shown in Figure 1b, because of the chronology of transactions, it can-
not have closed loops, which prevents the GCN from aggregating the destination
information in the directed transaction graph.

• The GCNs suffer from an over-smoothing problem, since transaction graphs have vast
numbers of nodes, further reducing the accuracy of the detection results. When the
user/account graph is converted to the transaction graph, the original transaction
edges become nodes. For example, t1, the first transaction, transfers funds to account B
in Figure 1a. Subsequently, account B initiates two transactions, t3 and t5. Therefore, in
Figure 1b, t1 points to both t3 and t5. We observe that the transaction graph often has
more nodes than the user/account graph. This is because, due to frequent transactions
between accounts, the number of nodes in the account graph remains constant while
the number of nodes in the transaction graph increases. For example, Figure 1a has
only three nodes, but when converted to Figure 1a, there are six. In the GCNs, node A
only needs to aggregate the information of two nodes (B and C), and node t5 needs to
aggregate the data of four nodes (t1, t4, t2, and t3). Moreover, if the nodes in Figure 1a
make more complex transactions, the nodes in Figure 1b are more numerous and
require deeper GCNs to capture the complete information. These will speed up the
over-smoothing.
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Figure 1. Money laundering through financial and blockchain transactions.

To solve the above issues, we propose a novel graph deep learning method named
the Long-Term Bi-Graph Layer Attention Convolutional Network, denoted as LB-GLAT.
Concisely, we constructed a bi-graph model. The forward graph aggregates the source
information of the blockchain transactions, while the reverse graph aggregates the desti-
nation information. Meanwhile, we designed a long-term layer attention mechanism to
eliminate the effect of over-smoothing caused by extensive blockchain transaction nodes.
The three main contributions of this study are as follows:

1. We considered the differences between financial and blockchain transactions and
addressed the implications of these differences.

2. To solve the problem of being unable to detect the whereabouts of funds due to the
chronological order of the transaction graph, we proposed the use of a bi-graph,
including a transaction graph and a reverse transaction graph, to detect the source
and destination of money laundering activities using blockchain.

3. We designed a long-term layer attention mechanism that can combine the characteris-
tics of money laundering at each stage and alleviate the over-smoothing problem.

This paper is structured as follows: Section 2 describes the related work on anti-money
laundering in blockchain; Section 3 provides an overview of the LB-GLAT model and de-
scribes the model details; Section 4 describes the training data characteristics and the details
of the training process; Section 5 illustrates our experimental setup and corresponding
results; and Section 6 summarizes this paper.

2. Related Work

This section reviews the existing literature related to our work. We classify blockchain
anti-money laundering methods into machine-learning-based methods and deep-learning-
based methods. Additionally, we analyze their respective characteristics and highlight the
differences between previous studies and our research.

2.1. Machine-Learning-Based Methods

The traditional methods for detecting blockchain money laundering are the classifi-
cation and clustering machine learning models, using the local information of blockchain
transaction data or adding hand-crafted structural features, such as the node degree,
eigenvector centrality, and clustering coefficient. Standard algorithms include Logistic
Regression [14], Decision Tree [15], Support Vector Machine [16], and K-means Cluster-
ing [17]. In 2017, Pham et al. [10] adopted the modified K-means Clustering method to
detect suspicious behavior on two graphs generated by Bitcoin transactions, one graph with
users as nodes and the other with transactions as nodes. The same year, Pham et al. [18]
compared three unsupervised machine learning methods on these graphs, including K-
means Clustering, Mahalanobis Distance, and a Support Vector Machine. However, due
to the small size of the dataset without GPU support, in 2019, Yang et al. [11] used an
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unsupervised Gaussian mixture model to cluster users and detect abnormal transactions
between suspicious users.

To solve the problem of label scarcity with supervised algorithms, Lorenz et al. [19]
proposed an active learning solution in 2020, which was able to match the performance
of a fully supervised baseline using only 5% of the labels. Li et al. [20] proposed a model
that integrated LSTM into an automatic encoder and used a time window to generate time
features. The result showed that the generated features were helpful for the identification
of illegal addresses. Alarab et al. [21] proposed an ensemble learning method, which used
a given combination of supervised learning models, and found that it was superior to the
classical learning model used in the original paper. In 2021, Vassallo et al. [22] proposed
an Adaptive Stacked Extreme Gradient-Boosting method, which successfully reduced the
impact of concept drift and further improved recall at a transaction level. Other papers have
also compared the performance of several supervised or unsupervised machine learning
algorithms [9,23]. For example, in 2022, Pettersson et al. [9] compared four supervised
learning algorithms and calculated the fitting and applicability of each algorithm. The
results showed that the effect of random forest was better than that of other algorithms.

The characteristics of a simple structure, short training time, and low data dependence
mean that machine learning algorithms are still used for anti-money laundering. However,
they have some severe drawbacks. Machine learning algorithms have limited parameters
and are sensitive to data quality, especially noise and abnormal data. Furthermore, they
rely on manually selected features and function design, resulting in a weak generalization
ability. In addition, even if hand-crafted structural features are used, it is difficult for
algorithms to find certain complex money laundering activities that contain rich money
laundering features in a graph structure. Therefore, we used deep learning algorithms to
implement anti-money laundering in order to avoid these drawbacks.

2.2. Deep-Learning-Based Methods

Money laundering algorithms based on deep learning are applied to graphs, and they
can effectively use the graph structure to identify money laundering behavior. For example,
Hu et al. [24] found that the main differences between money laundering and conventional
transactions lie in their output values and neighborhood information, and they evaluated a
set of classifiers based on four types of graph features, among which the node2vec-based
classifier was superior. Poursafaei et al. [25] proposed an effective graph-based solution
called SIGTRAN, which could detect illegal nodes on blockchain networks and be applied
to records extracted from different networks. Experiments were conducted using data from
the literature on Bitcoin and Ethereum, respectively, and the proposed model outperformed
the more complex, platform-dependent models.

