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Abstract: Wastewater treatment plants (WWTPs) are large-scale and nonlinear processes with tightly
integrated operating units. The application of online optimization-based control strategies, such as
model predictive control (MPC), to WWTPs generally faces high computational complexity. This
paper proposes an event-triggered approach to address this issue. The model predictive controller
updates information and solves the optimization problem only when the corresponding triggered
logic is satisfied. The triggered logic sets the maximum allowable deviation for the tracking variables.
Moreover, to ensure system performance, the design of the event-triggered logic incorporates the
effluent quality. By obtaining the optimal sequence for the effluent quality within the receding
horizon of the MPC, the cumulative deviation between the predicted and desired effluent quality is
analyzed to evaluate the performance within that horizon. Based on these two conditions, the need
for adjusting control actions is determined. Even if the maximum allowable range for the tracking
variables in the triggered logic design is set unreasonably, the consideration of effluent quality factors
in the triggered conditions ensures good performance. Simulation results demonstrate an average
reduction in computational effort of 25.49% under different weather conditions while simultaneously
ensuring minimal impact on the effluent quality and total cost index and compliance with effluent
discharge regulations. Furthermore, this method can be combined with other approaches to guarantee
effluent quality while further reducing computation time and complexity.

Keywords: effluent quality awareness; MPC; event-triggered control; BSM1

MSC: 37M05

1. Introduction

WWTPs are vital infrastructure for converting wastewater from urban and industrial
areas into safe effluent for discharge. They play an essential role in protecting the envi-
ronment, public health, and socio-economic development. Effective control of WWTPs
is essential to ensure their efficient and reliable operation. However, due to the use of
different benchmark models in previous studies, it is difficult to evaluate and compare
the performance of these control strategies. To address this issue, J. Alex et al. proposed
the benchmark simulation model no. 1 (BSM1) [1] to simulate WWTPs, which has been
widely used in many subsequent studies. In [2], linear quadratic dynamic matrix control
was applied to the BSM1 with the addition of a feedforward action to improve performance
in the presence of disturbances. In [3], a tracking MPC scheme was applied and compared
with the method proposed in [2], and the results showed that the MPC control strategy
performed better. Similarly, in [4], a comparison was made between MPC and the pro-
portional integral derivative (PID) controller, and a similar conclusion was drawn. In [5],
the application of economic MPC (EMPC) to WWTPs resulted in improved performance.
However, since implementing MPC (EMPC) for the BSM1 requires online construction and
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the solving of large-scale optimization problems, it often needs significant computation
time. Therefore, the aim of this study was to reduce the computational burden without
compromising performance. There are various approaches to reduce the computational
complexity of MPC (EMPC) for WWTPs. These include using distributed design [6], model
reduction [7,8], and variable-horizon MPC, as proposed in [9]. In this work, we also con-
sider event-triggered control (ETC) [10]. The proposed approach can be combined with
these approaches to further reduce the computational complexity.

In recent years, ETC has gained more attention due to its ability to achieve high-
performance control while minimizing communication and computation overhead. The
sampling time in networked control systems is determined by the occurrence of events
rather than the passage of time. The impact of this idea was analyzed in [11]. It was
pointed out that a communication network connects system components, such as sensors,
controllers and actuators, and that the event-triggered approach can also save commu-
nication costs significantly in a networked control system, as shown in [12,13]. One of
the challenges in ETC-based control is the design of triggering conditions. Tabuaba [14]
defined a trigger condition for nonlinear systems to ensure input-state stability (ISS). This
is necessary because non-periodic control event intervals may lead to error accumulation.
In [15], event-triggered strategies for control of discrete-time systems were proposed and an-
alyzed. The control law is updated once the control target violates the triggering condition
involving the measurement error norm. This also means that, when the trigger condition
is not satisfied, the controller will maintain the previous control action, thereby reducing
the computational load. Eqtami extended this approach to a distributed model predictive
control model in [16]. In [17], for continuous-time nonlinear systems, an event-triggering
logic was defined by using the error between the optimal prediction and system state
measurement, and it was proved that, if the design of the prediction horizon is reasonable
and the disturbance is small enough, the feasibility of the event-triggered MPC algorithm
can be guaranteed. In [18], an event-triggered PID controller was proposed specifically for
WWTPs; adjustable auxiliary variables were introduced, and the deviation between the
tracking error and auxiliary variable was used to design the trigger logic. More recently,
the authors of [19] designed a triggering logic using the output error and predicted hori-
zon. While successful in reducing computation, the results presented did not consider the
most important factor; i.e., effluent quality indicators. In [20], Boruah N. employed the
threshold range and first derivative of the controlled variable to develop an event-triggered
tracking MPC that is well suited for practical applications. However, the paper did not
provide a method for determining the appropriate threshold value to use. Therefore, the
operator might induce hazardous outcomes as a consequence of excessively large threshold
settings. Additionally, even when employing a minute threshold setting under nominal
conditions, the resulting control pattern could continually oscillate between triggering and
non-triggering, introducing significant uncertainty in effluent quality performance.

