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Abstract: Knowledge graphs (KGs) have gained prominence for representing real-world facts, with
queries of KGs being crucial for their application. Aggregate queries, as one of the most important
parts of KG queries (e.g., “ What is the average price of cars produced in Germany?”), can provide
users with valuable statistical insights. An efficient solution for KG aggregate queries is approximate
aggregate queries with semantic-aware sampling (AQS). This balances the query time and result
accuracy by estimating an approximate aggregate result based on random samples collected from a
KG, ensuring that the relative error of the approximate aggregate result is bounded by a predefined
error. However, AQS is tailored for simple aggregate queries and exhibits varying performance for
complex aggregate queries. This is because a complex aggregate query usually consists of multiple
simple aggregate queries, and each sub-query influences the overall processing time and result quality.
Setting a large error bound for each sub-query yields quick results but with a lower quality, while
aiming for high-quality results demands a smaller predefined error bound for each sub-query, leading
to a longer processing time. Hence, devising efficient and effective methods for executing complex
aggregate queries has emerged as a significant research challenge within contemporary KG querying.
To tackle this challenge, we first introduced an execution cost model tailored for original AQS (i.e.,
supporting simple queries) and founded on Taylor’s theorem. This model aids in identifying the
initial parameters that play a pivotal role in the efficiency and efficacy of AQS. Subsequently, we
conducted an in-depth exploration of the intrinsic relationship of the error bounds between a complex
aggregate query and its constituent simple queries (i.e., sub-queries), and then we formalized an
execution cost model for complex aggregate queries, given the accuracy constraints on the error
bounds of all sub-queries. Harnessing the multi-objective optimization genetic algorithm, we refined
the error bounds of all sub-queries with moderate values, to achieve a balance of query time and
result accuracy for the complex aggregate query. An extensive experimental study on real-world
datasets demonstrated our solution’s superiority in effectiveness and efficiency.

Keywords: simple aggregate query; complex aggregate query; execution cost model; knowledge
graph; multi-objective optimization; effectiveness and efficiency trade-off; genetic algorithm; Taylor’s
theorem; normal equation; CentOS workstation; JAVA; Python

MSC: 68W25

1. Introduction

In 2012, Google introduced the concept of knowledge graphs (KG), to manage large
amounts of real-world information, represented as a comprehensive graph.In this graph,
entities with attributes are denoted as nodes, while relationships between entities are repre-
sented as edges. KGs play a pivotal role in various applications, including intelligent search,
question answering, and semantic search [1,2]. KG queries stand out as a fundamental
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component of the above applications and have been widely studied in the literature. They
can be divided into two categories, according to the query type. At the beginning, KG
queries primarily focused on addressing the factoid query problem. Factoid queries were
defined as enumerations of noun phrases [3], such as “Find all cars produced in Germany”. A
common technique for answering factoid queries is a graph query [4–9]. This approach
involves constructing a query graph to represent the user’s intent and identifying exact
or approximate matches with the query graph within the KG. Recently, there has been
growing interest in extracting statistical insights from these entity sets. For instance, the
aggregate query [10] “What is the average price of cars produced in Germany?” aims to calculate
the average price of all automobiles linked through the semantic relation “product” to
the specific entity “Germany”. Notably, it was observed that 31% of queries in the real
query log LinkedGeoData13 and 30% of queries in WikiData17 were identified as aggregate
queries [11].
Existing solutions. A straightforward method for handling aggregate queries for KGs is to
perform additional aggregate operations on the answers returned by factoid queries. The
effectiveness of this method depends on the quality of answers provided by the factoid
queries. In addition, this method tends to overlook answers with equivalent meanings
but differing structures [4,6,9,12–15], thus resulting in inaccurate results. The concept of
an "accurate" answer is often contingent upon the user’s query intent and may even be
inherently ambiguous [16,17]. Moreover, this still suffers from the inefficiency issue, due to
the extra time required to run additional aggregate operations. Therefore, the method of
approximate aggregate queries with semantic-aware sampling (AQS) [18,19] was proposed
to tackle the issues encountered above. It utilizes a random walk based on KG embedding
to collect high-quality random samples through semantic-aware sampling and calculates
approximate aggregate results based on random samples using the bag of little bootstraps
(BLB) method. It returns a confidence interval regarding the approximate result and ensures
that the relative error of the approximate result is bounded by a predefined error bound.
We discuss this in Section 2 in more detail. AQS performs well for simple aggregate queries
of KGs, in both effectiveness and efficiency. However, it cannot be directly extended to
complex aggregate queries of KGs. Here, we call an aggregate query AQG of a KG G
(e.g., How many cars are produced in Germany?, see Figure 1, middle left part), which is
simple if formed as a query graph Q with only one specific entity (e.g., Germany) and a
predicate (e.g., product), and this aims to find the aggregate results for an attribute (e.g.,
the aggregate function fa=COUNT for a wildcard attribute ∗) of target entities (e.g., cars)
that are semantically related to the given specific entity following the specific predicate.
We call a query complex if it is a combination of a set of simple aggregate queries (i.e.,
sub-queries). In Section 2, we formally define simple and complex aggregate queries. The
reason why AQS cannot adapt to complex queries comes from the fact that even if each
sub-query satisfies the predefined error bound (guaranteed by performing AQS for each
sub-query), the accuracy of the complex query may still not be guaranteed. We next show
this problem of AQS clearly.
Efficiency vs. effectiveness trade-off problem. In AQS, efficiency refers to the response
time of a query, and effectiveness (or accuracy) refers to the relative error of the approximate
aggregate result regarding the ground truth. Intuitively, the accuracy of a complex query
can be guaranteed if we set quite a small predefined error bound for each sub-query
of the complex query. However, this would significantly increase the response time,
as the AQS would require more time to collect additional samples to achieve a good
approximate aggregate result. This creates an efficiency vs. effectiveness trade-off problem
for complex aggregate queries using AQS. More precisely, the essence of this problem
is how to configure appropriate predefined error bounds for each sub-query, so that the
complex query’s accuracy is guaranteed and its response time is as short as possible. We
clarify this in the following two examples.
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Figure 1. Simple and complex aggregate queries on a knowledge graph (taking DBpedia as an
example).

Example 1. Effectiveness issue. Considering the complex aggregate query AQ?
G ="how many

times the number of cars produced in Germany is that in China?" with two sub-queries (see Figure 1,
top part). This consists of two sub-queries: AQ1

G = "how many cars produced in Germany" (ground
truth V1 = 252 in DBpedia and aggregate function is COUNT) and AQ2

G = “how many cars
produced in China” (ground truth V2 = 180 in DBpedia and aggregate function is COUNT).
The ground truth of AQ?

G is 252/180 = 1.4. With a predefined error bound e = 1% for AQ∗G,
the aim is to ensure the relative error of the approximate result V̂ of AQ?

G remains within 1%.
Setting e1 = e2 = e = 1% appears straightforward (e1 and e2 are predefined error bounds for
sub-queries), yielding V̂1 = 254 and V̂2 = 179 for AQ1

G and AQ2
G, respectively. Although

the relative error of each AQi
G remains within its own ei (e.g., 254−252

252 = 0.7% < 1% for
AQ1

G and 180−179
180 = 0.56% < 1% for AQ2

G), the relative error of AQ?
G’s approximate result

(V̂ = 254/179 = 1.42 and 1.42−1.4
1.4 = 1.43%) exceeds the specified e = 1%, leading to an

accumulation of errors. Worse still, the relative error of the final aggregate result may increase with
an increasing number of sub-queries in a complex query.

To address this, a simple method is to set an ei smaller than e for each sub-query to
obtain more accurate sub-query results, thus minimizing the relative error of V̂. However,
this raises another efficiency issue, which we show below.

Example 2. Efficiency issue. Given e1 = e2 = 0.5% for two sub-queries, we obtain two
approximate aggregate results using AQS as V̂1 = 253 and V̂2 = 179.2. The relative error of each
sub-query’s aggregate result remains within 0.5%, and the relative error of the complex query’s
aggregate result V̂ = 253/179.2 = 1.41 is 1.41−1.4

1.4 = 0.71% < 1%. However, this configuration
results in a significant increase in the querying time for each sub-query. The response time of
AQ?

G in this case is 1253.97 ms. Compared to the time (797.52 ms) consumed in the case of
Example 1, simply reducing the error bounds e for all sub-queries from 1% to 0.5% resulted in a
57.2% increment in the response time. The smaller the sub-query’s error bound ei, the longer the
response time of a complex query. This is because we need to collect more representative samples to
refine the approximate aggregate result of each sub-query.