With the publication of the graph convolution network (GCN) by Kipf et al. [26],
more and more researchers began using graph neural networks to study anti-money
laundering on blockchain. There are many types of GCNs and their variants, and since the
transaction network is a directed graph, it is more suitable to adopt spatial-domain GCN
algorithms [27]. The GCNs mentioned later in this paper are all spatial-domain GCNs. The
simplest spatial-domain GCN replaces the symmetric normalized Laplacian matrix with
random walk normalization when aggregating information. Other common examples are
the graph attention network (GAT) [28] and graph sample and aggregate (GraphSAGE) [29].
Among these, GAT adds a self-attention mechanism when the network aggregates neighbor
information, while GraphSAGE samples neighbor nodes before applying the aggregation
function.

There has been much research based on graph neural networks. For example, Weber
et al. [12] from IBM LABS provided the Ellipse dataset in 2019, the largest labeled transaction
dataset publicly available in any cryptocurrency, and used it to train a GCN model. Alarab
et al. [13] tried to explore the convolution of graphs in a novel way using the existing graph
convolution network interwoven with linear layers for modeling. Han et al. [1] trained
a multi-graph convolutional neural network (GNN-FiLM) with a blockchain transaction
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graph and solved the data imbalance problem using K-rate sampling and feature similarity
methods. Li et al. [6] put forward the weighted GraphSAGE method and added a priority
sampling layer, which significantly improved the effect and proved the necessity of priority
sampling.

However, these studies did not consider the differences between blockchain transac-
tions and financial transactions, including the absence of transaction closed loops due to
chronological order and the accelerated over-smoothing caused by excessive nodes and the
deepening of layers. Therefore, we propose the LB-GLAT model based on a spatial-domain
GCN, which uses a bi-graph and a long-term layer attention mechanism to solve these
problems. It is an inductive algorithm that can predict other nodes that are not on the graph.
Moreover, in experiments, we compared some of the algorithms in the abovementioned
papers with our algorithm to prove the feasibility of LB-GLAT.

3. Model Architecture

This section introduces our proposed model, the Long-Term Bi-Graph Layer Attention
Convolutional Network (LB-GLAT). We first analyze the overall architecture of the model.
Next, we provide details about the essential modules of the model.

3.1. Overview

We designed LB-GLAT considering blockchain transaction characteristics to effectively
capture the topological structure and attribute characteristics of money laundering on a
blockchain transaction graph. The model architecture is shown in Figure 2. The input data
are transaction node features, such as the transaction amount and node adjacency matrix
constructed by flow edges between transactions. The model’s output is the classification re-
sult, which evaluates the transaction status. The essential module of the model is visualized
as follows:

Node
Features,

Edges
Adjmatrix

Input

Forward
Graph

Reverse
Graph

GNN Model with
Long-Term Attention

GNN Model with
Long-Term Attention

+

Concat

Fully
Connected

Layer

Fully
Connected

Layer
Labels

Output:
For Terminal

Nodes

Labels
Output:

For Nonterminal
Nodes

Bi Graph Spatial Feature
Extration Model

Figure 2. Overview of LB-GLAT.

• Bi-Graph: To address the limitation of the GCN in capturing the money laundering
structure due to the absence of loops in the blockchain transaction graph, we adopted
a bi-graph module. This module creates a reverse graph from the forward graph,
allowing the model to learn the characteristics of both the source and destination of
transaction funds.

• Spatial feature extraction: To better capture the money laundering structure, we de-
signed a spatial feature extraction module that convolves the forward and reverse
transaction graphs multiple times. Additionally, we incorporated a long-term layer at-
tention mechanism to mitigate the over-smoothing problem of the GCN. This module
independently learns money laundering information from the node features aggre-
gated by the GCN each time, and the result is input into the classification head.

• Classification head: Since a transaction graph can consist of transactions over a certain
period, some nodes may have a zero in-degree on one or both graphs. To address this
issue, we created two classification heads. Depending on whether a node’s in-degree
is zero on both graphs, the node vectors obtained from the spatial feature extraction
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module are divided into two categories and input into the corresponding classification
head to obtain the node classification label.

During training, LB-GALT processes transaction graphs from a specific period in
batches. For each set, two graphs are constructed: a forward graph and a reverse graph,
which are used to learn the destination information of transactions. The spatial feature
extraction module, a GCN model equipped with long-term layer attention, then learns
the money laundering characteristics hidden in these two graphs. This module generates
two node vectors containing the source and destination of money laundering information,
respectively. Finally, nodes are grouped according to the in-degree in both the forward
and reverse graphs, and the node vectors are input into different classification heads. The
inference process of the model follows the same approach as the training process. In
this paper, the transaction graph is not fully connected, and the type of prediction task is
inductive. In the following sections, we provide a detailed introduction to each module.

3.2. Spatial Feature Extraction Module

In this section, we mainly introduce the spatial feature extraction module, designed
to extract features from the transaction nodes in the transaction graphs. Note that we
initialized two separate spatial feature extraction modules with different parameters for
the forward graph and the reverse graph in the bi-graph. Therefore, this section focuses on
the spatial feature extraction module itself without distinguishing between the forward
graph and the reverse graph.

The spatial feature extraction module was used to reduce the problem of accuracy
reduction caused by over-smoothing [30–32] and better extract the money laundering
characteristics in the transaction graph. It contained a spatial-domain GCN network and
a long-term layer. The long-term layer could pay attention to the money laundering
information extracted by the GCN each time and aggregate it into node vectors.