In this paper, effluent quality is further integrated into the design of the event-triggered
logic and evaluated using a receding horizon approach. This integration empowers the
model predictive controller to proactively determine whether to engage in solving the
optimization problem, as driven by performance metrics. The primary goal is to miti-
gate the computational burden on the controller while safeguarding the effluent quality
performance from significant compromise. This method effectively sidesteps the limita-
tions inherent in single-threshold logic, particularly the uncertainty resulting from the
oscillating pattern of meeting trigger conditions and subsequently failing to meet them.
Moreover, effluent quality-aware event-triggered control ensures robust effluent quality
protection, even when operating within relaxed threshold settings. Through simulation,
our results indicated a significant average reduction of 25.9% in computational workload
under threshold settings with moderately relaxed tracking outputs. This reduction was
achieved without compromising the continuous operation of the controller with poorer
performance, ensuring optimal setpoint tracking during this period. Additionally, when
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adopting narrower threshold settings, we observed a minor decrease in trigger occurrences
while maintaining effluent quality performance comparable to traditional MPC.

This paper is organized as follows: Section 2 provides a brief description of the BSM1
and outlines the performance evaluation criteria. Section 3 presents a brief description
of the control system structure and a scheme is provided. Subsequently, the design of an
event-triggered model predictive controller is described, which includes the triggered logic
and implementation algorithm. Section 4 presents simulation results for three different
types of weather and demonstrates the effectiveness of the algorithm. Finally, Section 5
summarizes the conclusions of this paper and suggests ideas for future research.

2. Preliminaries
2.1. WWTP Process Description and Modeling

A simplified schematic of a WWTP is shown in Figure 1. This section gives a brief
introduction to the BSM1.

The BSM1 is a combination of 13 components and 8 reaction processes from the
ASM1 [21,22] and a double-exponential settling dynamics model for the secondary clari-
fier [23]. The main goal of wastewater treatment is to remove nitrogen and phosphorus,
which can cause eutrophication of water bodies, excessive algal growth, and deterioration of
water quality and ecosystems. Another goal is to reduce ammonia and oxygen-consuming
nitrogen, which can lower the dissolved oxygen concentration in water and cause black
odor and the death of aquatic organisms. As shown in Figure 1, the first two biochemical re-
action chambers are anoxic zones, where nitrates are reduced to nitrogen gas by denitrifying
bacteria, and the last three are aeration zones, where oxygen is supplied to support aerobic
bacteria that remove organic matter and ammonia. The last aerobic chamber recycles a
portion of its effluent (inner recycling) back to the first chamber with a flow rate of Qa and
a concentration of Za. The remaining effluent goes into the settler with a flow rate of Q f
and a concentration of Z f . The settler has 10 nonreactive layers and the feed layer is the 6th
one. The settler has three outlets: (a) the overflow with purified water that leaves through
the first layer at a flow rate of Qe; (b) the underflow that goes back to the first chamber
(outer recycling) at a flow rate of Qr; and (c) the underflow that exits the settler at a flow
rate of Qw.

Figure 1. The schematic of the wastewater treatment plant consists of a biological reactor and
secondary clarifier, with the biological reaction zone further divided into an anoxic area (white) and
an aerated area (blue). The entire system is controlled using a model predictive controller.

The 13 components involved in the reaction are listed in Table 1 and can be divided
into four categories, except for dissolved oxygen and alkalinity. Indexes 1 to 4 are organic
matter, 5 and 6 are microorganisms, 7 is a microbial decay product, and 9 to 12 represent
nitrogen components. In each reaction chamber, a dynamic model can be built for these
13 components. For the first biological reaction chamber (k = 1):
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dZk
dt

=
1

Vk
(QaZa + Q0Z0 + QrZr + r1V1 −Q1Z1) (1)

Q1 = Qa + Qr + Qo (2)

For the second to fifth biological reaction chambers (k = 2,. . . ,5):

dZk
dt

=
1

Vk
(Qk−1Zk−1 + rkVk −QkZk) (3)

Qk = Qk−1 (4)

for which the conversion rate rk of each component is shown in [1]. Since the concentration
of dissolved oxygen varies with the aeration of the aerobic reaction chamber, the equilibrium
equation for dissolved oxygen is special and is set to S∗O = 8 g.m−3. The expressions are
as follows:

dSO,k

dt
=

1
Vk

(Qk−1SO,k−1 + rkVk + KLakVk(S∗O − SO,k)−QkSO,k) (5)

The following are some concentration and flow relationships in the process:

Za = Z5 (6)

Q f = Q5 −Qa = Qe + Qr + Qw = Qe + Qu (7)

Z f = Z5 (8)

Zw = Zr (9)

Table 1. Definition of and notation for the process variables for WWTPs.

Definition Notation Unit

1 Inert soluble organic matter SI g COD·m−3

2 Readily biodegradable and soluble substrate SS g COD·m−3

3 Inert particulate organic matter XI g COD·m−3

4 Slowly biodegradable and soluble substrate XS g COD·m−3

5 Biomass of active heterotrophs XB,H g COD·m−3

6 Biomass of active autotrophs XB,A g COD·m−3

7 Particulates generated from decay of organisms XP g COD·m−3

8 Dissolved oxygen SO g (−COD)·m−3

9 Nitrite nitrogen and nitrate SNO g N·m3

10 Biodegradable and soluble organic nitrogen SND g N·m3

11 Free and saline ammonia SNH g N·m3

12 Particulate biodegradable organic nitrogen XND g N·m3

13 Alkalinity SALK mol·m−3

A model of the secondary settler is proposed in the BSM1 that uses a double-exponential
settling velocity equation that reflects the behavior of the solids in it. The model is divided
into 10 layers. The treated effluent from the bio-chemical reaction tank flows into the sixth
layer of the secondary clarifier, which is the feed layer. Solids settlement occurs on all layers,
so it is generally said that the solids concentration in the secondary clarifier decreases with
the number of layers. The settler is modeled based on the mass balance of the sludge, and
by default, no chemical reactions occur in the settler. Therefore, the downward solids flux
in the settling tank is generated by its own gravity and the liquid flow. The solid-state
dynamic model based on mass balance can be expressed by the following equation. For the
bottom layer (m = 1):

dX1

dt
=

vdnX2 − vdnX1 + min(Js,2, Js,1)

z1
(10)

