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Abstract: In this paper, we tackle the problem of forecasting future pandemics by training models with
a COVID-19 time series. We tested this approach by producing one model and using it to forecast a
non-trained time series; however, we limited this paper to the eight states with the highest population
density in Mexico. We propose a generalized pandemic forecasting framework that transforms the
time series into a dataset via three different transformations using random forest and backward
transformations. Additionally, we tested the impact of the horizon and dataset window sizes for
the training phase. A Wilcoxon test showed that the best transformation technique statistically
outperformed the other two transformations with 100% certainty. The best transformation included
the accumulated efforts of the other two plus a normalization that helped rescale the non-trained
time series, improving the sMAPE from the value of 25.48 attained for the second-best transformation
to 13.53. The figures in the experimentation section show promising results regarding the possibility
of forecasting the early stages of future pandemics with trained data from the COVID-19 time series.

Keywords: Mexico pandemic prediction; future pandemic forecasting; time series transformation to
dataset

MSC: 60G30; 60G35; 62M10; 62M45; 62P10

1. Introduction

In recent years, the world has been struck with COVID-19, which has shown diverse
impacts, including social, economic, psychological, academic, and environmental impacts,
among others. Besides environmental impacts, most of them have been negative, and it
would have been useful if we could have forecast the number of infected people in an
attempt to prevent those infections and waves by implementing restriction policies [1,2].

As stated previously, different countries took different measures, and the population
followed them with different levels of rigorousness. Hence, each country must produce its
own models and forecasts. However, at the beginning of the pandemic, we did not have
any previous information, or we had too little data to produce a reliable forecast [3], which
could help us predict the numbers of infections or deaths.

Therefore, researchers tried to use mathematical models to simulate the spreading
and forecast infections [2,4,5]. Nonetheless, mathematical models have certain limita-
tions, like the incapability of modeling non-monotonous dynamic behavior with constant
coefficients [4], which requires time-dependent coefficients that need more data.

Epidemiological models, like SEIR, were the first approach to forecast the COVID-19
pandemic; in [6], He et al. used a SEIR model to analyze China’s confirmed cases and
control measures. The authors produced a forecast with a horizon of 350 days ahead using
33 days of data while considering four different scenarios with variable control measures,
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presenting several suggestions as a result of the simulation while also using Markov chains
and Monte Carlo analysis.

In [4], Aguilar et al. proposed an extension of the susceptible-infected-removed (SIR)
model, including the recovered and deaths components (SEIRD). Their main contribution
was to describe the spread of COVID-19 in Mexico using a diffusional model that considered
that the more populated states must present major mobility.

Darti et al. in [7] proposed a deterministic Richards model to forecast the cumulative
COVID-19 cases. The model showed good results with enough data to calculate the
required parameters. The models required 81, 97, and 107 days of data, with a forecasting
horizon of 10 days.

Later, in 2022, Drews et al. [8] investigated a susceptible-infected—removed (SIR)
model, an ensemble model, and a Holt-Winters (HW) model while studying the impact of
parameters like the training data subsets and time windows. Additionally, they judged that
including temperature and humidity would only work in the most complex models, which
would only increase uncertainty in the most common models. The results showed that,
for most tests, the HW model outperformed the SIR model. Nonetheless, the ensemble
SIR-based model outperformed both the individual SIR and HW models.

The following provides a small review of research related to the forecasting and
machine learning techniques applied to COVID-19 in several countries.

One of the first studies from 2020, by Kamley in [9], proposed using data mining
techniques like support vector machines, backpropagation neural networks, and decision
trees to classify the risk of infection in seven countries.

Fard et al. [10] compared the performance of different approaches, like autoregressive
integrated moving average (ARIMA), long short-term memory (LSTM), artificial neural
networks (ANNSs), the multi-layer perceptron (MLP), and the adaptive neuro-fuzzy infer-
ence system (ANFIS). They reported that the ANN and LSTM produced the best results.
In contrast, the ANFIS, ARIMA, and MLP showed the highest MAPE values.

In [11], Dairi et al. compared hybrid approaches, which mainly included deep-learning
and simple machine learning methods. They selected infection time series from Brazil,
France, India, Mexico, Russia, Saudi Arabia, and the US. The time series were transformed
into datasets by applying fixed-length sliding windows. The results showed that the
deep-learning models outperformed logistic regression and support vector regression.