3.2.1. Spatial-Domain GCN

The spatial graph convolutional neural network proposed by Bruna et al. [33] in 2013
has garnered significant attention in recent years. The spectral-domain GCN proposed
by Kipf et al. [26] in 2017 has certain limitations, such as being a transductive inference
learning method that becomes computationally expensive as the number of nodes in the
graph increases. To address these limitations, the spatial-domain GCN has become a
popular alternative, as it is inductive and can be applied to various graphs. In this work,
we focused on the widely used random walk normalized adjacency matrix to convolve
nodes in the transaction graph.

The transaction graph G = (V, E) differs from the user/account graph in financial
transactions. It consists of transactions as nodes and the flows of transaction funds as edges.
The graph has m nodes, defined as vi ∈ V, and numerous directed edges eij =< vi, vj >∈ E,
which indicate that node vi points to node vj. Using Equation (1), we can calculate the
adjacency matrix A ∈ Rm×m and degree matrix D ∈ Rm×m of the nodes, where ∑m−1

j=0 Aij

represents the in-degree of node vi. Therefore, the degree matrix D is essentially a diagonal
in-degree matrix of the nodes.

A =

{
1 , eji ∈ E
0 , others

D =

{
∑j Aij , i = j
0 , others

(1)

The node vector comprises n primitive transaction features, such as the number
of inputs/outputs and the average amount received/spent. The node feature vectors
X ∈ Rm×n and adjacency matrix A composed of m nodes as a batch are fed into a GCN
and convolved L times. Each convolution is recorded as one layer, that is, we have a
L-layer GCN. The node vectors obtained by the convolution of the l-th layer of the GCN
are denoted as H(l) ∈ Rm×n(l)

, where n(l) is the node feature dimension of the l-th layer.
When l = 0, H(0) is the input data X, and the feature dimension n(0) is n.
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The convolution process for each layer of a spatial-domain GCN for a directed graph
consists of two main steps: message transformation and aggregation. Let us consider
the l-th layer as an example to describe the process. Firstly, all (l − 1)-th layer node
vectors H(l−1) are multiplied by a learnable shared parameter W(l) ∈ Rn(l−1)×n(l)

, which is
equivalent to transforming the node messages. This transformation allows the model to
capture different features and patterns in the graph data. Then, the information of the node
and its neighbors pointing to the node is applied to an average aggregation function to
obtain the node vectors after the convolution of the GCN at the l-th layer. The aggregation
function is typically an average pooling function, combining information from neighboring
nodes to create a more robust representation of the current node. The convolution process
can be represented by Equation (2), where σ is the activation function, which is typically
set to ReLU(x) = max(0, x), and Â is the random walk normalized adjacency matrix of A.
To aggregate the node information itself, adjacency matrix A is added to identity matrix
I to obtain Ã, and the in-degree matrix D̃ of Ã is calculated. Then, Â is equivalent to Ã,
averaged according to the node in-degree. Finally, Â is multiplied by the transformed
vector H(l−1)W(l−1) to calculate H(l). Using the random walk normalized adjacency matrix
Â allows the GCN to capture the structural information of the graph more effectively. By
averaging the adjacency matrix according to the node in-degree, the model can selectively
focus on the most important nodes in the graph, enhancing the representation of the node
features. Overall, the convolution process in a spatial-domain GCN for a directed graph
effectively captures both local and global information in the graph data, allowing the model
to learn powerful representations for downstream tasks.

H(l) = σ(Â · H(l−1) ·W(l−1))

Â = D̃(−1) Ã , Ã = A + I , D̃ = diag(∑
j

Ãij)
(2)

Figure 3 illustrates the spatial-domain GCN convolution process for target node t7
with three layers. In the first layer (l1), the features of t7 are derived from its neighboring
nodes, specifically t4, t5, and t6. In the second layer (l2), the features of t4 are enriched with
information from its neighbors, including t2 and t3, resulting in t7 receiving features from
t2 and t3. Similarly, in the third layer (l3), the structural information of t7 propagates to the
feature of t1 through the same mechanism. The convolution process is performed in each
layer using the GCN blocks depicted in the figure. To improve the generalization ability
of the model, each GCN block applies a Batchnorm process before the activation function
ReLU(x) and a dropout layer after ReLU(x). Thus, H(l) in Equation (2) is rewritten as
Equation (3).

H(l) = Drop(ReLU(BN(Â · H(l−1) ·W(l−1)))) (3)

3.2.2. Long-Term Layer Attention

The long-term layer attention mechanism utilizes the transformer encoder and is
inspired by the vision transformer [34] model architecture. After L layers of GCN convo-
lution, we obtain a set of node vectors SH =

{
H(0), H(1), ..., H(L)

}
of length L + 1. In our

model, the number of layers L is set to four, as depicted in Figure 4. The target node is set
to ti, and the node feature set of ti is represented as

{
h0

i , h1
i , h2

i , ...hL
i
}

. Taking Figure 4 as an
example, we illustrate the mechanism of long-term layer attention.

In the GCN, each convolutional layer can produce a different feature dimension for
the node features. Specifically, the length of hl

i may vary depending on l. To address this
issue, we employed a learnable projection layer that projects the node feature produced by
each GCN layer to a fixed length d. For simplicity, SH indicates the node features after the
projection layer in the following description.
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Figure 3. The convolution process of a GCN: message and aggregation.
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Figure 4. An overview of long-term layer attention.