In summary, configuring appropriate error bounds for sub-queries is crucial for achiev-
ing a trade-off between the effectiveness and efficiency of complex aggregate queries when
using AQS.We next briefly show our solution using the problem–solution tree illustrated in
Figure 2.
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Multi-objective optimization of sub-queries’ 
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Figure 2. Problem–solution tree of the effectiveness vs. efficiency trade-off problem and our solution.

Our solution and contributions. As shown in Figure 2, we focus on the effectiveness
vs. efficiency trade-off problem of AQS for aggregate queries of KGs. We start with the
preliminaries of AQS and formally define this problem in Section 2. To solve it, we first
study the relationship between effectiveness and efficiency on aggregate queries for KGs
(Problem-1), then we leverage this relationship to achieve a balance between the two
(Problem-2). For Problem-1, we first study the relationship between effectiveness and
efficiency for simple aggregate queries (Problem-1.1), then we extend this to complex
aggregate queries (Problem-1.2). To solve Problem-1.1, in Section 3, we first present a cost
model of AQS for simple aggregate queries on the basis of Taylor’s theorem (Section 3.1).
Then, we show how to determine the parameters of this cost model using a normal equation
(Section 3.2). Next, we solve Problem-1.2 by exploring the relationship between the sub-
query error bound and the complex aggregate query error bound, establishing a general
form of the execution cost model for complex aggregate queries, with accuracy constraints
given the relationship of the error bounds (Section 4.1). Finally, in Section 4.2, we employ
a multi-objective optimization genetic algorithm to determine the optimal error bounds
for sub-queries, thus minimizing the total response time for a complex aggregate query,
while returning a sufficiently accurate approximate aggregate result for the complex query.
In the context of simple aggregate queries, our approach using a cost model for AQS
exhibited 1.8X efficiency improvement, on average, compared to the original AQS without
the cost model. For complex aggregate queries, our method stands as the sole solution
capable of meeting predefined user error bounds, while maintaining a commendable level
of efficiency.

• We present an execution cost model for AQS based on Taylor’s theorem and obtain
appropriate parameters for this cost model using the normal equation.

• We extend the cost model of AQS to complex aggregate queries, associated with a set
of accuracy constraints on the complex aggregate queries, as well as the relationship
between the sub-query error bound and complex query error bound.

• We leverage a genetic algorithm to determine the optimal error bounds for sub-queries,
achieving a balance between efficiency and accuracy.

• We conducted experiments with three widely used real-world KGs, to demonstrate
the effectiveness and efficiency of our method.

2. Preliminaries

We first provide the preliminaries and then formalize the problem studied in this
paper. Frequently used notations are summarized in Table 1.
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Definition 1. Knowledge Graph. G = (V, E, L, A) defines the knowledge graph (KG), where a
finite set of nodes V and a set of edges E ∈ V ×V are encompassed. (1) An entity is represented by
a node u ∈ V, and the relationship between two entities is denoted by an edge e ∈ E. (2) Names
and various types are assigned to each node u ∈ V using the label function L, while each edge e ∈ E
is associated with a predicate. (3) A set of numerical attributes denoted as A(u) = a1, · · · , an are
possessed by each node u ∈ V, and the value of the numerical attribute ai of u is indicated by u.ai.

Table 1. Frequently used notations.

Notations Descriptions

G A knowledge graph

AQG = (Q, fa) A simple aggregate query over G with a query graph Q and an aggregate function fa

AQ?
G = ({AQ1

G · · · AQn
G}, f ?a ) A complex aggregate query over G consisting of sub-queries AQ1

G , · · · , AQn
G and an aggregate function fa

V The ground truth of AQ?
G ;

Vi The ground truth of AQi
G

V̂ The estimated approximate result of AQ?
G

V̂i The estimated approximate result of AQi
G

e A predefined error bound

ei An error bound for AQi
G

e? = (ei , · · · , en) A set of error bounds to achieve a balance between effectiveness and efficiency for a complex aggregate query

1− α A user-input confidence level

V̂ ± ε The confidence interval (CI) at 1− α confidence level for complex aggregate query AQ?
G

V̂i ± εi The confidence interval (CI) at 1− α confidence level for sub-query AQi
G

ε The half width of AQ?
G’s CI, called the Margin of Error (MoE) of AQ?

G

εi The half width of AQi
G = (Qi , f i

a)’s CI, called the Margin of Error (MoE) of AQi
G

Example 3. A unique name and at least one type are possessed by each node u in a KG G. In
Figure 1, the name L(DenzaX).name = DenzaX and the type L(DenzaX).type = Automobile are
held by the entity u4. Additionally, a set of numerical attributes, such as A(DenzaX) = {price,
horsepower · · · wheelbase}, are associated with it. Furthermore, the predicate L(e) = product is
associated with the edge e = Benz− DenzaX. The value corresponding to the value attribute a of
node u can be represented as A(u).a. For instance, A(DenzaX).horsepower = 245.

We start with a simple aggregate query, which is defined in the query graph for a
simple question—one of the most common questions [20,21], involving a single specific
entity and a single predicate, taking the target entities as the answers [22]. We first obtain
the execution cost model for the simple aggregate query, then we use it to form the model
for complex aggregate queries.

Definition 2. Simple aggregate query. AQG = (Q, fa) defines the simple aggregate query over
a KG G, where Q is the query graph used for candidate answer retrieval from G, and fa represents the
aggregate function applied to the numerical attribute a of the answer to Q (considering three widely
used non-extreme aggregate functions COUNT,SUM,AVG.). The query graph Q = (VQ, EQ, LQ)
consists of a query node set VQ, an edge set EQ, and a label function LQ. For a simple question,
the query node set VQ = qs, qt comprises two nodes, with qs representing a specific node and qt

denoting the target node. The types and name are known for qs, whereas only the types are known
for qt. Additionally, the edge set EQ contains one edge e = qsqt with a predicate L(e).

In this paper, we consider a complex aggregate query having multiple sub-queries as
a complex aggregate query, such as star queries [23].
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Definition 3. Complex aggregate query. We define a complex aggregate query for G as AQ?
G =

({AQ1
G · · · AQn

G}, f ?a ), where (1) is a set of simple aggregate queries {AQ1
G · · · AQn

G}, each of
which is defined as in Definition 2, constituting AQ?

G, (2) f ?a represents a user-defined function
(UDF) for the results of all the simple aggregate queries, combining arithmetic operations such as
+,−,×, and /.

Example 4. Figure 1 illustrates that the query graph Q for the simple question "How many cars
are produced in Germany?" contains a specific node qs (type: Country, name: Germany), a target
node qt (type: Automobile), and an edge e = qsqt (predicate: product). Additionally, fa is defined
as COUNT for the wildcard attribute a = “ ∗ ”.Furthermore, the complex question "How many
times the number of cars produced in Germany is that in China?" consists of two simple queries,
AQ1

G and AQ2
G, with the aggregate function f ?a = / defined using the aggregate results (COUNT)

of AQ1
G and AQ2

G for the wildcard attribute a = “ ∗ ”.

Approximate aggregate queries with semantic-aware sampling (AQS) [18] has recently
been developed as an efficient and effective solution for answering simple aggregate
queries for KGs, and it is briefly described as follows. When a simple aggregate query
AQG is posed for a KG G, the process of AQS comprises three main steps: (1) Semantic-
aware sampling. A semantic-aware online sampling algorithm based on random walk for
G is employed by AQS to gather answers from G, forming a random sample that likely
represents entities with semantic similarity to the query graph Q. (2) Correctness validation
of a random sample. AQS uses a greedy algorithm to filter the correct answers from the
random sample, where a correct answer is defined as one with a semantic similarity greater
than a predefined threshold τ. (3) Estimation and accuracy guarantee. With the random
sample in hand, AQS estimates an approximate aggregate result V̂. Subsequently, an
accuracy guarantee for V̂ is provided by iteratively computing a tight confidence interval
CI = [V̂ − ε, V̂ + ε] at a high confidence level 1− α, with ε representing the half-width of
the CI (also known as the margin of error). This CI indicates that the ground truth V is
covered by the interval V̂ ± ε with a probability of 1− α. We terminate AQS when the
condition ε ≤ V̂·e

1+e is satisfied, showing that the relative error of V̂ regarding V has an upper
bound of e with a probability of 1− α (Theorem 2 in [18]).