In [12], Chandra et al. tested recurrent neural networks with three types of long
short-term memory (LSTM). They reconstructed their time series into windows with sizes
equal to six, considering that Takens’ theorem states that the transformation of series into
subseries can reproduce important features of the original data. The results showed that an
encoder-decoder version of LSTM produced the best results.

In [13], Masum et al. compared a mathematical, epidemic, statistical, and three deep-
learning models. The results showed that one of the deep-learning models produced the
lowest error. Additionally, the authors stated that mathematical models strongly relied
on assumptions.

Finally, Pavlyutin et al. [14] compared the capabilities of mathematical (exponential
regression) methods and machine learning methods (long short-term memory and con-
volutional neural networks) in forecasting two or more weeks of infection. This research
showed that mathematical methods were suited to predict up to two weeks of infection,
while machine learning techniques reached up to four weeks of forecasting infections.

This paper uses two standards as comparison methods: ETS and ARIMA [15]. Addi-
tionally, our proposal contains a random forest approach. Therefore, we include a brief
introduction to these methods.

Simple exponential smoothing was proposed in the late 1950s by Brown, Holt, and
Winters in [16-18], respectively. It is a statistical method that has evolved in several variants.
The variant selection depends on the tendency and seasonal components. Additionally,
the exponential smoothing (ETS) proposed by Hyndman [19] is an automated forecasting
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method that identifies the specific tendency and seasonal model that works best, and it was
a baseline method used in M4 (Makridakis competition) in [15].

The Autoregressive Integrated Moving Averages (ARIMA) is a method that depends
on the autocorrelation among the time series data; currently, it is widely used in forecast-
ing [20-22]. Its process consists of identifying the suitable model for a specific time series
depending on its parameter combinations (P, Q, and D), which are autoregressive, moving
average, and differentiation, respectively; furthermore, they are selected considering the
Akaike’s Information Criterion (AIC), corrected AIC (AICc), and Bayesian Information
Criterion (BIC). Hyndman [23] proposed using ARIMA as a statistical standard benchmark
in M4 competition [15].

The random forest method is a machine learning-based algorithm [24,25] used for
classification and regression tasks. It uses several decision trees that work together to reach
a final result, work fine in high dimensionality datasets, and have been used in time series
forecasting [26-29] via the segmentation of the observations in variable time windows.

These last papers show that machine learning methods tend to outperform epidemio-
logic models; therefore, we propose a pandemic generalized random forest-based frame-
work (PGRFF) https:/ /bit.ly /3XtYhUX (accessed on 30 June 2023). This framework aims to
create a random forest model that can produce accurate forecastings for new pandemics in
their beginnings (small-sized time series) for different cities, states, or countries. However,
in this paper, we limit the study to training the model with the Mexican infection time series
and test it with eight Mexican states with the highest population density. The remainder
of this paper is organized as follows: Section 2 shows the data extraction process. In
Section 3, we explain three transformations from the original time series to datasets using
four different window sizes (ws). Section 4 contains the structure of the transformed se-
ries’ forecasting models and the transformation of the forecastings to their original form.
Section 5 contains the configuration and structure of the experimentation. In Section 6, we
show the results of the models with the three proposed transformations, three forecast-
ing horizon sizes, and four ws. Section 7 briefly discusses the results. Finally, Section 8
highlights the conclusions of this paper.

2. Data Extraction and Time Series Production

We downloaded the original data from the Consejo Nacional de Humanidades Cien-
cias y Tecnologias (CONAHCYT) official website, which is the governmental public institu-
tion responsible for establishing the science and technology policies in Mexico [30]. Here,
the data have structures similar to a time series where each row corresponds to a different
state; the data start on 26 February 2020 and end on 20 June 2023, containing 32 states plus
the cumulative infection data for the whole country.