In the transformer encoder, each element in SH contains L-hop neighbor information,
and the order of elements matters. To preserve positional information, learnable 1D position
embeddings are added to the projected node features. The resulting vectors are then fed
into the transformer encoder. Considering the i-th node vi as an example, the encoder input
z0

i ∈ R(L+1)×d can be represented by Equation (4). L is the number of layers in the spatial-
domain GCN, and d is the dimension of the node embeddings after the projection layer.
The input vector z0

i consists of the projected node vector SH(vi) ∈ Rd and the learnable
position embeddings P ∈ RL×d. The superscript 0 indicates that this is the input to the first
layer of the transformer encoder.
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z0
i =

[
h(0)i W0; h(1)i W1; · · · ; h(L)

i WL

]
+ Epos, Epos ∈ R(L+1)×d (4)

The transformer encoder consists of K = 6 alternating layers of multi-headed self-
attention (MSA) and multi-layer perception (MLP). Before both MSA and MLP, a Layernorm
(LN) process is applied, and afterwards, there is a residual connection of the previous MSA
or MLP. The process can be described by Equation (5).

ẑk
i = MSA(LN(zk−1

i )) + zk−1
i

zk
i = MLP(LN(ẑk

i )) + ẑk
i

k = 1, · · · , K

(5)

We used the standard qkv self-attention mechanism for MSA. We set q, k, and v to
be 2D matrices with dimensions (d, dqkv). In the k-th alternating layer, the input sequence
zk

i is multiplied by a trainable parameter Uk
qkv ∈ Rd×3dqkv , and the result is divided into qk,

kk, and vk (Equation (6)). We calculate the pairwise similarity of qk
i and qk

j between two

elements in the sequence, denoted as the attention weight Attk
ij (Equation (7)). Then, we

compute the weighted sum of value matrix vk with respect to Attk
ij (Equation (8)).

[qk, kk, vk] = zk
i Uk

qkv (6)

Attk = so f tmax(qk(bk)T/
√

dqkv), Attk ∈ Rd×3dqkv (7)

SA(zk
i ) = Attkvk (8)

The multi-headed self-attention (MSA) module runs s self-attention processes in
parallel and projects their concatenated outputs (Equation (9)).

MSA(zk
i ) = [SA1(zk

i ); SA2(zk
i ); · · · ; SAs(zk

i )]Umsa, Umsa ∈ Rs·dqkv×d (9)

We applied a global average pooling (GAP) operation to the L + 1 vectors zK
i obtained

after the encoder. Equation (10) computes the result vector of node vi. All node result
vectors O ∈ Rm×d are then taken as input to the classification head.

oi = LN(Mean(zK[0]
i , zK[1]

i , · · · , zK[L]
i )) (10)

3.3. Bi-Graph

In real-life scenarios, identifying money laundering in transactions relies on observing
specific patterns exhibited by the source and destination of the funds involved. When
employing deep learning techniques for detecting blockchain-related money laundering,
a model should acquire knowledge of the distinctive characteristics and patterns associ-
ated with the source and destination of transaction funds. However, due to the inherent
limitations of transaction graphs in the blockchain, which prevent the formation of loops,
directed transaction graphs are unable to consolidate the destination information of the
funds effectively.

To address the issue, we employed a bi-graph strategy that utilizes a forward graph
and a reverse graph. It is worth noting that this approach is not novel, as many researchers
have already embraced it [35]. Illustrated in Figure 5, we introduce the concept of a forward
graph F = (V, EF) and a reverse graph R = (V, ER), where both graphs share the same
set of nodes V. Furthermore, the presence of an edge eij ∈ EF implies the existence of a
corresponding edge eji ∈ ER, denoted as eij ∈ EF ⇔ eji ∈ ER. In other words, the adjacency
matrix of F, denoted as AF, satisfies AF = (AR)T , where AR represents the adjacency
matrix of R.
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Figure 5. Bi-graph model.

To analyze the transaction graph, we constructed the forward graph F and the reverse
graph R. The node features X along with the adjacency matrices AF and AR of F and R
are separately inputted into distinct spatial feature extraction modules. Consequently, we
obtained the node embeddings OF and OR for each node within F and R, respectively.

3.4. Classification Head

The directed GCN is limited in aggregating neighbor information directed towards
the node. Consequently, if a node has no in-degree in either the forward or reverse graph,
the convolution operation of the GCN loses its significance. To address this, we introduced
two classification heads within the architecture, enabling the fully connected network to
learn distinct money laundering information from different nodes. Each classification head
consists of two hidden layers with the activation function ReLU, followed by an output
layer with the activation function So f tmax. Before the ReLU activation, each hidden
layer incorporates BatchNormalization, while a dropout layer is applied after the ReLU
activation. It is important to note that the input vectors differ for each classification head,
allowing each head to perform a unique role.

To be more precise, the nodes are classified based on their in-degree in both the forward
graph F and the reverse graph R, resulting in two distinct node sets. Set
P =

{
vi ∈ V | ∑j AF

ij > 0 and ∑j AR
ij > 0

}
represents nodes that possess in-degree in both

the forward and reverse graphs. On the other hand, set Q = V− P denotes the absolute
complement of P within the complete node set V, indicating nodes that do not meet the
criteria set by P. For instance, in Figure 5, P = {t2, t3, t4, t5, t6} and Q = {t1, t7}.

The nodes in set Q can also be divided into two subsets according to their in-degree sta-
tus in the two graphs. Subset Q1 = {vi ∈ Q | ∑j AF

ij >= 0 and ∑j AR
ij = 0} indicates that the

node has only an in-degree in forward graph F, or discrete points. Discrete points are special,
and we place them in Q1. Conversely, subset Q2 = {vi ∈ Q | ∑j AF

ij = 0 and ∑j AR
ij > 0}

indicates that the node has only an in-degree in reverse graph R. For example, in Figure 5,
Q1 = {t7} and Q2 = {t1}.