Given the above definitions, the following problem captured our interest: an accurate
execution cost model for AQS for complex aggregate queries of KGs needs to be designed.
Typically, as the predefined error bound e decreases, the query time of AQS (or the execution
cost) increases. An underlying relationship exists between the query time and e, and we
aimed to derive this relationship to formulate our execution cost model.

Problem 1. Given a complex aggregate query AQ?
G, we aimed to: (1) collect training data D =

{〈t∗1 , x∗1〉 · · · 〈t∗m, x∗m〉} for the execution cost (i.e., running time) t regarding the independent
variable x (e.g., x is the predefined error bound e, etc., and t∗i and x∗i are the observations of t and x),
by running AQS, and (2) deriving the execution cost of AQS for AQ?

G regarding x by using D, as
follows:

T? =
n

∑
i=1

Ti and Ti = Cost(x) (1)

s.t. minimize L(t, Cost(x)) =
m

∑
i=1

(t∗i − Cost(x∗i ))
2 for 〈t∗i , x∗i 〉 ∈ D

In Equation (1), the execution cost of the complex aggregate query AQ?
G is denoted

as T?. This cost is composed of the individual costs of each simple aggregate query AQi
G,

represented as Ti, where our execution cost model Cost(x) estimates Ti. In Section 3, the
independent variables that may affect the efficiency of AQS, such as the predefined error
bound e, are discussed. To minimize the error between Cost(x) and the exact cost t with
respect to the specific variable x, we adopt the mean squared error (MSE) as the loss
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function L(t, Cost(x)).This paper focuses on providing a solution to deriving the execution
cost model for a specific complex aggregate query AQ?

G. It should be noted that different
queries have distinct cost models (as explained in Section 3.1). In Section 4, we explore
how to utilize the obtained cost model for a particular query, to formulate a universal cost
model applicable to all queries (e.g., using the average as a simple method).

3. Execution Cost Model of AQS for Simple Aggregate Queries

In this section, the execution cost model for a simple aggregate query AQG = (Q, fa)
is studied, where the execution cost of a complex aggregate query is the sum of the cost of
each sub-query. The relationship between the time consumed in each step of AQS [18] and
the predefined error bound e is analyzed. Subsequently, a general form of the cost model is
presented based on Taylor’s theorem in Section 3.1. Finally, in Section 3.2, the training data
are collected, and the normal equation is applied, to determine the unknown parameters of
the cost model, thereby providing an execution cost model for AQG = (Q, fa).

3.1. Execution Cost of AQS

As mentioned in Section 2, AQS consists of three main steps, thus the total execution
cost of AQS for a simple aggregate query AQG = (Q, fa) involves three parts. The execution
cost of each step is next briefly analyzed (for detailed information on AQS, readers are
referred to [18]), and then the Taylor’s theorem is used to approximate the cost of each step.
Cost of semantic-aware random walk sampling. This step has three phases, where a
query graph Q and a knowledge graph (KG) G are given. In the first phase, AQS finds the
mapping node us ∈ G for the specific node qs ∈ Q that satisfies L(us).name = L(qs).name
and L(us).type ∩ L(qs).type 6= ∅. Afterward, a BFS is initiated from us to extract an n-
bounded subgraph G′ with respect to us, where each entity u from G′ is within n hops
from us. In the second phase, AQS utilizes a KG embedding model (e.g., TransE [24]) to
obtain the predicate similarity sim(L(e′), L(e)) of each edge e′ ∈ G′ to the query edge e ∈ Q.
Consequently, AQS formulates a transition matrix P based on the predicate similarities
and performs random walk on G′ until reaching convergence. Lastly, AQS employs the
continuous sampling [25] technique to collect answers with greater semantic similarity to Q,
forming a random sample S. Phases (1)–(2) are dedicated to random walk for G′, and the
last phase is utilized for random sampling. Thus, the execution costs of phases (1)–(2) and
phase (3) are denoted as Trw and Ts, respectively.

The above procedure establishes the relationship between Trw and two factors: the
size of G′ and the convergence rate of random walk. The size of G′ primarily depends
on the mapping node us corresponding to the specific node qs, because AQS restricts the
consideration to the n-bounded subgraph with respect to us, resulting in various sizes
of G′ for different qs. Conversely, the convergence rate of random walk is significantly
influenced by the predicate L(e) of the query edge. Each different predicate in the query
edge implies a distinct predicate similarity sim(L(e′), L(e)), which in turn leads to the
formation of different transition matrices P. Employing a random walk using distinct P
would consequently yield various convergence rates. For a specific simple aggregate query
AQG = (Q, fa), the size of G′ and the query edge’s predicate are predetermined, thus
making Trw a constant. Nevertheless, different queries exhibit different execution costs. Let
us contemplate the following three queries:
Q1: " How many cars are produced in Germany?"
Q2: " How many Spanish football players are there?"
Q3: " How many football players are there in Germany?"

Considering Q1 and Q2, their n-bounded subgraphs differ due to the distinct specific
nodes us with the names Germany and Spain, respectively. Consequently, they exhibit a
different Trw. Moreover, considering Q1 and Q3, they share the same n-bounded subgraph
because of the identical us with the name Germany. However, the predicates of Q1 and Q3
differ (product and nationality), resulting in distinct transition matrices and, consequently,
different Trw values. In this paper, Trw is treated as a constant for a particular query AQG



Mathematics 2023, 11, 3908 8 of 28

(we will discuss how to determine Trw later in Section 3.1). Unlike Trw, the execution cost Ts
is not a constant and depends on the size of the random sample (e.g., |S|) obtained through
continuous sampling. Generally, a larger |S| requires more Ts for continuous sampling.
Intuitively, a small predefined error bound e indicates that AQS needs more iterations to
achieve a high-quality confidence interval, by collecting a larger random sample. Hence,
the sample size |S| is determined by the value of e, making Ts essentially related to e, as
shown in Equation (2), where the function g(e) estimates the sample size for a given e,
and the function f (g(e)) estimates Ts based on the estimated sample size ˆ|S|. We will
present the general forms of g(e) and f (g(e)) later in Section 3.1 and introduce the training
procedure in Section 3.2.

Ts = f (g(e)) and ˆ|S| = g(e) (2)

Cost of Correctness validation for the random sample. After obtaining a random sample
S through semantic-aware random walk sampling, AQS employs a process of correctness
validation to identify the correct answers within S. Subsequently, AQS can directly utilize
these correct answers for approximate result estimation. In essence, correctness validation
involves enumerating all answers in S, making its execution cost Tv dependent on the
sample size |S|. Similarly to the execution cost Ts mentioned earlier, Tv can also be estimated
as Tv = f (g(e)). In other words, a smaller predefined error bound e necessitates a larger
sample size |S|, thereby resulting in a longer time for correctness validation.
Cost of estimation and accuracy guarantee. After validating a random sample S for
correctness, AQS employs two unbiased estimators and one consistent estimator for
COUNT,SUM, and AVG, respectively, to estimate the approximate aggregate result V̂ for the
query AQG in the form of a confidence interval CI = V̂ ± ε. Simultaneously, AQS provides
a robust accuracy guarantee by iteratively refining CI until ε ≤ V̂·e

1+e . Intuitively, a smaller
predefined error bound e requires more iterations for CI refinement; thus, the execution
cost of this step Te is dependent on e, and can be expressed as Te = l(e). In summary, we
define Te = l(e).
General cost model based on Taylor’s theorem. Based on the above analysis, we can
derive the total execution cost of AQS as T = Trw + Ts + Tv + Te. Since both Ts and Tv are
related to the sample size determined by the predefined error bound e, we can simplify T
by combining Ts and Tv together as Tsv:

T = Trw + Tsv + Te = Trw + f (g(e)) + l(e) , (3)

where Trw, which is a constant with respect to a particular query AQG, can be obtained
by running AQS multiple times for AQG and computing the average query time. Since
the relationship between the predefined error bound e and T is non-linear, estimating T
becomes a non-linear regression problem. To address this problem, we utilize Taylor’s
theorem [26] to present the general form of each unknown term in Equation (3) (e.g.,
f (g(e)) and l(e)). Taylor’s theorem provides an approximation of a n-times differentiable
function around a given point using a polynomial of degree n (known as the n-th order
Taylor polynomial). By applying Taylor’s theorem, the terms g(e), f (g(e)), and l(e) can be
approximated using the n-th order Taylor polynomials.