For the second to fifth layers (m = 2,. . . , 5):
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dXm

dt
=

vdnXm+1 − vdnXm + min(Js,m, Js,m+1)−min(Js,m, Js,m−1)

zm
(11)

For the feed layer (m = 6):

dX6

dt
=

(Q f X f )/A + Jc,7 − (vup + vdn)X6 −min(Js,6, Js,5)

zm
(12)

For layers 7 to 9 (m = 7,. . . , 9):

dXm

dt
=

vup(Xm−1 − Xm) + Jc,m+1 − Jc,m

zm
(13)

For the top layer (m = 10):

dX10

dt
=

vup(X9 − X10)− Jc,10

z10
(14)

where Xm represents the solid concentration in the mth layer. The solid flux Js generated
by gravity is a function of the total sludge concentration X and the double-exponential
settling rate vs(X), which can be calculated as Js = vs(X)X. The settling velocity vs(X) is
calculated based on the double-exponential settling rate function, as shown below:

vs = max[0, min{v′0, v0(e−rh(X−Xmin) − e−rp(X−Xmin))}] (15)

Xmin = fnsX f (16)

X f = 0.75(XS,5 + XP,5 + XI,5 + XBH,5 + XBA,5) (17)

The values for parameters v0, rh, rp, and fns are equal to 474, 0.000576, 0.00286, and
0.00228, respectively. X f is the total solid concentration from the biological reactor.

2.2. Compact Form of the System Model

A total of 145 ordinary differential equations are used to described the dynamics of the
entire plant. Specifically, the dynamics of each compartment in the biological reactor can be
described by 13 ordinary differential equations according to the 13 state variables, and the
dynamics of each layer in the secondary settler can be described by 8 ordinary differential
equations with the total sludge concentration. The BSM1 can be written in the following
compact form:

ẋ(t) = f (x(t), u(t), p(t)) (18)

y(t) = h(x(t)) (19)

where x ∈ R145 is the vector of process states and u ∈ R2 represents a manipulated
vector. We chose the internal circulation flow rate (i.e., Qa) and the oxygen transfer
rate in the fifth compartment of the biological reactor (i.e., KLa5) as the manipulated
variables. The parameter p ∈ R14 is the known input vector containing the influent in-
formation comprising the inlet flow rate Q0 and concentration Z0. The output vector
y = [y1, y2]

T = [SNO,2, SO,5]
T ∈ R2.

2.3. Performance Evaluation Criteria

In our study, effluent quality (EQ) is the main performance indicator, which reflects
the overall treatment effectiveness of the WWTP. It is defined as the daily average of the
weighted sum of the concentrations of different compounds in the effluent over a certain
period of time:

EQ =
1

1000T

∫ t f

t0

(2TSSe(t) + CODe(t) + 30SNKj,e(t) + 10SNO,e(t) + 2BODe(t))Qe(t)dt (20)
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where t f − t0 is the time range for evaluating effluent quality; TSS represents the total
suspended solids concentration; COD represents chemical oxygen demand; BOD represents
biological oxygen demand; SNKj is the Kjeldahl nitrogen concentration; and the subscript e
indicates that the concentration is related to the effluent from the settler.

The cost of wastewater treatment is also a significant consideration in evaluating
performance. Factors that have a major impact on operating costs include: (a) the amount
of sludge to be treated, (b) the energy required for aeration and pumping, (c) external
carbon consumption, and (d) mixing energy.

Sludge production (SP) is the average amount of solids (in kg/day) generated by a pro-
cess during a specific time period T. This includes the solids discharged from the secondary
clarifier through Qe and the solids deposited in the WWTP. The total solids collected in the
system over a period of seven days can be calculated using the following equation:

SP =
0.75

1000T

∫ t f

t0

(XS,w(t) + XI,w(t) + XBA,w(t) + XBH,w(t) + Xp,w(t))Qw(t)dt

+
1

1000T
(TSS(t f )− TSS(t0))

(21)

the w in the equation stands for the effluent from the secondary clarifier.
The aeration energy (AE) is dependent on the characteristics of the plant, such as the

diffuser type, submergence depth, bubble size, and so on. AE is calculated based on the
oxygen transfer rate (KLai, i = 1,. . . , 5), and the submergence depth is assumed to be 4 m.
The formula for calculating AE is as follows:

AE =
Ssat

O
1800T

∫ t f

t0

5

∑
i=1

ViKLai(t)dt (22)

where Ssat
O is the oxygen saturation concentration, which is 8 g/m3.