In this project, we implemented a web mining script in R version 3.6.1, to extract the
latest data, as shown in Figure 1.

library(RCurl)
library(lubridate)
library(tidyverse)

NoO U A WN

this_day<-today()

dateNow<-format(this_day, "%Y%m%d")

8~ p <- function(..., sep="") {

9 paste(..., sep=sep, collapse=sep)

10~ }

11

12 url<-p("https://datos.covid-19.conacyt.mx/Downloads/Files/",

13 "Casos_Diarios_Estado_Nacional_Confirmados_", dateNow, ".csv")
14

15 whileCurl.exists(url)==FALSE)|

16~ {

17 this_day<-this_day-1

18 dateNow<-format(this_day, "%Y%m%d")

19 url<-p("https://datos. covid-19.conacyt.mx/Downloads/Files/",

20 "Casos_Diarios_Estado_Nacional_Confirmados_", dateNow, ".csv")
2001 }

22 Confirmed_data <- read_csv(url)

Figure 1. Code to read the data from the official website.
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However, this dataset contains the daily reported COVID-19 infections, which is
unstable due to the frequency of reporting cases in Mexico, as shown in Figure 2.

20,000
|

Infected cases

0
l

I I I
2020.0 2020.5 2021.0

time
Figure 2. Unstable original time series.

Therefore, we made several tests to identify a minimum size rolling moving average
(RMA) that showed a uniform behavior. Finally, we found that seven days of RMA were
needed to smooth the time series, as it was also proposed in [14,31], as shown in Equation (1)

and Figure 3.
6
7o ESt4i
tsSRMA; = 721707 e )
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Figure 3. Time series after applying RMA of seven days.

As a general idea, the data extraction methodology can be visualized in Figure 4.
The complete dataset is filtered and segmented for the summarized time series (by country)
in eight states (federal entities), taking into account the highest population density reported
on INEGI’s website with the Population and Housing Census 2020 [32]. The selected
states are shown in Figure 5: Ciudad de México, Estado de México, Morelos, Tlaxcala,
Aguascalientes, Querétaro, Guanajuato, and Puebla.
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Figure 4. Data extraction methodology.
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Figure 5. States with the highest population density in Mexico.

3. Dataset Transformation

In previous works [3], we noticed that forecasting techniques struggle when working
with small-sized time series; hence, this paper aims to produce a model that can forecast
with limited data. Therefore, we decided to transform the tsRMA to a dataset by extracting
time windows of size (ws) and reorganizing each time window in a dataset row plus
one day ahead. Additionally, we try two other transformations for the time series before
converting it to a dataset. Finally, we randomly chose 70% of the rows for training and the
remainder 30% for testing; see Figure 6.
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Figure 6. Data transformation methodology.

Here, tsDif f is a differentiated series obtained by extracting the difference between
two consecutive values from tsRMA trying to extract the behavior of the time series and
not exactly its values (see Equation (2) and Figure 7).

tsDif fy = tsRM A1 — tsRMA; 2)
0w 9
s &7
(o] -
[&]
g °
[&] o
£ 3
§ T T T T T T
2020.0 2020.2 2020.4 2020.6 2020.8 2021.0
time (days)

Figure 7. tsDif f time series.

Finally, tsNorm is a normalized transformation that initially normalizes the tsRM A
series and then uses a differentiation; the normalization technique is the traditional z-score
(see Equations (3) and (4)).

tSRMA; —
norm; = % 3)
tsNormy = mnormy,q — normy 4)

where p is the mean of tsRMA series, and 7 is the standard deviation of tsRMA.

4. Forecasting Model

In this section, we train a random forest with the training section of the dataset to
produce a regression model that can predict one day ahead.

However, this problem requires more than just one day ahead. Therefore, to reach a
larger horizon (h), let us say h = 7, we need to iteratively execute the regression model by
shifting the test row to the left and including the newly predicted data in the last column.
Figure 8 shows the general methodology of our framework (PGRFF). In this section, we
train a random forest with the training section of the dataset to produce a regression model
that can predict one day ahead.
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> Random Forest Training

A
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Figure 8. Pandemic random forest-based framework (PRFF).