g(e) = θ0 + θ1 · e + θ2 · e2 + · · ·+ θn · en (4)

f (g(e)) = θ0 + θ1 · g(e) + θ2 · g(e)2 + · · ·+ θn · g(e)n (5)

l(e)) = θ0 + θ1 · e + θ2 · e2 + · · ·+ θn · en (6)
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3.2. Cost Model Training

Given a particular aggregate query AQG, our objective is to determine each term in
Equation (3). To estimate the execution time Trw, we repeatedly run AQS for AQG and
calculate the average time of Trw, treating it as a constant in Equation (3). On the other hand,
for Tsv and Te, we utilize the normal equation to estimate the parameters θ = {θ1 · · · θn} for
a specific order n.
Estimation of Trw. To estimate Trw, we perform only the first two phases of the first step
in AQS, which involve constructing a n-bounded subgraph and performing the random
walk until convergence. We repeat these phases for r times and calculate the average
time T̂rw = ∑r

i=1 Ti
rw/r as the estimation of Trw for the given query AQG, where Ti

rw is the
running time of the i-th execution.
Estimation of θ. To estimate the parameters θ = {θ1 · · · θn} for a given n-th order Taylor
polynomial, such as Equations (4)–(6), we first collect a set of statistics during the runtime
as the training data. Next, we use the normal equation to obtain the optimal solution θ that
minimizes the mean squared error (MSE). The details are presented below.
Collecting training data. The focus of our data collection is the relationships among the
sample size |S|, the predefined error bound e, and the execution cost of each step in AQS.
We collect run-time statistics in the form of quadruples 〈e∗, |S|∗, t∗sv, t∗e 〉, where e∗ represents
an observation of the independent variable e (with a random value in the range (0, 1]),
|S|∗ denotes the total size of the sample required by AQS for a specific e∗, t∗sv records
the execution time of continuous sampling and correctness validation in AQS for e∗, and
t∗e represents the execution time for estimation and the accuracy guarantee in AQS for
e∗. To compile the training data, we generate m observations of e as {e∗1 · · · e∗m} in our
implementation, resulting in m quadruples. Subsequently, we extract information from
these statistics to formulate distinct training data for different n-th order Taylor polynomials
and to estimate the parameters θ.
(1) Training data for Tsv. Based on the analysis in Section 3.1, Tsv is directly influenced by the
sample size |S|, which is primarily determined by the predefined error bound e. Therefore,
we initially collect a set of tuples 〈|S|∗, e∗〉 as training data, to estimate the parameters θg
for g(e) (Equation (4)). Subsequently, we gather another set of tuples 〈t∗sv, |S|∗〉 as training
data, to estimate the parameters θ f for f (g(e)) (Equation (5)). By substituting Equation (4)
with the optimal θg and Equation (5) with the optimal θ f , we can derive the final execution
cost model for Tsv.
(2) Training data for Te. As mentioned in Section 3.1, Te is associated with the predefined
error bound e. Thus, we collect a set of tuples 〈t∗e , e∗〉 as training data to estimate the
parameters θl for l(e) (Equation (6)).
Training using the normal equation. For illustrative purposes, we will use Te as an example
to explain the training process, which is identical for both Tsv and Te. Given the training
data 〈t∗e , e∗〉 collected for Te, the training using the normal equation proceeds as follows:

(1) We first transform the non-linear Taylor polynomial of Te (Equation (6)) into a
linear form by assuming Xk = ek, resulting in Te = θ0 + θ1X1 + θ2X2 + · · ·+ θnXn.

(2) We represent the parameters, features, and observed execution costs as an (n + 1)-
dimensional column vector θl = θ0 · · · θn, an m× (n + 1) matrix X, and an m-dimensional
column vector Y, respectively. We show X and Y as

X =


1 X(1)

1 X(1)
2 . . . X(1)

n

1 X(2)
1 X(2)

2 . . . X(2)
n

...
...

1 X(m)
1 X(m)

2 . . . X(m)
n

 and Y =


t∗(0)e

t∗(1)e
...

t∗(m)
e

 , (7)

where X(m)
n represents the n-order feature of the m-th observation e∗m, defined as X(m)

n = e∗m
n,

and t∗(m)
e corresponds to the m-th observation of the execution cost with respect to e∗m. (3)
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Finally, we employ the normal equation based on the MSE metric to solve for the parameters
θl , as shown below.

θl = (XTX)−1XTY (8)

Applying the same method as described above, we can estimate the parameters θg and
θ f . Subsequently, by substituting Equations (4)–(6) with the optimal values of θg, θ f , and
θl into Equation (3), we finally obtain the execution cost model T for a specific query AQG.

4. Complex Aggregate Query Method Based on the Cost Model of AQS

In Section 3, we discuss the cost model of AQS for simple aggregate queries. It is
natural that the total cost of a complex aggregate query AQ?

G is the sum of the cost of
AQ?

G’s sub-queries. Therefore, the goal of processing AQ?
G using the cost model of AQS

is to determine the optimal error bound ei of each sub-query AQi
G ∈ AQ?

G to minimize
the total running time of AQ?

G, on the premise of satisfying the accuracy constrains on
AQ?

G, i.e., ensuring the relative error of the final aggregate result of AQ?
G is bounded

by the predefined e of AQ?
G. In this section, we first explore the relationship between

the error bound of each sub-query and the error bound of the complex aggregate query
and establish the accuracy constraints on complex aggregate queries based on such a
relationship (Section 4.1). Then, we leverage a generic algorithm to obtain the optimal error
bounds for sub-queries (Section 4.2).

4.1. Accuracy Constraints on Complex Aggregate Queries.

From Definition 3, a complex aggregate query AQ?
G = ({AQ1

G · · · AQn
G}, f ?a ) is com-

posed of a set of sub-queries AQi
G, f ?a is a UDF for all simple aggregate query results.

Among them, each sub-query AQi
G will obtain an approximate result V̂i through the AQS

method, and the relative error of the approximate result is determined using the error
bound ei of the sub-query AQi

G. The larger ei, the greater the probability that the approxi-
mate result V̂i will deviate from the true value Vi. Obviously, in order to make the result of
AQ?

G satisfy the user-defined error bound e, the error bounds configured for all sub-queries
e? = {e1 · · · en}must satisfy a certain accuracy constraint.

In [18], Wang et al. provided a theorem to show that, given a simple aggregate query
with a computed confidence interval CI = [V̂ − ε, V̂ + ε] (the user-specific confidence level

is 1− α), if ε ≤ V̂·e
1+e , then the probability of the relative error satisfying |V−V̂|

V ≤ e is 1− α.
We next discuss how to leverage the above theorem to derive the accuracy constraint of
e? = {e1 · · · en}. To be more precise, the error bound e for a complex aggregate query is
guaranteed only if the accuracy constraint of e? = {e1 · · · en} holds. To achieve this, we start
with a complex aggregate query consisting of two sub-queries, then provide the general
form of the accuracy constraints for multiple sub-queries.

Given a complex aggregate query AQ?
G = ({AQ1

G, AQ2
G}, f ?a ) and a user-desired error

bound e for AQ?
G, the error bound of AQ1

G is e1, and the preset error bound of AQ2
G is e2,

the estimated aggregate results of sub-queries using AQS are V̂1 and V̂2, respectively, and

the MoEs are ε1 and ε2, where both satisfy εi ≤ V̂i ·ei
(1+ei)

≤ V̂i · ei. Next, we will use different
UDFs to derive the error bound constraints between the predefiened error bound e and the
error bounds e? = {e1, e2} of all sub-queries.

• Case 1: f ?a = +.
In this scenario, if f ?a = +, the true value of AQ?

G is V1 + V2, and the approximate
query result is V̂1 + V̂2. We want to determine the accuracy requirements between e

and e? that ensure (V1+V2)−(V̂1+V̂2)
V1+V2

≤ e. We consider two cases:
When V1 + V2 is to the right side of the confidence interval, specifically V̂1 + V̂2 ≤
V1 + V2 ≤ V̂1 + V̂2 + ε1 + ε2, we have
(V1+V2)−(V̂1+V̂2)

V1+V2
≤ ε1+ε2

V̂1+V̂2
≤ V̂1·e1+V̂2·e2

V̂1+V̂2
≤ e.
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When V1 + V2 is to the left side of the confidence interval, specifically V̂1 + V̂2 − ε1 −
ε2 ≤ V1 + V2 ≤ V̂1 + V̂2, we have
(V̂1+V̂2)−(V1+V2)

V1+V2
≤ ε1+ε2

V̂1+V̂2−(ε1+ε2)
≤ 1

V̂1+V̂2
e

1+e ·(V̂1+V̂2)
−1

= e.