After the spatial feature extraction module, we obtained the convolved vectors OF

for the forward graph and OR for the reverse graph of all nodes. Let us consider node vi
as an example. If vi ∈ P, we concatenate vectors oF

i and oR
i , using the resulting vector as
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the input for classification head 1 (Equation (11)). This allows us to learn the source and
destination information of transaction funds. On the other hand, if vi ∈ Q1 or Q2, we take
either vector oF

i or oR
i as the input for classification head 2 (Equation (12)), enabling us to

learn the source or destination information of transaction funds. This approach is justified
by the inherent symmetry often found in money laundering structures, where illicit funds
disperse from one node and converge towards another. By utilizing two classification
heads and having sufficient data, it becomes possible to learn the source and destination
information separately.

oi = Concat(oF
i , oR

i ), vi ∈ P (11)

oi =

{
oF

i , vi ∈ Q1
oR

i , vi ∈ Q2
(12)

After all nodes pass the classification heads, the probability of illicit and licit is obtained.
The training loss is then calculated using the cross-entropy loss function (Equation (13)),
and the model parameters are updated by back-propagation.

Loss = −
n

∑
i=1

yilogŷi , n = 2 (13)

4. Implementation

In this section, we describe the dataset (Section 4.1) and the parameter settings for the
model training process (Section 4.2).

4.1. Dataset

The dataset used to evaluate our model was the Elliptic dataset, published by the
MIT-IBM Watson AI Laboratory [12]. This dataset is the most extensive publicly available
labeled transaction dataset across any cryptocurrency [12]. Within the Elliptic dataset, each
Bitcoin transaction represents a genuine entity encompassing licit transactions (such as
exchanges, wallet providers, miners, and legitimate services) and illicit transactions (such
as terrorist organizations, ransomware, and Ponzi schemes).

The dataset transforms the raw Bitcoin transaction data into the structure of a transac-
tion graph. The nodes are the transactions in the Bitcoin blockchain (203,769 transactions),
and the edges are the flows between transactions (234,355 flows). Of these nodes, two
percent (4545) are labeled as illicit. Twenty-one percent (42,019) are labeled as licit. The
remaining nodes are not labeled with any category, so they were not used in our model
evaluation process.

Each node has 166 features. The first 94 features represent the local information of the
transaction, including the time step, number of inputs/outputs, transaction fee, output
volume, and other aggregated figures. The remaining 72 features represent aggregate
information, that is, the aggregation features of the same information of the neighboring
nodes, including the maximum, minimum, standard deviation, and correlation coefficients.
Each node has a timestamp that divides all nodes into 49 time steps with an interval of
about two weeks. In different time steps, there is no edge connection. Namely, the 49 graphs
are independent of each other.

4.2. Training

We adjusted the hyper-parameters of the LB-GLAT model empirically. Table 1 shows
the parameters. For the Elliptic dataset, we removed the timestamp feature and used only
the remaining 165 node features. The data for each time step were divided into training
(80%), validation (10%), and test (10%) sets. However, the positive and negative samples
were severely unbalanced in each time step, as shown in Figure 6. To balance the samples,
we adopted the under-sampling approach so that the ratio of illicit to licit samples was 1 to
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5. The nodes for each time step were fed into the model as a batch, and the unused data
were masked. The training super-parameters are shown in Table 1.

Table 1. The parameter settings of the LB-GLAT model.

Parameter Value Parameter Value

Training epoch 200 Initial learning rate 0.01
Learning decay rate 1 Optimizer Adam

Weight decay 5× 10−4 Loss function Cross-entropy

GCN layer number 4 The node embedding size of each GCN
layer 32

The projection size of LTLA 32 Transformer depth 6
Transformer size 32 The head number of MSA 4

The head size of MSA 8 The MLP hidden layer size of the
transformer 64

The hidden layer size of the classification
head 64 32 Dropout 0.5

The ratio of training, validation, and test
data 8:1:1 The ratio of positive and negative samples 1:5
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Figure 6. Number of licit and illicit nodes per time step.

We trained the model for 200 epochs using the Adam optimizer with a learning rate of
0.01 and a weight decay of 5× 10−4. The learning rate decayed with the increase in epochs,
and the decay coefficient was 1

1+decay-rate×epoch , where the decay rate was set to 1. During
the training process, we adopted the early stop strategy, took the model parameters with
the least loss in the validation set, and tested them using the test set.

In our model, we used four layers for the GCN in the spatial feature extraction modules
of both the forward graph and reverse graph. The node embedding size of each GCN layer
was set to 32, which was our tuned parameter. The initial node features and the resulting
vectors of each GCN layer were applied to a projection layer with a dimension size of 32,
transforming them to the latent vector size in the transformer encoder. The vectors passed
through a dropout layer after the projection layer to prevent over-fitting and were fed into
the encoder. In the transformer, to learn the money laundering information hidden within
the vector of each GCN layer, we used four attention heads, each with a size of 8, and the
MLP hidden layer size was set to 64. The two hidden layer sizes of the classification head
were 64 and 32, respectively. All dropout values in the model were 0.5.

4.3. Complexity Analysis

In LB-GLAT, the bias was set to true. However, for the sake of complexity analysis, we
ignored the bias. Additionally, we also disregarded operations like activation functions
that did not affect the order of complexity.
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Firstly, the computational complexity of the l-th layer of the GCN was O(n(l−1)n(l)), so
the computational complexity of the GCN with L layers was O(∑L

l=1 n(l−1)n(l)), where n(l)

represents the node feature dimension of the l-th layer. Then, the node feature produced by
each GCN layer was projected to dimension d, which had a computational complexity of
O(d ∑L

l=0 n(l)). Next, these vectors were fed into the transformer encoder, which consisted
of K alternating layers of MSA and MLP. The computational complexity of the transformer
encoder was O(K((L + 1)2d + (L + 1)ddmlp)), where dmlp represents the hidden layer size
of MLP in the transformer. Because of the bi-graph module, the computational complexity
of the two spatial feature extraction modules was O(2(∑L

l=1 n(l−1)n(l)+ d ∑L
l=0 n(l)+K((L+

1)2d+ (L+ 1)ddmlp))). Subsequently, all node vectors were fed into the classification heads.