Once we obtained the forecastings, we evaluated their performance with the symmetric
mean average percentage error (sSMAPE) as recommended instead of MAPE [33]. However,
if yT comes from tsDif f or tsNorm, we require to return the values to their original form
as the number of infections, see Equations (5) and (6). On the other hand, if yT comes from

tsRMA, then §j = §T.
gUip1 = tsRMAy+ 9T %)
GUrpe = JUppkr + 9Tk 2<k<h (6)
where §U; . is the undifferentiated forecasting at time ¢ 4 k, and §U} 1 is the first forecasted
value. Figure 9 graphically shows the process of Equations (5) and (6).

initial index to determine

SRMA undifferentiated forecast
/ / /
| | | | V22 | | |
1 ws ‘ t t+1 n-avg
enerated N o N o PN PN PN
ffrecasts(h) ITev1 VTes2 Tev3 VTera VTevs VTeve YTesn

A
/i/l/i/i/i/l

| JUt+1 yUt+2 }’Ut+3 }’Ut+4 }’Ut+s yUt+6 yUt+h

undifferentiated
forecasts(/)

Figure 9. Undifferentiate T to JU.
It is important to highlight that if the original transformed series yT is tsDif f, then

7 = gU. On the other hand, if yT is tsNorm, we will be further required to denormalize JU
to calculate its sSMAPE, as shown in Equation (7).

Uik = (Yegk T 9Upsr) x T+ 1 1<k<h ()
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where U, is the forecasting using tsNorm as yT in time (f 4 k), y and T are the mean and
standard deviation of the original tsRMA series, and U, 1 is the first forecasted value.

Once we obtain ;|1 < k < h, which is the forecasting from (t + 1) to (t + h), we
can compare the forecasting with the actual data by calculating the sMAPE, as shown in
Figure 10.

Forecasting horizon (h = {7,14,21})

forecasts(h) | Peyq Vet2 Ve+s Vera Yits Vere Vern

F f f F 1t f 1

initial index L } v ¢ v ¥ v
%% | | | | | | |

tsRMA,  tsRMA,,, tsRMA,,, tsRMA,.; tsRMA,,, tsRMA,,s tsRMA..s tsSRMA.p
\ |

l

sMAPE

h mean(sMAPE) I I I

7 i i+1 i+2 n(test data)
( J

14

21
y mean(sMAPE)

Figure 10. Procedure to calculate the sSMAPE, using forecasts undifferentiated.

5. Experimentation Configuration

The experimentation was carried out in an M2 Pro Macbook Pro with 16GB of RAM
and 512 GB of SSD running macOS Ventura 13.4.1. Additionally, we use the R framework
for the whole process from web mining, forecasting, and graphics production to sMAPE
calculation. We produced four forecasting models for windows sizes of 15, 20, 25, and 30
using the randomForest function from the “randomforest” package version 4.6-14 in R
version 3.6.1; each model created 500 decision trees.

For the computational experimentation, we use eight time series for the eight Mexican
states plus one additional for the whole country.

The final experimentation is according to the parameters in Table 1. Here, PRFF is the
pandemic random forest-based framework that trains and forecasts using the same time
series. In contrast, PGRFF is a generalized version that trains with the whole country’s time
series and forecasts for other time series.

In this experimentation, we focused on developing a model that can be used for little
data and trained with the complete time series of the whole country as in exp 2, 4, and 6.
To this end, we produced a random forest model for the whole country and tested it with
eight Mexican states; we called it a pandemic generalized random forest-based framework
(PGRFF). Additionally, we tested the impact on forecasting the dataset window size and
horizon size.
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Table 1. Experimental scheme to generate forecast models with the global time series and its applica-

tion in time series by states.

#exp TS Used TS Transformation Forecasting Model
1 Country tsRMA PRFF
2 States tsRMA PGRFF from exp #1
3 Country tsDiff PRFF
4 States tsDiff PGREFF from exp #3
5 Country tsNorm PRFF
6 States tsNorm PGREFF from exp #5

6. Results

Infected cases 2

0

10,000 20,000 30,000 40,000 50,000 60,000

This section presents the six experiments’ results in Table 1.

Figure 11 shows the best forecasting with PRFF (exp 1) and PGRFF (best state of exp 2).
In contrast, Figure 12 shows the worst forecasts with the PRFF model (exp 1) and PGRFF
(worst state of exp 2), which is the state of Tlax. Here, we can see that the forecast from
Figure 12b) starts high above the actual time series. This behavior occurs because of the
high values of the training time series in experiment 1 (country time series). Additionally,
the resulting forecast is absolute and is not adjusted to the series in any way.