In summary, if any sub-query satisfies εi ≤ V̂·ei
(1+ei)

≤ V̂ · ei, then (V1+V2)−(V̂1+V̂2)
V1+V2

≤ e is
established under the accuracy condition of e1 ≤ e and e2 ≤ e.

• Case 2: f ?a = −.
In this scenario, if f ?a = −, the true value of AQ?

G is V1−V2, and the approximate query
result is V̂1 − V̂2. Similarly to Case 1, we consider two cases and derive the accuracy
requirements between e and e?. The explanation of this result can be summarized as
follows:
If any sub-query satisfies εi ≤ V̂·ei

(1+ei)
≤ V̂ · ei, then (V1+V2)−(V̂1+V̂2)

V1+V2
≤ e is established

under the accuracy conditions of e1 ≤ e and e2 ≤ e.

• Case 3: f ?a = ×.
In this case, when f ?a = × and AQ?

G represents V1 ·V2, the approximate query result
is V̂1 · V̂2. Two scenarios are analyzed, and accuracy conditions between e and e? are
derived. The explanation of the result can be summarized as follows:

If any sub-query satisfies ε ≤ V̂·e
(1+e) ≤ V̂ · e, then (V1·V2)−(V̂1·V̂2)

V1·V2
≤ e is established

under the accuracy condition of e1 + e2 + e1 · e2 ≤ e.

• Case 4: f ?a = /.
In the final case, when f ?a = / and AQ?

G represents V1/V2, the query result is V̂1/V̂2,
we once again consider two scenarios and derive the corresponding accuracy condi-
tions. The explanation of this result can be summarized as follows:

If any sub-query satisfies ε ≤ V̂·e
(1+e) ≤ V̂ · e, then (V1/V2)−(V̂1/V̂2)

V1/V2
≤ e is established

under the condition of e1+e2
1−e1

≤ e and e1+e2
1−e2

≤ e.

• General form
From the aforementioned inference, we can extend these arithmetic operators to
encompass a broader spectrum, eventually abstracting all operations between sub-
queries into a single symbol, we can thereby establish the accuracy constrains on
the complex aggregate queries as follows: Given a complex aggregate query AQ?

G =
({AQ1

G · · · AQn
G}, f ?a ), the query result of AQ?

G is calculated using the expression
formed by connecting the results of its sub-queries {AQ1

G · · · AQn
G}with a series of op-

erators. The query results of {AQ1
G, · · · , AQn

G} can be expressed as V̂ = {V̂1, · · · , V̂n},
and a series of operators are abstracted into ⊕, then the final result of the complex
aggregate query AQ?

G can be expressed as V̂ = V̂1 ⊕ V̂2 ⊕ · · · ⊕ V̂n. We can utilize
operator priorities (e.g., numeric operators, string operators, logical operators, etc.) to
execute combined operations for each sub-query. Operators with a higher priority are
combined initially, followed by the combination of lower priority operators. Addition-
ally, parentheses can be employed to modify the priority order of operators during the
combination process. This enables the determination of error-bound constraints for
sub-queries in a bottom-up approach. Supposing that the operator between V̂i and V̂j
holds the highest priority, it becomes imperative to ensure that the error bound (ei, ej)
adheres to specific constraints, denoted as ei⊕ ej ≤ eij. In cases where the computation
of V̂i ⊕ V̂j requires the involvement of operators from V̂k, their corresponding error
bound constraints can be represented as eij ⊕ ek ≤ eijk, and so forth. Ultimately, we
derive the general form of the error bound constraint for complex aggregate queries
expressed as Equation (9).

e1 ⊕ e2 ⊕ · · · ⊕ en ≤ e (9)
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4.2. Multi-Objective Optimization Based on Genetic Algorithm

Given a complex aggregate query AQ?
G = ({AQ1

G · · · AQn
G}, f ?a ), the cost model

of the sub-query AQi
G is Ti. Then the mathematical formulation of the multi-objective

optimization problem of running AQ?
G based on AQS is presented as in Equation (10):

finding the optimal error bounds of sub-queries to minimize the total running time of AQ?
G,

while ensuring the constraint of the error bound on complex aggregate queries is satisfied.

min
n

∑
i=1

Ti (10)

s.t. e1 ⊕ e2 ⊕ · · · ⊕ en ≤ e

Given that conventional multi-objective optimization algorithms are susceptible to
convergence toward local optima, compounded by the inherent unstructured attributes
of our problem, we opted to employ a genetic algorithm for multi-objective optimization
to effectively tackle the issue. Algorithm 1 shows the whole procedure of multi-objective
optimization based on the genetic algorithm.

Algorithm 1 Multi-objective Optimization Based on the Genetic Algorithm
Input: error bound constraint e1 ⊕ e2 ⊕ · · · ⊕ en ≤ e, the sub-query’s cost model Ti

Output: optimal combination of error bounds e? = {e1, e2, · · · , en}
1 initpop = initPopulation(s,n);
2 for i← 0 to 50
3 do pop = encoding();
4 fitness();
5 crossover();
6 mutation();
7 decoding();
8 roulettewheel();
9 findBest();
10 return the best e? = {e1, e2, · · · , en};

Initially, we utilize the initPopulation() function to initialize our population. The
size of this population is denoted as s, with each individual corresponding to a combination
of error parameters for a complex aggregate query. A complex aggregate query error
parameter combination consists of n sub-query error bounds. To facilitate storage, we
employ a two-dimensional array, population[s][n], where each population[i][j] denotes the
error bound for the j-th sub-query of the i-th complex aggregate query. Subsequently,
considering that the error bound for each sub-query must not exceed the predefined error
bound of the complex query, we generate random numbers r ∈ (0, e] to represent the
error bound of the sub-queries, where e represents the predefined error bound for the
complex aggregate query. This process completes the initialization of our population. Next,
binary coding (encoding()) is applied to convert the parameters of the problem space into
chromosomes in the genetic space, meaning each individual population[i] is binarized.

In the subsequent fitness() phase, the pivotal question is how to construct the
fitness function to compute the fitness of each individual. To address this, let us begin by
analyzing Equation (11). Our objective is to minimize the response time, while adhering
to accuracy constraints. Therefore, we aim to capture the fitness using the response time,
with higher fitness values being more favorable for subsequent calculations. Accordingly,
we calculate the potential execution times of sub-queries based on the parameters of the
sub-query model and error parameters. We then sum these execution times, resulting in the
total possible execution time for the complex aggregate query under this error parameter
combination. To emphasize the preference for higher fitness values, we make this execution
time negative and add a large positive number (in our JAVA program, we employed
Integer.MAX_VALUE = 2,147,483,647 for this purpose). Additionally, for individuals that
do not satisfy the accuracy constraints, we set their fitness to zero. The specific fitness
function is represented by Equation (11).



Mathematics 2023, 11, 3908 13 of 28

Fitness(xj) =

{
Tmax −∑n

i=1 Ti
j , j = 1, 2, . . . , s and e1

j ⊕ e2
j ⊕ · · · ⊕ en

j ≤ e

0, j = 1, 2, . . . , s and e1
j ⊕ e2

j ⊕ · · · ⊕ en
j > e

(11)

In Equation (11), i represents the i-th sub-query, j represents the j-th group, then
∑n

i=1 Ti
j represents the time required for the complex aggregate query under the j-th group

of parameters, and Tmax is equal to Integer.MAX_VALUE = 2,147,483,647. Thus, as long
as our fitness is greater, this means that the potential response time required for complex
aggregate queries under this set of parameters is shorter. This method of calculating the
fitness function reveals that a higher fitness corresponds to superior individuals.

In the subsequent crossover() phase, there are many choices for the crossover that
are applicable to binary encoding, such as a single-point crossover, uniform crossover,
and heuristic crossover. We show the effect of different crossover algorithms on the query
performance in Section 5.4.2 and select the heuristic crossover as the default. We used
the heuristic crossover as follows: (1) Generate a set of non-repeating random numbers
from the interval (0, len), where len represents the length of the encoding. These numbers
indicate the gene positions where genetic crossovers will occur. Assume parents A and B
and offspring C. Let k represent the numbers from the generated set. When A(k) = B(k),
indicating that the gene positions of the parents are the same, the offspring directly inherit
that gene position (C(k) = A(k) = B(k)). When A(k) 6= B(k), we determine the value of
this gene position by comparing the fitness of the two parents. If A has a higher fitness,
then C(k) = A(k); conversely, if B has a higher fitness, then C(k) = B(k). Through this
crossover method,we preserve the genetic traits of high-quality individuals to the greatest
extent possible.