The computational complexity of the two classification heads was O(∑2
j=1 ∑2

i=1 b(i−1)
j b(i)j ),

where each classification head had two hidden layers, and b(i)j represents the i-th layer size
of the j-th classification head.

Therefore, the computational complexity during training was O(E×U× 2(∑L
l=1 n(l−1)n(l)

+d ∑L
l=0 n(l) + K((L + 1)2d + (L + 1)ddmlp)) + ∑2

j=1 ∑2
i=1 Uj × b(i−1)

j b(i)j ), where E, U, and
Uj represent the number of training epochs, the batch size, and the sub-batch size in
the j-th classification head (∑2

j=1 Uj = U), respectively. The computational complexity

during inference was O(2(∑L
l=1 n(l−1)n(l) + d ∑L

l=0 n(l) + K((L + 1)2d + (L + 1)ddmlp)) +

∑2
j=1 ∑2

i=1 b(i−1)
j b(i)j ).

5. Experiment

In this section, we evaluate LB-GLAT through several experiments: a correctness
experiment to evaluate whether the model converged during the training process, abla-
tion experiments to evaluate the effectiveness of various components in LB-GLAT, and
comparison experiments with several state-of-the-art methods. Section 5.1 describes the
experimental setup. Section 5.2 lists and analyzes the experimental results.

5.1. Experimental Setup

We conducted experiments using the PyTorch deep learning framework, Pyg graph
neural network framework, and Sklearn machine learning toolkit.

(1) Training process
We trained LB-GLAT on the Elliptic dataset for 200 epochs and observed the loss curve

trend of the training set and validation set during the training process. If both loss curves
showed a similar downward trend, LB-GLAT converged, and the model establishment
process was correct. The training details can be found in Section 4.2.

(2) Ablation experiments
To evaluate the effectiveness of the components in LB-GLAT, we performed a series

of ablation experiments. Firstly, we created a model called “No-BG”, which excluded the
bi-graph structure from LB-GLAT, allowing us to examine the importance of incorporating
the bi-graph. Additionally, the original model utilized long-term layer attention (LTLA)
in the spatial feature extraction module. Therefore, we investigated the scenario in which
LTLA was removed from the model, resulting in a model named “No-LTLA”. Furthermore,
our model employed a GCN as the convolutional layer for extracting money laundering
information from the transaction graph. To assess the effectiveness of the GCN, we replaced
the GCN with the other two commonly used spatial graph convolutional networks:

• GAT—GAT [28] is a GCN network combining masked self-attention layers. The
model allows different weights to be implicitly assigned to different nodes in the
neighborhood and is suitable for induction and transformation problems.

• GraphSAGE—GraphSAGE [29] is a popular graph neural network for large graphs.
The model learns a function to generate embeddings by sampling and aggregating
features from a node’s local neighborhood.
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The replacement models were named GAT-No-GCN and GraphSAGE-No-GCN, re-
spectively. These models were evaluated by five indicators commonly utilized in clas-
sification problems, including accuracy, precision, recall, F1−score, and area under the
curve (AUC) [36], as shown in Equation (14). Here, P and N represent the number of
positive and negative samples, respectively; TP (true positive), FP (false positive), TN (true
negative), and FN (false negative) represent the number of positive samples predicted as
positive classes, negative samples predicted as positive classes, negative samples predicted
as negative classes, and negative samples predicted as positive classes, respectively; and
predP and predN , used in calculating the AUC, stand for the probability that a sample is
predicted to be positive or negative, respectively. Precision, recall, and F1−score were all
calculated using illegal samples in the experiments. For ease of description, we refer to
the above five evaluation indicators of model m in the experiments as A(m), P(m),R(m),
F (m), and U (m), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − Score =
2× Precision× Recall

Precision + Recall

AUC =
∑ predP > predN

P× N

(14)

(3) Comparison experiments
We employed the following methods and state-of-the-art models widely used in

blockchain anti-money laundering as baselines to highlight the effectiveness of our pro-
posed model:

• LR: Logistic Regression [14] is a statistical method commonly used for binary classifi-
cation. We applied the L2 normalization set inverse of regularization strength λ = 1.
We set the tolerance for stopping criteria to 1× 10−4 and the max iterations to 200 and
used liblinear [37] as the solver for the optimization algorithm.

• DT: Decision Tree Classifier [15] is a machine learning method used to build predic-
tive models from data. The model divides the data space recursively, fits a simple
prediction model into each partition, and measures the error using misclassification
costs. We set the minimum leaf sample to five to prevent over-fitting and the gini
coefficient as the impurity criterion.

• SVM: Support Vector Machine [16] is a machine learning method for classification
problems. It maps the input vector nonlinearly to a very high-dimensional feature
space. A decision surface for classification is constructed in the feature space. We
applied the Gaussian kernel as a kernel function in SVM.

• GCN: The GCN used in the experiment was the same as in our paper. We applied a
four-layer spatial-domain GCN with a node embedding size of 32 for each layer and
then passed through an MLP module of two hidden layers with sizes 64 and 32. We
refer to this model as GCN+MLP in later experiments.

• GNN-FiLM: GNN-FiLM was used by Han et al. [1] for the anomaly detection of
blockchain. They used k-rate sampling for the data and labeled unknown transaction
nodes by feature similarity to reduce the imbalance between positive and negative
samples.