Pumping energy (PE) is the energy used by the pump for internal and external circula-
tion. It can be calculated as follows:

PE =
1
T

∫ t f

t0

(0.004Qa(t) + 0.05Qw(t) + 0.008Qr(t))dt (23)

Mixing energy (ME) (kWh/day) is the energy needed to mix the compounds in the
anoxic chamber to prevent settling. ME is determined by the volume of each reaction
chamber and the oxygen transfer rate:

ME =
24
T

∫ t f

t0

(∑
i

0.005Vi)dt (24)

The total cost index (OCI) is an estimate of the total cost of operating the wastewater
treatment plant and is calculated as the sum of the main factors listed below:

OCI = AE + PE + 5SP + ME (25)

3. Effluent Quality-Aware Event-Triggered MPC
3.1. Brief Introduction

As numerical optimization techniques and the computing capabilities of computers
continue to advance, MPC is gradually maturing. In MPC, control actions are obtained by
online solving of a finite-time optimal control problem at each sampling instant, where the
initial state is the current state of the plant. Optimization yields a finite control sequence,
with the first control action applied to the plants. Thus, MPC differs from traditional control,
where control laws are pre-computed. MPC implements an implicit control policy. The con-
struction of an MPC problem typically involves these main components: (a) a mathematical
model for predicting the system’s evolution over a certain time horizon; (b) mapping the
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system’s trajectory within the prediction horizon to a real-valued cost function, where real
numbers represent performance evaluations, such as tracking performance or economic
performance; (c) consideration of constraints on system states, control inputs, and other
relevant factors; (d) a receding horizon implementation.

As previously mentioned, the implementation of MPC involves building and solving
optimization problems online, as well as selecting appropriate control and prediction
horizons. However, this process can be time-consuming and challenging, even when
the existence of a solution is guaranteed, especially for large-scale models such as BSM1.
In this work, we propose event-triggered MPC to reduce computational complexity in
WWTPs. The structure consists of the WWTP system, model predictive controller, and event-
triggered logic, along with the actuator. The event-triggered logic is designed based on the
deviation of the output variables from the setpoints and the effluent quality performance.
The structure diagram of the event-triggered control system is shown in Figure 2.

Figure 2. Algorithm flowchart.

At each sampling time tk, the event-triggered logic is evaluated to determine if it is
satisfied. If the logic is satisfied, the model predictive controller can calculate the optimal
control action for the current time and send it to the actuator. If the logic is not satisfied,
the model predictive controller cannot obtain the optimal solution at the current sampling
time. In this case, the actuator maintains the control action from the previous time when
the triggered condition was satisfied.

3.2. Design of Effluent Quality-Aware Event-Triggered Logic

At the initial sampling time tk, k = 0, the MPC strategy is implemented to initialize
the system. At subsequent sampling times k > 1, the need for control action updates
is determined based on trigger conditions. The evaluation of trigger conditions mainly
involves two aspects. Firstly, the tracking performance of the outputs with respect to
the optimal setpoints is considered. If the outputs’ error relative to the optimal setpoints
exceeds a predefined maximum allowable deviation, the triggered logic is satisfied. The
model predictive controller calculates the optimal control action to drive the output state
towards the allowable state set. The expression is as follows:

E1(y) = |yset − y| − γ (26)

The first triggered logic is satisfied when E1(y) > 0. Here, γ represents the maximum
allowable tracking error. The value of γ is often determined based on experience. If it is
set too small, it may result in a less significant improvement in computation. On the other
hand, if it is set too large, it may result in poor performance. In other words, relying solely
on threshold values for logical judgments is not reliable. Therefore, the second aspect is
considered, which incorporates effluent quality into the logic design. By intuitively setting
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the desired effluent quality, performance can be ensured. This allows for further analysis of
whether control action updates are necessary, even with an unreasonable γ setting.

Instead of comparing the actual effluent quality with the desired quality at each
sampling time step, it is preferable to detect changes in effluent quality earlier in order
to make judgments sooner. Therefore, this paper combines effluent quality evaluation
with MPC receding horizon optimization. This method can detect deviations from the
desired effluent quality over a certain period of time. At sampling time tk, if the MPC
has satisfied the trigger condition at time tk−1, the optimal control sequence u∗(i|tk) is
solved for i = tk−1, tk, . . . , tk+N−2, as well as the corresponding state sequence x∗(j|tk−1)
for j = tk, tk+1, . . . tk+N−1. Additionally, the optimal effluent quality sequence EQ∗(x∗) is
obtained based on Equation (20). The triggered logic is defined based on the cumulative
error between the N optimal effluent qualities and the desired qualities. The expression is
as follows:

E2(x) =
k+N−1

∑
i=k

(EQ(x(ti))− EQset)− σ (27)

here, σ represents the maximum allowable effluent quality deviation within the horizon. If
the trigger logic is not satisfied at time tk−1, the MPC does not take action and, thus, the
sequence information cannot be obtained. In this case, E2(x) = (EQ(x(tk))− EQset)− σ

N .
The effluent quality deviation is evaluated based on the average value of the maximum
allowable deviation within the horizon. When E2(x) > 0, the second trigger condition is
satisfied. If both trigger conditions are met simultaneously, the event triggers the model
predictive controller to calculate the optimal control action. Otherwise, the previous optimal
control action is maintained until the triggered logic is satisfied.