To prevent the algorithm from converging prematurely into local optima, it is essential
to utilize the mutation() process to increase population diversity and introduce a certain
level of randomness. Common mutation strategies include gene-wise mutation, uniform
mutation, and inversion mutation. We show the effect of different mutation algorithms
on query performance in Section 5.4.2 and select the uniform mutation as the default. The
process of uniform mutation involves two steps: (1) randomly selecting an individual and
k gene positions; (2) generating a random number r uniformly within the range (0, 1]. If
r falls within the interval (0, 0.5], the current gene position’s value remains unchanged
(0 changes to 1, and 1 changes to 0). If r falls within the interval (0.5, 1], the value of the
current gene position is altered (0 changes to 1, and 1 changes to 0).

In the decoding() process, we convert the binary code of the chromosome into a
decimal representation. This step is pivotal in transforming the genetic space’s chromosome
parameters into corresponding parameters within the problem space. Thus, we initiate the
computation of selection probabilities using Equation (12).

Pselect(xi) =
Fitness(xi)

∑s
j=1 Fitness(xj)

(12)

During the roulettewheel() process, a random number within the range [0, 1] is
generated. If this random number falls within or below the cumulative probability of a
given individual (where the cumulative probability is the sum of the probabilities of all
preceding individuals in the list), and is greater than the cumulative probability of the
preceding individual, the individual is chosen to enter the offspring population. Next,
in the findBest() phase, we select the best individual to be one of the parents for the
next generation. Thereafter, the process outlined in step 2 is iterated, until either the
maximum iteration limit is reached or the optimal individual within the population is
identified. Ultimately, the the ideal error parameter combination that satisfies Equation (10)
is returned.
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In Section 5.4.2, we consider the performance of the combination of mutation and
crossover algorithms in the genetic algorithm. This discussion will provide an additional
perspective on our choice of a uniform mutation and heuristic crossover.

5. Experiments

We conducted experiments to evaluate the effectiveness and efficiency, and a sensitivity
analysis was made of the important parameters. Our codes were implemented in java1.8,
and all experiments were conducted on a single core of a 2.1 GHZ, 64 GB memory AMD-
6272 server, running with CentOS Linux.

5.1. Experimental Setup

Datasets. We used three real-world datasets, as shown in Table 2. (1) DBpedia [27] is an
open-domain knowledge base, which was constructed from Wikipedia. (2) Freebase [28] is
a knowledge base collected from many sources, including wiki contributions submitted
by individuals and users. (3) YAGO [29] is a knowledge base containing information
from Wikipedia, WordNet, and GeoNames. We used the CORE part of YAGO (excluding
information from GeoName) as our dataset.
Query workload. In this section, we conducted experiments on three datasets to evaluate
our method. As shown in Tables 3 and 4 , 10 of the 127 simple aggregate query instances
were used in the experiment, and 8 of the 138 complex aggregate query instances were
used in the experiment. We have placed the aggregate operations used in simple aggregate
queries and the corresponding attributes for the questions in column fa of the Table 3.
Additionally, since COUNT is used to calculate the number of entities and does not corre-
spond to a specific attribute, we have represented it with the ∗ symbol. (1) The experiment
selected 10 fact-type queries from QALD-4 [30,31] (the benchmark set of fact-type queries
on DBpedia) as the basis, and modified them to form simple aggregate queries of COUNT,
AVG, and SUM, such as Q1 −Q4 in Table 3, and we generated complex aggregate queries
based on these simple aggregate queries, such as Q1 − Q3 in Table 4. (2) We selected
12 fact-type queries from Freebase’s fact-type query benchmark set WebQuestions [32] as
the benchmark set, and expanded them into AVG and SUM queries, such as Q5 − Q8 in
Table 3, and according to these simple aggregate queries, we generated complex aggregate
queries such as Q4 −Q6 in Table 4. (3) Finally, this paper generated some queries for the
YAGO dataset, such as Q9 −Q10 in Table 3, and we generated complex aggregate queries
in the same way as in DBpedia and Freebase, such as Q7 −Q8 in Table 4.
Metrics. We used quantitative analysis methods and employed four metrics for assessment:
(1) the error rate of costmodel (ERCM). ERCM was used to measure the error rate of a
query’s predicted running time returned by our cost model compared to its real running
time. Given the predicted running time was Cost(e) and the real running time was t, then
ERCM was calculated as |t− Cost(e)|/t. (2) Precision of cost model with ERCM below
5% (PCM-5%): PCM-5% is computed as the ratio of queries exhibiting ERCM ≤ 5% to the
total number of queries. These first two metrics were intended to assess the accuracy of
our execution cost model in predicting the execution times of AQS. To further evaluate the
efficiency and effectiveness of the simple and complex aggregate queries using our execu-
tion cost model, we introduced the subsequent two measurement indicators: (3) Relative
error of query. Given the ground truth of a query denoted by V and the result returned
by a specific method is V̂, the relative error is calculated as |V − V̂|/V. (4) Response time.
This metric pertains to the time taken by the method to produce a response. Throughout
our experimental investigations, each query was executed a minimum of five times. The
reported metric values are averages computed across all queries.
Comparison methods. To evaluate the efficiency and effectiveness of running complex
aggregate queries over KGs using the cost model, we compared our approach with several
other methods in the literature for graph queries of KGs: (1) ours, (2) AQS [18], the latest
research supporting aggregate queries for KGs, (3) SGQ [9], a semantic-guided query
algorithm for KGs, (4) GraB [7], a structure-similarity-based index-free query method, and
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(5) QGA [33], a keyword-based graph search method. In addition, (6) EAQ [34] is another a
solution for aggregating queries on KGs: It collects candidate entities via link prediction
and only computes aggregate results for simple queries. Since methods (3)–(6) do not
support complex aggregate queries, we first extended them to handle complex aggregate
queries by adding additional aggregate operations to the results returned by each sub-query
to compute the final result.

Table 2. Statistics of the datasets.

Datasets Nodes Edges Node-Types Edge-Predicates

DBpedia 4,521,912 15,045,801 359 676
Freebase 5,706,539 48,724,743 11,666 5118
YAGO2 7,308,072 36,624,106 6543 101

Table 3. Ten query examples (10/127) that we used in Section 5.

QID Queries fa

Q1 How many cars are produced in Germany? COUNT (∗)

Q2 How many movies in Denmark? COUNT (∗)

Q3 What’s the average price of cars that are produced in Germany? AVG (price)

Q4 What is the total salary of Spanish football players? SUM (salary)

Q5 How many movies that were directed by Steven Spielberg? COUNT (∗)

Q6 What’s the average rating of the movies that were directed by Steven Spielberg? AVG (rating)

Q7 What is the total box office of Hans Zimmer’s films? SUM (salary)

Q8 How many companies are there in England? COUNT (∗)

Q9 What is the average population of Chinese cities? AVG (population)

Q10 What is the total GDP of Chinese cities? SUM (GDP)

Table 4. Eight query examples (8/138) that we used in Section 5.

QID Queries fa

Q1 How many cars that are produced in China and Germany? (+)

Q2 What’s the sum salary of soccer player from Spain and Portugal? (+,×)

Q3 What’s the average price of cars that produced in China and Germany? (+, /,+)

Q4 How many times islands are there in Oceania than in the Pacific? (/))

Q5 What’s the sum box office of films are directed by steven spielberg? (×)

Q6 How many times films are directed by steven spielberg than hans zimmer? (×, /)

Q7 How many more companies in England than Spain? (−)

Q8 How many times the sum length of rivers in China than Brazil? (×, /,×)

5.2. Evaluation of the Execution Cost Model of AQS

We set the default parameters as follows: the size n of the n-th order of Taylor polyno-
mial was configured as n = 4 and the size of the training data was m = 2000. As mentioned
in Section 3.2, we collected the statistics of the runtime for m different randomly selected
predefined error bounds e and then extract information from these statistics to form the
training data. We evaluated the execution cost model of AQS using the following three
aspects.