• Weighted GraphSAGE: Weighted GraphSAGE [6] is an improved GraphSAGE method
based on weighted sampling neighborhood nodes. This model is trained to learn more
efficient aggregate input features in the local neighborhood of nodes in order to find
and analyze the implied interrelationships between blockchain transaction features.
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• GCN assisted by linear layers: This is a novel approach proposed by Alarab et al. [13]
for modeling using the existing graph convolutional network intertwined with linear
layers. The node embeddings obtained from the convolutional layer of the graph
are connected with a single hidden layer obtained from the linear transformation
of the node feature matrix, followed by a multi-layer perception layer. In the later
experiments, we refer to this model as GCN-linear for short.

Among these methods, GNN-FiLM, weighted GraphSAGE, and GCN-linear are mod-
els designed for blockchain anti-money laundering, and their original papers also included
experiments on the Elliptic dataset. We also used two baselines mentioned in the ablation
experiment, GAT and GraphSAGE, for comparison with LB-GLAT. These were set to the
same parameters as GCN+MLP and named GAT+MLP and GraphSAGE+MLP. These
models were also evaluated using the indicators in Equation (14).

5.2. Experiment Results

We performed experiments according to the set parameters and describe the results of
the experiments below.

5.2.1. Training Process

We conducted a training process for LB-GLAT and observed the loss of both the train-
ing set and validation set. The results are shown in Figure 7. The training loss represents
the mean loss value after training for each batch, while the validation loss indicates the
loss after training for each epoch. Notably, during the early stage, the validation loss was
smaller than the training loss. In Figure 7, the training loss decreased as the number of
epochs increased, indicating the convergence and correctness of our model. Similarly, the
validation loss decreased initially with the increase in epoch count and later stabilized.
Continuing training beyond this point only yielded limited improvement in model perfor-
mance. Therefore, we set the epoch count to 200 and tested the model on the test set when
the validation loss was at its lowest point.
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Figure 7. The loss of the training set and validation set during LB-GLAT training.

5.2.2. Ablation Experiments

Figure 8a shows the comparative results of the training losses for the ablation ex-
periment. All training loss curves declined rapidly in the early stage and flattened out
in the later stage. Among them, the training loss curves of LB-GLAT and GraphSAGE
decreased the fastest, but in the validation loss comparison of Figure 8b, GraphSAGE
quickly presented over-fitting, while the LB-GLAT validation loss curves decreased until
flattening, to a lesser extent than GraphSAGE, presenting the best results in these abla-
tion experiments. Moreover, as shown in Figure 8c, LB-GLAT had the highest accuracy,
reaching about 0.98. We used an early stop strategy and selected the model with mini-
mal validation loss to test the five evaluation indicators on the test set. The results are
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shown in Table 2. We underlined the highest value of each evaluation indicator. LB-GLAT
achieved the best experimental results on all indicators, withA(LB-GLAT) reaching 0.9776,
P(LB-GLAT) reaching 0.9317,R(LB-GLAT) reaching 0.8494,F (LB-GLAT) reaching 0.8887,
and U (LB-GLAT) reaching 0.9806.

Table 2. The results of the five evaluation indicators for LB-GLAT and the four other ablation
experiments using the test set.

Model Accuracy Precision Recall F1−Score AUC

No-LTLA 0.9248 0.7191 0.4679 0.5669 0.9377
No-BG 0.9730 0.8936 0.8434 0.8678 0.9778

GAT-No-GCN 0.9688 0.8723 0.8233 0.8471 0.9728
GraphSAGE-No-GCN 0.9637 0.8300 0.8233 0.8266 0.9630

LB-GLAT 0.9776 0.9317 0.8494 0.8887 0.9806

We underline the highest values for each evaluation metric and the results of our model, LB-GLAT.

From the results of the ablation experiments, we obtained the following three findings
regarding the components of LB-GLAT, showing that each of our components had a
very important role. The first finding was that the LTLA component achieved the best
results and could effectively learn the money laundering characteristics of blockchain
transactions hidden within each convolutional layer. Compared with the GCN+MLP
model in Table 3, the No-BG model, which only applied the LTLA component on the
basis of GCN+MLP, presented a very high increase in all indicators, especially P(No-BG),
which increased by 23%. This shows that LB-GLAT could effectively learn the hidden
money laundering information when the convolutional layer vectors implemented the
self-attention mechanism.

Table 3. The results of the five evaluation indicators for LB-GLAT and the other methods using the
test set.

Model Accuracy Precision Recall F1−Score AUC

LR 0.9617 0.8297 0.7744 0.8011 0.8784
DT 0.9779 0.8901 0.8872 0.8886 0.9376

SVM 0.9702 0.9005 0.7873 0.8401 0.8889
GCN+MLP 0.9329 0.6636 0.7329 0.6966 0.9315
GAT+MLP 0.8949 - 0 - 0.8994

GraphSAGE+MLP 0.9555 0.7682 0.8253 0.7957 0.9699
GNN-FiLM 0.9701 0.9520 0.5679 0.7114 -

Weighted GraphSAGE - 0.879 0.884 0.875 -
GCN-linear 0.974 0.899 0.678 0.773 -
LB-GLAT 0.9776 0.9317 0.8494 0.8887 0.9806

We underline the highest values for each evaluation metric and the results of our model, LB-GLAT.

The second finding was that the BG component, while not as effective as LTLA, played
an important role. For the No-LTLA model with only BG, compared to GCN+MLP, only the
precision and AUC indicators increased, by less than 6% and 1%, respectively, presenting
lower values than the indicators of the No-BG model with only LTLA. However, the
indicators of LB-GLAT, which applied the BG and LTLA, were higher than those of the
No-BG model, indicating that the BG could capture the source and destination of the
transaction funds. LTLA could fully learn the information about the destination of funds
contained in the results of each layer convolved on the reverse graph.