— Avg
Original
— hforecast

X

Infected cases

(b)

— Avg
Original
— hforecast

4000 6000 8000 10,000 12,000 14,000
I I I I I

2000
I

0

0 200

T T T T
400 600 800

time

1000

1200

0 200 400

800 1000 1200

Figure 11. The best forecasting with & = 7 and ws = 15 using tsRMA transformation: (a) time series

of whole country from exp 1 and (b) time series of C.D.Mx for exp 2.

Infected cases =

10,000 20,000 30,000 40,000 50,000 60,000

0

— Avg
Original
— hiforecast

Infected cases

— Avg
Original
— hforecast

o 200
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time

1000

1200
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Figure 12. The worst forecasting with 1 = 21 and ws = 30 using tsRMA transformation: (a) time series

of whole country from exp 1 and (b) time series of Tlax for exp 2.

Additionally, in experiment 2, Figure 13 shows the forecasting measure error with
h = (7,14, and 21) from experiment 1. As stated before, the best-performing country was
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C.D.Mx. In these figures, as a rule of thumb, the larger the horizon (k), the larger the sSMAPE.
Furthermore, this experiment benefits from small ws values. The best configuration for this
experimentation using & = 7 and ws = 15 produced an sMAPE of 156.48.

(a) ()

200 ——CD.Mx —+—C.D.Mx
190 S 190

—e—Edo. Méx. —e—Edo. Méx.
180 / —e—Mor. 180 —e—Mor
170 ——Tlax & 170 L —e—Tlax.

sMAPE

160 —o—Ags = 160 ——Ags.
——————
150 ./ Qro. 150 Qro.
140 Go. 140 Gto.
— * Pue.
130 130 Puc.

winsize winsize

(c)

200

190 ——C.D.Mx.
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= — . s
= 160 ——Ags.

150 Qro.

140 Gto.

130
10 15 20 25 30 35

winsize

Pue.

Figure 13. Experiment 2. The best forecasting: sMAPE error using tsSRMA transformation for
(@)h=7;(b) h=14; and (c) h = 21.

Figure 14 shows the best forecasts with PRFF (exp 3) and PGRFF (best state of exp 4).
In contrast, Figure 15 shows the worst forecasts with the PRFF (exp 3) and PGRFF (worst
state of exp 4), which is the state of Tlax. Here, we can see that the forecasts move straight
upward in Figure 15b. This behavior also corresponds to training with the high values of
the training time series in experiment 3. However, as tsDif f requires an adjustment to fix
the forecast to the original time series, such adjustment notoriously improves over tsRMA
transformation in Figure 12b; however, it still has plenty of room for improvement.

=
z
g
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Avg
Original test
— hforecast
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time time

Figure 14. The best forecasting with /1 = 7 and ws = 15 using tsDif f transformation: (a) time series of
whole country from exp 3 (b) time series of C.D.Mx. from exp 4.

Figure 16 shows the results of experiment 4 with i = (7, 14, and 21) using PGRFF
trained from experiment 3 via tsDif f transformation. In this experiment, as well as in exp
2, the best sMAPE was produced with /i = 7. However, regarding ws, the best configuration
was ws = 15, while the worst was ws = 25 instead of 30, as presented in exp 2. The best
configuration for this experimentation using k = 7 and ws = 15 produced a sMAPE = 25.48.
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Figure 15. The worst forecasting with & = 21 and ws = 25 using tsDif f transformation: (a) time series
of whole country from exp 3 and (b) time series of Tlax from exp 4.
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Figure 16. Experiment 4. The best forecasting: sMAPE error using tsDiff transformation for
(@)h=7;(b) h=14; and (c) h = 21.

Figure 17 shows the best forecasts with PRFF (exp 5) and PGREFF (best state of exp 6).
In contrast, Figure 18 shows the worst forecasts presented with PRFF (exp 5) and PGRFF
(worst state of exp 6), the state of Tlax. Although the behavior in Figure 18a is worse
than Figures 15 and 12a, the performance in Figure 12b visually improves dramatically
with tsNorm. Therefore, we sacrificed performance in the training time-series exp 5 but
improved the robustness of the model for the rest of the states exp 6, which was our
main goal.