5.2.1. Effectiveness Evaluation

Table 5 (Effectiveness results) demonstrates the consistently high accuracy of our method
in estimating the AQS running times across all datasets. This was evident with the utiliza-
tion of ERCM and PCM-5% metrics. For instance, for DBpedia, approximately 86.08% of
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the COUNT queries had estimated execution costs that fell within an average 5% error
margin when compared to the actual runtime. Nonetheless, a significant disparity existed
between the real running times of a small fraction of queries and the duration forecasted by
our execution cost model. To delve deeper into this phenomenon, we present the model’s
curve alongside the actual query running time on the same figure, for an in-depth analysis.
Using Q1 and Q7 from Table 3 as illustrative examples, we present the prediction curves
of the respective execution cost models, as well as the actual running times for AQS, in
Figure 3. The red point represents the actual running time of AQS for a predefined error
bound e, and the blue line represents our cost model. There are a limited number of red
data points that deviate significantly from our predicted curve. However, we found that
most of the red points were around our cost model, which indicates that our cost model
could predict the running time of AQS.

Table 5. Effectiveness results for the three datasets.

Datasets

Effectiveness Results (%)

COUNT AVG SUM

PCM-5% ERCM PCM-5% ERCM PCM-5% ERCM

DBpedia 86.08 7.21 88.38 6.97 87.63 6.77

Freebase 85.56 6.89 88.67 8.88 84.75 5.64

YAGO2 84.04 6.24 82.75 6.98 88.00 5.62
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(b) Case study for Q7

Figure 3. Case studies: Real running time vs. predicted running time for Q1 and Q7.

5.2.2. Efficiency Evaluation

Table 6 (Efficiency results) reports the running time for our cost model, including the
detail time for each step (the collect training data and training) and the total time. Note that
the training data collection was the most time-consuming step, because we needed to run
AQS for different predefined error bounds e to retrieve the runtime statistics. While our
training was very efficient, as we did not set a high order of Taylor’s polynomial for our
cost model (and we did not have a large parameter size), the normal equation performed
quite efficiently. Moreover, the total time was acceptable for an offline application scenario.

Table 6. Efficiency results for the three datasets.

Datasets

Efficiency Results (s)

COUNT AVG SUM

Collecting Training Total Collecting Training Total Collecting Training Total

DBpedia 10.69 1.40 11.09 11.30 1.40 12.7 10.08 1.40 11.48

Freebase 8.45 1.49 10.94 8.01 1.14 9.15 8.80 1.77 10.57

YAGO2 62.57 1.50 64.07 81.42 1.50 82.92 43.72 1.51 45.23
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5.2.3. Effect of the Size of Training Data

We varied the training data size m from 500 to 10,000, to assess its impact on the
effectiveness and efficiency of our cost model. The results of the three datasets exhibited
similar trends, as shown in Figure 4. (1) As m increased, the ERCM decreased and the
PCM-5% increased, which was a reasonable observation, since more training data leads to
an improved accuracy. (2) We observed that the accuracy improvement became stable when
m > 2000. (3) Both the time for training data collection and the training step increased
with the increase in m, with the training data collection being more sensitive to m than the
training step. (4) The time increment became more pronounced when m > 2000. Ultimately,
we found that by setting m = 2000, we could strike a balance between the effectiveness and
efficiency of our model.

(a) Effect on effectiveness (DBpeida) (b) Effect on efficiency (DBpedia)

(c) Effect on effectiveness (Freebase) (d) Effect on efficiency (Freebase)

(e) Effect on effectiveness (Yago) (f) Effect on efficiency (Yago)

Figure 4. Effect of the training data size on effectiveness and efficiency.

5.2.4. Discussion of the Execution Cost Model of AQS

From the results above, we can conclude that our execution cost model provided
reasonably accurate predictions for AQS runtime. However, it is essential to take note of
the presence of a small number of red points deviating significantly from the predicted
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curve in Figure 3. As clarified in Section 3.1, this “singularity” phenomenon is mainly
due to the random sampling strategy employed by AQS. In rare cases, this strategy leads
to the accumulation of a large number of very low-quality samples, resulting in ε > V̂·e

1+e .
In this case, the AQS estimation and accuracy guarantee mechanism initiates multiple
rounds of sampling, refining the CI until ε ≤ V̂·e

1+e . This process results in a substantial
increase in both Tsv and Te, ultimately culminating in an exceedingly prolonged query
execution time. Furthermore, we observed that our execution cost model demonstrated
remarkable efficiency. Nevertheless, it is essential to consider that opting for a higher order
of Taylor polynomial in the cost model could enhance the accuracy but could also result
in significantly increased computational costs and training time overheads. This trade-off
might not be worthwhile for aggregate queries that prioritize efficiency.

5.3. Evaluation of Simple Aggregate Queries Based on the Cost Model

In this section, we used the parameters obtained from model training to find the
best predefined error bound ebest in the interval [0, e] through a grid search. Within this
predefined error bound, the required execution time for simple aggregate queries predicted
by the model was minimal. Then, we used ebest to run simple aggregate queries with AQS
and compared its effectiveness and efficiency with comparable methods. We show the
evaluation results with the default configuration as the predefined error bound e = 0.01
and the confidence level (1− α) = 95%.

5.3.1. Effectiveness and Efficiency Evaluation

It is evident from Figures 5 and 6 that, first, both our model and the AQS yielded
results that closely approximated the ground-truth, effectively satisfying the user-defined
error criteria. Second, the response times for our model and AQS were significantly reduced
in comparison to the alternative approaches. Additionally, we observed a robust correlation
between our relative error and response time and those of AQS. This phenomenon can
be attributed to our execution cost model, which demonstrated a tendency where the
predicted execution times decreased as the predefined error bound was relaxed (as evident
in Figure 3. Consequently, our ebest value typically aligned closely with the e value used
directly by AQS. However, it is worth noting that our relative error tended to be slightly
larger than that of AQS, while our response time was slightly smaller. This phenomenon
can be traced back to the bias introduced by the "singularity" encountered during the
execution of AQS.

Figure 5. Relative error of the different methods for the simple aggregate query.
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Figure 6. Reponse time of the different methods for the simple aggregate query.

5.3.2. Discussion of Simple Aggregate Queries Based on the Cost Model

When we applied our execution cost model to simple aggregate queries, we once
again confirmed the occurrence of the “singularity” phenomenon in AQS. In such instances,
our model employed ebest, which tended to be smaller than the e value use by AQS. This
adjustment allowed for modest increases in the sample size during the initial round of
sampling and resampling, effectively reducing the number of rounds required to satisfy
the error constraints. Consequently, this prevented substantial increases in Tsv and Te, due
to multiple rounds of sampling. However, the reduction in the number of sampling rounds
resulted in an overall smaller sample size for our method when compared to AQS. As a
consequence, our CI tended to be wider than those determined by AQS, indicating that our
results may not be as precise as those provided by AQS. This observation is consistent with
our research findings and underscores the need for further investigation in the domain of
complex aggregate queries. At the same time, this also caused us to think that, while our
approach can mitigate the impact of this “singularity” by selecting smaller error bounds and
reducing the number of resampling rounds after its occurrence, it cannot fundamentally
resolve the shortcomings in AQS’s sampling strategy. In future work, we may explore a
better sampling strategy, such as a preference-based semantic similarity sampling strategy.

5.4. Evaluation of Complex Aggregate Queries Based on Cost Model

In this section, we first explore the imperative need for the optimization of the sub-
query error bounds (Section 5.4.1). In the following section, we assess the effectiveness and
efficiency of different combinations of widely employed mutation and crossover algorithms
within genetic algorithms. We conducted this evaluation within the context of complex
aggregate queries and identified the top-performing combination, which served as the
default mutation and crossover algorithms.(Section 5.4.2). Then, we compared our method
using the cost model with the optimal predefined error bounds with comparable method,
in terms of effectiveness and efficiency for complex aggregate queries (Section 5.4.3). We
show the experimental results with the default parameter configuration as follows: the
predefined error bound for complex query e = 0.01, the confidence level 1− α = 95%, and
the number of iterations in the genetic algorithm r = 50. Finally, we study the parameter
sensitivity in Section 5.4.4.