The final finding was that the GCN performed better than GAT and GraphSAGE when
the BG and LTLA components were applied. GAT assigned weights to different neighbor
nodes, and GraphSAGE sampled neighbor nodes. Therefore, the difference between the
three convolution methods was that GAT and GraphSAGE did not treat every neighbor
node equally, discarding the information of some neighbor nodes. This led to the loss of
money laundering characteristics on the Elliptic dataset, so GCN worked better.
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Figure 8. The comparison of loss and accuracy between LB-GLAT and the four other ablation
experiments.

5.2.3. Comparison Experiments

Table 3 shows the results of the comparison experiments and underlines the highest
values of each evaluation indicator and the results of our model, LB-GLAT. The first three
models are machine learning algorithms trained according to the parameters in Section 5.1,
of which DT had the best evaluation results. ItsA(DT) andR(DT) results were the highest
among all the algorithms, reaching 0.9779 and 0.8872, respectively. The other models are
graph neural network algorithms. Among them, the GAT+MLP model had the worst
evaluation results. Since the model does not predict positive labels, P(GAT+MLP) and
F (GAT+MLP) are not reported in the literature, as indicated by “-”, andR(GAT+MLP) is
0. The results of GNN-FiLM, weighted GraphSAGE, and GCN-linear were the best results
obtained by the authors in their respective papers. We also use “-” to denote evaluation
indicators not provided in the literature.

We also obtained three findings from the results of comparison experiments. The
first and most obvious finding was that LB-GLAT largely outperformed the state-of-the-
art algorithms. Its F (LB-GLAT) and U (LB-GLAT) values were higher than the results
of all comparison algorithms, reaching 0.8887 and 0.9806, respectively. In particular,
R(LB-GLAT) was 28% higher than that of GNN-FiLM and 17% higher than that of GCN-
linear. F (LB-GLAT) was also 18% and 12% higher, respectively. Regarding the weighted
GraphSAGE model, although P(LB-GLAT) and F (LB-GLAT) were not much higher, they
still presented increases of 5% and 1%, respectively. This showed that our model could learn
the hidden money laundering characteristics of blockchain transactions more effectively.

The second finding was that DT worked best in machine learning algorithms, but
this may have been an illusion. As we all know, the AUC describes a model’s ability to
distinguish between positive and negative classes. The closer its value is to 1, the stronger
the differentiation ability is, and the AUC is not affected by sample imbalance, so it was a
good indicator for the Elliptic dataset. However, U (DT) was 4.3% lower than the result for
our model, even though all other indicators for DT were high. Thus, if DT were tested on
another blockchain money laundering dataset with a large amount of data, the evaluation
results may not be favorable.

The last and most important finding was the ability of LTLA to alleviate over-smoothing
effectively. In Table 3, several evaluation indicators of GAT+MLP are invalid. The rea-
son is that the GAT+MLP model had the same parameters as LB-GLAT and applied four
convolutional layers, which caused the model to be overly smooth, and all samples were
judged as negative. The comparison of the first two models in Table 4 also confirms this,
and we used the F1−score to judge the model’s ability to distinguish positive samples.
Meanwhile, we evaluated LB-GLAT’s ability to alleviate over-smoothing. We compared
the model with No-LTLA and found that without LTLA, No-LTLA failed when applying
five convolutional layers. We also tested DeeperGCN [38], a popular model that alleviates
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transition smoothing and applies BG components to DeeperGCN. LB-GLAT was able to
train very well with 10 convolutional layers, while DeeperGCN could no longer predict
positive samples.

Table 4. The comparison of the F1−score indicator for models using different numbers of convolu-
tional layers.

Model L = 2 L = 3 L = 4 L = 5 L = 10

GAT+MLP 0.6450 0.6325 - - -
GAT+LTLA+MLP 0.8678 0.8531 0.8429 0.8506 0.8381

No-LTLA 0.6357 0.7346 0.5669 - -
LB-GLAT 0.8760 0.8663 0.8887 0.8666 0.8502

BG+DeeperGCN+MLP 0.7113 0.6574 0.6113 0.6451 -

6. Conclusions

We proposed an LB-GLAT model that combined a bi-graph and long-term layer atten-
tion mechanism based on a spatial-domain GCN to learn the information hidden in the
transaction graph of blockchains. The experimental results using the Elliptic dataset demon-
strated that the method was more effective than other baselines in extracting money laun-
dering information, and its prediction ability was 27% higher than that of the GCN+MLP
model. Therefore, our approach has the power to help governments and blockchain
users accurately predict money laundering activities and provide a favorable blockchain
transaction environment by analyzing behavioral information contained in blockchain
transactions.

Our approach has two important components. Since blockchain transactions have
chronological order, no closed loop of transactions is formed. If we used a GNN directly,
it would only be able to perceive the source of trading funds and not learn where they
went. The bi-graph could fully use the information in a directed graph to explore the
source and destination of transaction funds. In addition, a transaction network for money
laundering may include multi-hop transactions, so the model needs more convolutional
layers to obtain money laundering features, but this accelerates over-smoothing. The
long-term layer attention mechanism could alleviate the problem of over-smoothing and
autonomously learn the money laundering characteristics contained in each layer, thereby
greatly improving the model evaluation results.

This study had certain limitations. There is a dearth of open-source money laun-
dering datasets for blockchain research. Given that the Elliptic dataset currently stands
as the largest open-source dataset of illicit Bitcoin activities, almost all of the current
UTXO-based blockchain anti-money laundering papers have used the Elliptic dataset,
and a few have used undisclosed datasets. Therefore, further research endeavors may
explore how to extend the dataset to assess the model’s generalizability across an expanded
dataset. Additionally, the long-term layer attention mechanism is not only applicable in
blockchain anti-money laundering. It can be applied after any convolutional network to
learn multi-hop node information and alleviate over-smoothing. Therefore, it may also
play an important role in fields that rely heavily on local network architecture.
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