3.3. Design of Event-Triggered MPC and Algorithm

Whether to perform new calculations for the MPC depends on the satisfaction of the
triggered logic; specifically, the evaluation of whether E1 and E2 are greater than zero. If
this condition is met, the MPC acquires the latest state updates at the current sampling
instance. Event-triggered MPC employs a conventional dual-layer control structure. In
this structure, the upper real-time optimization (RTO) layer is responsible for executing
steady-state economic optimization to ascertain the optimal setpoint. This setpoint is then
transmitted to the lower-layer MPC, where nonlinear output feedback tracking MPC is
implemented to track the optimal setpoint from the RTO layer. The MPC problem can be
formulated at sampling time tk as shown below:

minu

k+Np

∑
n=k
‖yset − y(tn)‖2

Q +
k+Nu

∑
n=k
‖δu(tn)‖2

R (28a)

st. ˙̃x(t) = f (x̃(t), u(t), p(t)) (28b)

y(t) = h(x̃(t)) (28c)

x̃(t) = x(t) (28d)

ymin ≤ y(t) ≤ ymax (28e)

umin ≤ u(t) ≤ umax (28f)

where Np and Nu denote the prediction and control horizon, respectively; yset repre-
sents the setpoints; and δu = u(tk)− u(tk−1) represents the change in control action. Q
and R are weighting matrices that determine the importance of the process states and
control inputs throughout the horizon. A larger weight on Q favors sacrificing con-
trol effort to ensure state tracking, while a larger weight on R places greater emphasis
on control changes. Equation (28a) represents the cost function of the MPC optimiza-
tion problem. Equations (28b) and (28c) describe the plant model, where x̃ represents
the predicted state trajectory of the system for the input trajectory calculated by the
MPC optimization problem and f (·) is defined in Equation (18). In this study, it is as-
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sumed that there is no model error or measurement disturbance, which means that the
predicted value x̃ is equal to the measured value x. Equation (28d) denotes the initial
condition at time tk. Equations (28e) and (28f) represent output constraints and physical
constraints for safety reasons, respectively. After solving for the optimal control sequence
{u∗(tk), u∗(tk+1), . . . u∗(tk+N−1)} at time tk, the first item u∗(tk) is applied to the system.
The symbol * denotes the optimal solution. At the next sampling time that satisfies the
triggering logic, the model predictive controller updates the initial state and repeats the pro-
cess until the end time is reached. Algorithm 1 summarizes the proposed event-triggered
MPC implementation strategy.

Algorithm 1: Effluent quality-aware event-triggered algorithm

1 k = 0, get x(t0); then;
2 solve problem (28) ; get u(tk) = u∗(i|tk);x∗(j|tk) and EQ∗(x∗(j|tk)); then;
3 for k = 1 to [sampling end time] do:
4 if E1, E2 > 0 or notrigger_times = N :
5 solve problem (28);
6 trigger logic = 1; get x∗(j|tk); u∗(i|tk);
7 u(tk) = u∗(tk|tk); then;
8 calculate effluent quality sequence EQ∗(x∗(j|tk));
9 notrigger_times = 0;

10 else:
11 trigger logic = 0;
12 u(tk) = u∗(tk−1);
13 get x(tk+1);EQ(x(tk+1));
14 notrigger_times+=1;
15 end
16 end

Remark 1. As can be seen from Equations (28b) and (28c), we have not taken into account the
influence of the model error. In this paper, we emphasize an event-triggered approach for WWTPs
that aims to conserve computational resources without compromising performance. For addressing
the model error, please see reference [24].

4. Simulation Results

In this section, we evaluate the performance of the effluent quality-aware event-
triggered MPC strategy under three different weather conditions: dry, rainy, and stormy.
We compare the results obtained with the event-triggered MPC with those obtained with a
PI controller and the traditional MPC strategy. Additionally, we investigate the effectiveness
of effluent quality-aware event-triggered control.

4.1. Simulation Settings
4.1.1. Relevant Plant Simulation Settings

The influent data used in this study were obtained from the International Water
Association (IWA) website and cover a period of 14 days with a sampling time interval
of 15 min. The weather data for the first 7 days remain consistent, while the data for the
following days reflect the corresponding weather conditions. Therefore, in the evaluation
of the results, t0 = 8 d, t f = 14 d, and T = 7 d. The initial conditions for the five bioreactors
are shown in Table 2, and the initial conditions for the secondary settler are shown in
Table 3.
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Table 2. Initial conditions of the biological reactor.

i 1 2 3 4 5 Units

SI,i 30 30 30 30 30 gCOD/m3

SS,i 3.24 1.67 1.22 0.97 0.81 gCOD/m3

XI,i 1149.21 1149.21 1149.21 1149.21 1149.21 gCOD/m3

XS,i 98.60 91.70 69.69 54.45 44.48 gCOD/m3

XB,H,i 2552.12 2552.39 2560.22 2563.33 2562.87 gCOD/m3

XB,A,i 151.67 151.53 152.69 153.71 154.17 gCOD/m3

XP,i 446.96 448.12 449.67 451.22 452.77 gCOD/m3

SO,i 0.007696 0.00006027 1.63 2.47 2.00 g(−COD/m3)
SNO,i 3.51 1.00 6.23 11.07 13.52 gN/m3

SNH,i 11.83 12.55 7.32 2.78 0.67 gN/m3

SND,i 1.36 0.79 0.83 0.75 0.66 gN/m3

XND,i 6.18 5.95 4.71 3.84 3.26 gN/m3

SALK,i 5.34 5.57 4.82 4.15 3.83 mol/m3

Table 3. Initial conditions of the secondary settler.