In experiment 6, Figure 19 shows the forecasting measure error with # = (7, 14, and 21)
using a PGRFF from experiment 5, transformed using tsNorm. In this experiment, as well
as in exp 2 and 4, the best sMAPE was produced with /1 = 7. However, there was a notable
change in the behavior of the sSMAPE regarding the ws; here, the best sSMAPE results are
obtained with ws = 25, increasing the sMAPE with higher and lower ws values. The best
configuration for this experimentation using # = 7 and ws = 25 produced an sMAPE of 13.58.
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Figure 17. The best forecasting with & = 7 and ws = 25 using tsNorm transformation: (a) time series
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Finally, we make a Wilcoxon nonparametric test confirming that tsNorm outperforms
statistically to tsDif f and tsRMA, with a p_value of 0.012 equivalent to a 98.8% certainty.
The test only reached 98.8% because of the limited number of states used.

Comparison with Standard Methods

We carried out two additional experiments to compare the performance of PGRFF
against two standards for comparison methods, particularly ETS and ARIMA. As the main
objective for this paper is to create a model that can forecast future pandemics in their early
stages, for the first additional experiment, we test ETS, ARIMA, and PGRFF with the eight
Mexican states and their first one hundred infection days. It is important to note that ETS
and ARIMA train with the time series of the eight states, while PGRFF uses a forecasting
model trained with the time series of the whole country, exp 6, to forecast the time series of
the eight states.

ETS and ARIMA were carried out using functions auto.arima [23] and ets [34] from
package “forecast” version 8.16 in R. Figure 20 shows the cumulative sSMAPE of ETS,
ARIMA, and PGRFF for horizons 7, 14, 21, 28, and 35. Here, we can see that for horizons 7,
14, and 21, ARIMA has the lowest sMAPE, while PGRFF has the highest sMAPE. However,
for horizons 28 and 35, PGRFF has the lowest sMAPE, while ETS has the highest sMAPE.
Therefore, PGRFF performs better than the standards for comparison methods when
forecasting longer horizons.
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Figure 20. ETS, ARIMA, and PGRFF cumulative sMAPEs comparing.

We use a Wilcoxon nonparametric test to compare ETS, ARIMA, and PGRFF; see
Table 2. Here, we can see that the first column contains the horizon size; the second column
shows the testing methods where we highlight in red the winning method if there is
one; finally, the third and fourth columns show the p_value and percentage of certainty,
respectively. However, if the testing methods do not have a significant difference (NSD),
we show it in the p_value column.

Therefore, as we stated before, ARIMA generally produced the best statistical results
for horizons 7, 14, and 21. However, for horizons 28 and 35, PGRFF outperformed ETS and
ARIMA. It is important to highlight that PGRFF could obtain a more significant percentage
of certainty if more time series were used, given its lower sMAPE values.

Furthermore, Figure 21 shows the behavior of ETS, ARIMA, and PGRFF for C.D. Mx
with i = 21 in the first peak of the time series at about 300 days. Here, we can see that ETS
and ARIMA produce similar to straight forecastings, while PGRFF produces forecastings
with curves that are more similar to the actual time series; however, this behavior is not
shown in the sSMAPE presented in Table 2.
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Table 2. Wilcoxon test for ETS, ARIMA, and PGRFF for one-hundred-day time series.

h Testing Methods p_Value Percentage of Certainty
ETS vs. ARIMA 0.012 98.8%
7 ETS vs. PGRFF NSD
ARIMA vs. PGRFF NSD
ETS vs. ARIMA 0.012 98.8%
14 ETS vs. PGRFF 0.05 95%
ARIMA vs. PGRFF 0.012 98.8%
ETS vs. ARIMA 0.017 98.3%
21 ETS vs. PGRFF NSD
ARIMA vs. PGRFF 0.012 98.8%
ETS vs. ARIMA 0.025 97.5%
28 ETS vs. PGRFF 0.012 98.8%
ARIMA vs. PGRFF 0.012 98.8%
ETS vs. ARIMA 0.012 98.8%
35 ETS vs. PGRFF 0.012 98.8%
ARIMA vs. PGRFF 0.012 98.8%
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Figure 21. Forecasting C.D.Mx. with i = 21, comparing ETS, ARIMA, and PGRFE.