J Xj SI,j SS,j SO,j SNO,j SNH,j SND,j SALK,j

1 6399.44 30 0.808 2.0 13.52 0.67 0.66 3.83
2 356.29 30 0.808 2.0 13.52 0.67 0.66 3.83
3 356.29 30 0.808 2.0 13.52 0.67 0.66 3.83
4 356.29 30 0.808 2.0 13.52 0.67 0.66 3.83
5 356.29 30 0.808 2.0 13.52 0.67 0.66 3.83
6 356.29 30 0.808 2.0 13.52 0.67 0.66 3.83
7 69.00 30 0.808 2.0 13.52 0.67 0.66 3.83
8 29.55 30 0.808 2.0 13.52 0.67 0.66 3.83
9 18.12 30 0.808 2.0 13.52 0.67 0.66 3.83

10 12.50 30 0.808 2.0 13.52 0.67 0.66 3.83
units gCOD/m3 gCOD/m3 gCOD/m3 g(−COD)/m3 gN/m3 gN/m3 gN/m3 mol/m3

4.1.2. Relevant Control Settings

In the MPC simulation, both the control horizon and prediction horizon were set to
8; i.e., Np = Nu = 8. The setpoints for the outputs were defined as SNO,2 = 1 gN/m3

and SO,5 = 2 g(−COD)/m3. The maximum allowable deviation for the tracking variables,
denoted as γ, was set to [0.5,0.5]. The desired effluent quality under the three weather condi-
tions was set to 5× 103 kg.poll.units.day−1. The maximum allowable cumulative deviation
for the effluent quality within the horizon, denoted σ, was set to 103 kg.poll.units.day−1.
The weight matrices in Equation (28a) were defined as follows:

Q =

[
100 0
0 1000

]
, R =

[
10−12 0

0 10−12

]
(29)

The input constraints were defined as follows:

0[m3/d] ≤ Qa ≤ 5Q0,stable[m3/d] (30a)

0[d−1] ≤ KLa5 ≤ 240[d−1] (30b)

where Q0,stable = 18,446 m3/d. In addition, two operating regions were defined for the
two outputs:

0[mg(−COD)/l] ≤ SNO,2 ≤ 10[mg(−COD)/l] (31a)

0[mgN/l] ≤ SO,5 ≤ 10[mgN/l] (31b)

All simulations were conducted using Casadi with the Ipopt solver. The parameters
of the two PI controllers can be found in Table 4.
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Table 4. Parameters of PI controllers.

Parameter SNO,2 Controller SO,5 Controller

Kp 10,000 m3/d(gN/m3) 25 m3/d(g(−COD)/m3)
Ti 0.025 days 0.002 days
Tt 0.015 days 0.001 days

4.2. Simulation in Dry Weather

In this simulation, we initially compared the performance of traditional model predic-
tive and PI controllers under dry weather conditions. The upper plots in Figures 3 and 4
depict the trajectories of the outputs SNO,2 and SO,5. The blue solid line represents the
traditional model predictive control strategy, while the black dashed line represents the
PI control strategy. From the figures, it is evident that the output trajectories under the
traditional model predictive controller quickly converged to the setpoints after minor fluc-
tuations, whereas the PI controller exhibited larger oscillations and slower response time.
Therefore, the traditional model predictive controller demonstrated superior performance
in terms of setpoint tracking compared to the PI controller.

Figure 3. Trajectories of SNO,2 and Qa with the PI control (black lines), MPC (blue lines), and MPC
with ET (orange lines, γ = 0.5) in dry weather conditions.

Figure 4. Trajectories of SO,5 and KLa5 with the PI control (black lines), MPC (blue lines), and MPC
with ET (orange lines, γ = 0.5) in dry weather conditions.

Under the MPC strategy, the relative variation ranges of SNO,2 and SO,5 with respect to
their setpoints were ±0.02 gN/m3(±2%) and ±0.02 gN/m3(±1%), respectively. However,
under the PI controller, the relative variation ranges of the two outputs with respect to their
setpoints were ±0.79 gN/m3(±79.2%) and ±1.207 gN/m3(±60.35%). The lower plots in
Figures 3 and 4 present the corresponding control input trajectories Qa and KLa5. The blue
dashed lines in the figures represent the upper limits of the control inputs, and it can be
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observed that all control actions remained within their constraint ranges. This was because
MPC inherently addresses the interactions between controlled variables, handles system
constraints, and utilizes future behavior trajectories to compute control actions. However, it
is important to note that this process may involve unnecessary computational steps, hence
the application of the algorithm proposed in Section 3 to the WWTP.

Under dry weather conditions, the effluent quality-aware event-triggered MPC was
implemented in the system. The output and input trajectories under event-triggered control
are represented by orange dotted lines in Figures 3 and 4. After applying Algorithm 1,
the present control action is not optimized when the event-triggered condition is not
satisfied. Instead, the optimal control action from the previous triggered time is retained.
The optimal control action is only updated and applied when the triggered condition is
satisfied at some future time. As a result, the performance in terms of setpoint tracking
is not as good as traditional MPC. However, it is important to note that the control of the
BSM1 in wastewater treatment differs from trajectory optimization models that primarily
focus on parameter tracking. Good tracking performance only reflects the capability of the
controller and does not necessarily indicate the overall effectiveness of the control system.
Therefore, the main considerations should be the effluent quality (EQ) and the operational
cost index (OCI). The EQ result obtained using the proposed event-triggered MPC in this
study was 5970.88 kg.poll.units.day−1, with an OCI of 16,386.08. On the other hand, under
traditional MPC, the EQ was 5966.71 kg.poll.units.day−1, with an OCI of 16,382.68. The
difference between the two is relatively small, but the event-triggered control reduced the
computational effort by 27.06%.

Within a period of 14 days, there were a total of 1345 sampling instances (every 15 min).
Figure 5 presents an evaluation of the triggering events for the last seven days. The y-
axis values in the figure represent whether the triggered logic was satisfied. A value of
“0” represents no triggering of control actions or update information, while a value of
“1” indicates that the controller received new states and recalculated control actions. To
provide a clearer view of the simulation results, the triggered events for days 10 to 11 are
magnified in the figure. The purple line represents the effluent quality (normalized). From
the figure, it can be observed that long periods of continuous triggering often occurred
during times when the effluent water quality was relatively poor. This indicates that the
controller was able to maintain operation and track the steady-state optimal setpoint even
under conditions of poor effluent quality.

Figure 5. Triggering effect (blue line connecting the red and green dots) and effluent quality (purple
line) in dry weather.

Table 5 compiles an overview of the performance exhibited by the three control
strategies during dry weather conditions. Additionally, it presents results for γ set at 0.01,
with these outcomes closely mirroring the performance observed under traditional MPC.
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Furthermore, the table offers delineations of the limits for the variables SNH,e, Ntot,e, TSSe,
CODe, and BODe. The simulation results indicated that all these variables were within the
corresponding limits specified for wastewater discharge regulations.

Table 5. Performance in dry weather.

Spec. Unit Limit PI MPC ET MPC (γ = 0.5) ET MPC (γ = 0.01)

IAESNo,2 (g/m3)·d 1.035 0.0002 0.66 0.189
IAESO,5 (g/m3)·d 2.203 0.0004 0.55 0.158

EQ kg.poll.units.day−1 6123.53 5966.71 5970.85 5967.29
OCI 16,362.3 16,382.68 16,386.08 16,384.73
SNH,e gNm−3 <4 2.59 2.24 2.24 2.24
Ntot,e gNm−3 <18 16.79 16.66 16.67 16.66
TSSe gSSm−3 <30 13.02 13.04 13.04 13.04
CODe gCODm−3 <100 48.24 48.25 48.25 48.25
BODe gBODm−3 <10 2.76 2.75 2.75 2.75

No. of events 1345 981 1105

4.3. Simulation in Rainy and Stormy Weather

In this section, we evaluated the performance of the three control strategies under rainy
and stormy weather conditions. The rainy weather file consisted of one week of dynamic
dry weather data followed by long-term rainfall data for the second week. Similarly, the
stormy file included one week of dynamic dry weather data followed by the addition of
storm event data to the dry weather data for the second week.

Figures 6 and 7 display the trajectories of the outputs SNO,2 and SO,5 with these three
strategies, as well as the corresponding control input trajectories, under the rainy weather
condition. Similarly, Figures 8 and 9 show the output and control input trajectories of the
three control strategies under stormy weather conditions.

Figures 10 and 11 illustrate the triggering behavior and effluent quality curves un-
der event-triggered MPC for each weather condition. Similar to what was observed
under dry weather conditions, continuous triggering occurred when the effluent qual-
ity was relatively poor. Under rainy weather conditions, the EQ with the PI controller
was 8339.92 kg.poll.units.day−1; with MPC, it was 8108.55 kg.poll.units.day−1; and with
event-triggered MPC, it was 8108.79 kg.poll.units.day−1. Under stormy weather condi-
tions, the EQ with the PI controller was 7288.69 kg.poll.units.day−1; with MPC, it was
7098.53 kg.poll.units.day−1; and with event-triggered MPC, it was 7099.11 kg.poll.units.day−1.
The effluent quality performance under event-triggered MPC was almost the same as that
under traditional MPC. However, the triggered times were reduced by 24% and 25.4%,
respectively, indicating that this approach can avoid unnecessary computations based on
performance indicators.

Figure 6. Trajectories of SNO,2 and Qa with the PI control (black lines), MPC (blue lines), and MPC
with ET (orange lines, γ = 0.5) in rainy weather conditions.
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Figure 7. Trajectories of SO,5 and KLa5 with the PI control (black lines), MPC (blue lines), and MPC
with ET (orange lines, γ = 0.5) in rainy weather conditions.

Figure 8. Trajectories of SNO,2 and Qa with the PI control (black lines), MPC (blue lines), and MPC
with ET (orange lines, γ = 0.5) in stormy weather conditions.

Figure 9. Trajectories of SO,5 and KLa5 with the PI control (black lines), MPC (blue lines), and MPC
with ET (orange lines, γ = 0.5) in stormy weather conditions.
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Figure 10. Triggering effect (blue line connecting the red and green dots) and effluent quality (purple
line) in rainy weather.

Figure 11. Triggering effect (blue line connecting the red and green dots) and effluent quality (purple
line) in stormy weather.

Table 6 summarizes the performance of the three control strategies under rainy and
stormy weather conditions. The table also provides the limits for the variables SNH,e,
Ntot,e, TSSe, CODe, and BODe. The simulation results indicate that all these variables were
within the corresponding limits specified by wastewater discharge regulations. The table
additionally presents results for γ = 0.01 under two different weather conditions, and these
outcomes were largely consistent with the performance achieved under traditional MPC.
This observation highlights the efficacy of effluent quality-aware event-triggered control
with smaller threshold settings in mitigating the occurrence of the alternating trigger and
non-trigger patterns inherent in single-threshold logic. Furthermore, even with larger
threshold values, this approach maintains the ability to track optimal setpoints during
periods of poorer effluent quality.
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Table 6. Performance in rainy and stormy weather.