In the second additional experimentation, we use a complete time series; ETS and
ARIMA are executed similarly to the previous experiment; however, instead of using
PGREFE we use PRFFE, which generates a model for each of the eight states.

Figure 22 shows the cumulative sSMAPE for 11 =7, 14, 21, 28, and 35 produced with ETS,
ARIMA, and PRFF. The Wilcoxon test for this experimentation showed a p_value of 0.012
in favor of PRFF versus both (ETS and ARIMA), meaning a 98.8% certainty for all horizons.
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7. Discussion

Figure 23 shows that the C.D.Mx. and Tlax. states presented the best and worst
sMAPE errors in exp 2, 4, and 6. Here, we can see that the best-performing transformation
is tsNorm in the best and worst configurations of the best and worst time series.
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Figure 23. Best and worst sSMAPE for C.D.Mx. and Tlax with tsRMA, tsDif f, and tsNorm transfor-
mations.

We proposed the tsNorm transformation to minimize the impact of training a regres-
sion model with high-valued time series by normalizing the data. Additionally, the differ-
entiation is also used in tsNorm as a way to fix the starting point of the forecasting near the
last-known values of the original time series, avoiding the errors presented in Figure 12b).

We believed the forecastings would fit better for larger population densities. However,
exp 2, 4, and 6 worked best for states with larger populations. Figure 24 compares the
population density and population of the eight selected states. It is important to highlight
that C.D.Mx. has the best forecasting; however, Edo.Méx is very close to it and can be
visualized in Figures 13, 16 and 19.

It is important to highlight that in new pandemics, classical forecastings can only use
the current number of observations, and one of the main deficiencies of these methods is
that they perform poorly with short time series [3,35].

With this knowledge in mind, we propose PGRFF, which learns from a complete
pandemic time series and creates a generalized model that can be used for future pandemics,
particularly useful when forecasting pandemic peaks. Additionally, our nongeneralized
approach (PRFF) produced better sMAPEs than ETS and ARIMA, showing promising
performance even without a pre-trained model; however, we do not consider PRFF as
our main contribution because it will lack peak information to forecast such essential
moments correctly.
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8. Conclusions

This paper proposes a pandemic generalized random forest-based framework PGRFF,
which uses current data to produce models to forecast future pandemics. Additionally, we
tested three different transformation techniques to produce different forecasting models for
COVID-19 time series. We approach this problem considering a limited-sized pandemic
time series to produce datasets with small time window observations. Therefore, we
develop a model with current pandemic data on COVID-19 from a specific country that
can forecast pandemic time series from different states within the country.

As we can see in the experimentation section, the model trained with the tsNorm visu-
ally and statistically produced better results than the other two transformation techniques.
Additionally, we performed two non-parametric Wilcoxon tests, one between tsNorm and
tsDif f and the other between tsNorm and tsRMA. These tests statistically proved with a
98.8% certainty that tsNorm outperformed tsDif f and tsRMA with a p-value of 0.012.

When comparing PGRFF with ETS and ARIMA, we found that for larger horizons,
PGREFF statistically outperformed ETS and ARIMA, proving that our proposal is better
than the standard methods for comparison. Furthermore, we visually showed that PGRFF
performed better than ETS and ARIMA in the first peak of the COVID-19 time series
because it has information regarding the behavior of the peaks from the country time series,
information that ETS and ARIMA could not have.

Contrary to what we believed at the beginning of the experimentation, the forecasts
produce better results when the studied states have their population similar to the time series
used as training instead of their population density. In future work, we will consider using
an intermediate state as training to decrease the differences among the populations of the
different states with respect to the training series. We would also like to use larger datasets
from other countries while testing artificial neural networks as a regression technique.

Finally, we showed that by preprocessing Mexico’s COVID-19 time series, we could
create one model that can be useful to forecast the pandemic time series of other states
within the country. We consider this experiment relevant because we can use this approach
to produce a trained model to forecast possible future pandemics in their early stages.
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