IAESNo,2 IAESO,5

EQ
kg.poll.

units.day−1
OCI SNH,e

gNm−3
Ntot,e

gNm−3
TSSe

gSSm−3
CODe

gCODm−3
BODe

gBODm−3 No. of Events

Limit <4 <18 <30 <100 <10

Rain

PI 1.31 1.94 8339.92 15,968.98 3.24 14.64 16.19 48.24 3.45 None
MPC 0.03 0.0007 8108.55 16,019.24 2.84 14.49 16.24 52.64 3.47 1345

ETMPCγ=0.5 0.48 0.39 8108.79 16,023.09 2.84 14.49 16.24 52.64 3.47 1042
ETMPCγ=0.01 0.14 0.08 8108.55 16,019.24 2.84 14.49 16.24 52.64 3.47 1155

Storm

PI 1.29 2.13 7288.69 17,240.95 3.1 15.75 15.26 51.35 3.2 None
MPC 0.27 0.01 7098.53 17,237.86 2.62 15.78 15.35 51.43 3.21 1345

ETMPCγ=0.5 0.49 0.35 7099.11 17,238.66 2.62 15.79 15.35 51.43 3.21 1004
ETMPCγ=0.01 0.32 0.11 7098.53 17,239.82 2.62 15.78 15.35 51.43 3.21 1177

4.4. Comparative Experiment

In this section, we compare the event-triggered control algorithm proposed in this
paper with the algorithm presented in [20] under stormy weather conditions. The triggered
logic designed in [20] is defined as follows:

Event =
{

1 |yset(t)− y(t)| ≥ γ or | de
dt | ≥ µ or t− te ≥ N∆,

0 othervise.
(32)

where µ represents the maximum allowable deviation of the one-step-ahead predicted
output from the desired setpoint. It is also stipulated that the maximum time interval for
situations not meeting the triggered logical is N∆, where ∆ represents the sampling time
interval. The event-triggered behavior when applying this triggered logic to a WWTP in
stormy weather conditions is depicted in Figure 12.

Figure 12. Triggering effect (blue line connecting the red and green dots) and effluent quality (purple
line) in stormy weather using the triggered logic from Equation (32).

From the figure, it is clear that, even during sampling intervals with poor effluent
quality, the controller was permitted to remain inactive. While this triggered logic did
help reduce computational load, effluent quality performance exhibited uncertainty, which
was closely related to the values of γ and µ. Finding the appropriate threshold to bal-
ance the relationship between computational load and performance may be challenging
for operators.

The comparative data for the two different event-triggered logic methods are summa-
rized in Table 7, where OEMPC corresponds to the results obtained using the event-triggered
logic from Equation (32) and NEMPC corresponds to the results obtained using the event-
triggered from Equations (26) and (27). It can be observed that the effluent quality achieved
using the trigger logic from Equation (32) was 7154.09 kg.poll.units.day−1, which was un-
satisfactory compared to the effluent quality of 7098.53 kg.poll.units.day−1 achieved under
traditional MPC. However, the effluent quality obtained by applying the trigger logic from
Equations (26) and (27) was 7099.11 kg.poll.units.day−1, aligning with the performance of
traditional MPC. Operators can intuitively set the desired effluent quality to strike a balance
between computational load and performance. In other words, the event-triggered logic
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proposed in this paper for WWTPs has the capability to conserve computational resources
without compromising performance.

Table 7. Performance with different types of event-triggered logic.

IAESNo,2 IAESO,5

EQ
kg.poll.

units.day−1
OCI SNH,e

gNm−3
Ntot,e

gNm−3
TSSe

gSSm−3
CODe

gCODm−3
BODe

gBODm−3 No. of Events

MPC 0.27 0.01 7098.53 17,237.86 2.62 15.78 15.35 51.43 3.21 1345
OETMPC 2.71 1.32 7154.09 17,242.44 2.66 15.97 15.35 51.44 3.22 584
NETMPC 0.49 0.35 7099.11 17,238.66 2.62 15.79 15.35 51.43 3.21 1004

5. Conclusions and Future Work

In this paper, an effluent quality-aware event-triggered model predictive control
strategy was proposed for the BSM1 to reduce the computational burden of the controller.
Simulation results demonstrated that both the traditional MPC and the event-triggered
MPC outperformed the PI control strategy in terms of controlling the wastewater treatment
process. However, the event-triggered MPC strategy, which is based on the deviation of
effluent quality performance and tracking variables, seeks a balance between computational
time and performance requirements. Therefore, it can shorten the computation time while
achieving performance comparable to traditional MPC. On average, this algorithm can
reduce the computational load by 25.49%, with almost no impact on performance.

For future work, we will consider the problem of model error to enhance the robustness
of event-triggered control. The proposed method may also be combined with other schemes
to ensure effluent quality and further reduce computational burden. For example, by
applying a variable horizon strategy based on the event-triggered control, the horizon
can be incorporated into the decision variables of the optimization problem to minimize
the single-step computation time. In simple terms, the event-triggered control strategy
determines “whether to do”, while the variable horizon control strategy determines “how
to do”. Therefore, effluent quality-aware event-triggered control represents a promising
approach that can greatly enhance wastewater treatment efficiency.
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