5.4.1. Necessity of the Optimization of Sub-Queries’ Error Bounds

To illustrate the necessity of finding the optimal error bounds of all sub-queries using
multi-objective optimization based on a genetic algorithm, we demonstrate the perfor-
mance in terms of the relative error and response time across four different error-bound
configuration strategies. These four strategies were (1) optimal error bounds (OEB), which
configured sub-queries with optimal error bounds resolved by the genetic algorithm pre-
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sented in Section 4. In this context, we specifically opted for the heuristic crossover and
uniform mutation as the crossover and mutation techniques within the genetic algorithm.
The rationale behind this choice will be elaborated upon in Section 5.4.2. (2) Minimal
error bounds (MEB), which configures sub-queries with minimal error bounds, i.e., each
sub-query is performed with the minimal error bound, to achieve the most accurate result.
(3) Random error bounds (REB), which assigns a random error bound for a sub-query.
(4) Optimal error bounds regarding sub-queries (OEB-S), which directly uses the method
presented in Section 3 to compute the optimal error bound for each sub-query. From
Figure 7, we can observe that both Ours-OEB and Ours-MEB could satisfy the predefined
error bounds. Ours-OEB exhibited a remarkably close adherence to the predefined error
bounds. Conversely, Ours-REB and Ours-OEB-S failed to meet the predefined error bound
constraints. Notably, Ours-REB demonstrated the largest relative error, while Ours-OEB-S,
although satisfying the error constraints for individual sub-queries, did not necessarily
ensure the adherence of the complex aggregate queries to these error bounds. Furthermore,
Figure 8 reveals that Ours-MEB had the highest response time, due to the stringent ac-
curacy requirements. On the other hand, Ours-REB had the lowest response time, since
the parameters were allocated randomly, essentially imposing the loosest error bound
constraint. Additionally, Ours-OEB fell between Ours-OEB-S and Ours-MEB in terms of
response time, as the error bound constraints of Ours-OEB were relatively looser than those
of Ours-MEP, but tighter than those of Ours-OEB-S. The aforementioned observations align
with our earlier conclusion that "tighter error bound constraints entail longer response
times." Overall, Ours-OEB exhibited exceptional performance in terms of relative error and
response time. Concurrently, the inability of Ours-OEB-S to satisfy the predefined error
bound constraints underscores the necessity of the optimization of sub-query error bounds
using a genetic algorithm (Section 4.2).

Figure 7. Relative error under the different parameter optimization directions.

Figure 8. Response times under different parameter optimization directions.
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5.4.2. Effect of the Crossover and Mutation Algorithms Used in Genetic Algorithms

Considering the substantial influence of mutation and crossover algorithms within
genetic algorithms on the eventual outcomes. To determine the combination of mutation
and crossover operations with the most significant impact on parameter optimization
in genetic algorithms, we chose various common crossover and mutation algorithms as
combinations. We evaluated the effectiveness and efficiency of these combinations by
analyzing their response time and relative error.

Since our encoding method is binary, we opted for single-point crossover(SC), heuristic
crossover(HC), and uniform crossover(UC) as the crossover algorithms. For the mutation
algorithms, we selected gene-wise mutation(GM), uniform mutation(UM), and inversion
mutation(IM). By pairing the crossover algorithms with the mutation algorithms, we
formed a total of nine combinations: (1) Ours-OEB-SC-GM; (2) Ours-OEB-SC-UM; (3) Ours-
OEB-SC-IM; (4) Ours-OEB-UC-GM; (5) Ours-OEB-UC-UM; (6) Ours-OEB-UC-IM; (7) Ours-
OEB-HC-GM; (8) Ours-OEB-HC-UM; (9) Ours-OEB-HC-IM.

From Figure 9, we found that “Our-OEB-SC-GM” achieved the lowest relative error.
This was because the single-point crossover and basic gene-wise mutation only mildly
diversified the population. However, the single-point crossover tended to become trapped
in local optima, often failing to find the optimal balance point satisfying Equation (10)
during sub-query parameter optimization. Tighter error bound parameters for sub-queries
significantly increased the response time. Combining the data in Figure 10, we can observe
that the “Our-OEB-SC-GM” method exhibited the longest overall execution time. However,
it is crucial to note that the sub-query parameter optimization time for this method was
relatively short. The extended execution time in this case primarily resulted from the
prolonged AQS execution.

Increasing population diversity through uniform mutation and inversion mutation
comes at the cost of additional time overheads. Figure 10 illustrates that, when the crossover
algorithms were the same, the gene-wise mutation combination resulted in the lowest sub-
query parameter optimization time, while the inversion mutation combination led to the
highest. Inversion mutation substantially increased the number of individuals to be processed
and disrupted the genetic structure of good individuals, resulting in a much slower algorithm
convergence. Additionally, boundary checks and validation introduced additional time
overheads.

Moreover, the method with the shortest overall time was “Ours-OEB-HC-UM”. Fur-
thermore, as shown in Figure 10, this method boasted the shortest sub-query parameter
optimization time. Primarily, heuristic crossover aligned well with our problem’s character-
istics. It tended to retain genes of individuals with a high fitness, making sub-queries more
efficient. Simultaneously, this trait significantly reduced duplicate individual generation
and accelerated genetic algorithm convergence, while uniform mutation introduced less
computational overheads than inversion mutation. It effectively enhanced the population
diversity without leading to local optima. Considering Figure 9, “Ours-OEB-HC-UM”
was already very close to the optimal balance point between efficiency and effectiveness.
Although "Our-OEB-HC-IM" was even closer, considering the time overheads introduced
by inversion mutation, we lean towards using “Ours-OEB-HC-UM” as our optimal model.

Figure 9. Relative error under different combinations of crossover algorithms and mutation algo-
rithms.
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Figure 10. Response time under different combinations of crossover algorithms and mutation
algorithms.

5.4.3. Effectiveness and Efficiency Evaluation

Next, we assessed the effectiveness and efficiency of each method by examining the
relative error and response time in the context of complex aggregate queries. Figure 11
reveals that, with the exception of Ours-OEB-HC-UM, the methods failed to meet the
predefined error bounds. The explanation for AQS’s limitations was discussed in the
“efficiency vs. effectiveness trade-off problem” and elsewhere, and will not be reiterated
here. Regarding EAQ, GraB, and QGA, their disregard for the semantic similarity within
the knowledge graph resulted in the omission of answers with similar semantics and
patterns. Given that complex aggregate queries often involve multiple types of entity and
predicate, these methods are prone to increased errors. As for SGQ, it adjusted its model
parameters based on the query problem during querying. However, when dealing with
complex aggregate queries involving multiple query problems, the model parameters were
influenced by several query problems simultaneously, rendering the parameters of the
model unreasonable.

In Figure 12, it became evident that EAQ had the longest execution time, as this
required traversing all potential candidate results during querying. On the other hand, the
other methods (GraB, QGA, SGQ) often employed dynamic pruning and branch strategies
to adjust the search scope and avoid fruitless searches. In contrast, AQS and Ours-OEB-HC-
UM employed sampling estimation to narrow down the search scope and avoid exhaustive
searches. Furthermore, we observed that the execution time of AQS was slightly shorter
than that of Ours-OEB-HC-UM. This was because Ours-OEB-HC-UM imposed tighter
constraints on sub-queries within complex aggregate queries, to ensure adherence to the
predefined error bounds. Consequently, Ours-OEB-HC-UM exhibited a longer response
time. This phenomenon was also observed for simple aggregate queries.

Figure 11. The relative error of the different methods with different data.
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Figure 12. The response time of the different methods with different data.

5.4.4. Parameter Sensitivity

We provide the parameter sensitivity results of Ours-OEB-HC-UM on the Dbpedia
datasets, which include the predefined error bound e, genetic algorithm iteration number r,
and confidence level 1− α. The results of the other datasets showed a similar trend.
User-desired error bound e. Figure 13 presents the relative error rate and query time for
the complex aggregate query results across various predefined error bounds, ranging
from 1% to 5%. The results illustrated in Figure 13 effectively showcase the adaptability
of the proposed method to different accuracy requirements. Additionally, a noteworthy
observation gleaned from the figure revealed that as the predefined error bound became
more lenient, the query response time experienced a reduction. This phenomenon closely
paralleled the behavior observed in the simple aggregate queries, thus reaffirming the
conclusion that "complex aggregate queries consist of multiple simple aggregate queries".
The primary factor contributing to the enhanced efficiency was that a more relaxed error
bound often necessitates fewer samples and sampling rounds, resulting in a reduced search
space and a decrease in the number of iterations, ultimately leading to quicker query
responses.

Figure 13. The response time and relative error under different predefiend error bounds.

Iterations r. Figure 14 depicts the relative error rate and query time of the complex ag-
gregate query results across a range of iterations for the genetic algorithm, from 10 to
1000. It is evident from Figure 11 that when the number of iterations fell within the range
of 10 to 50, there was a notable increase in the relative error rate. However, once the
number of iterations surpassed 50, the relative error rate remained relatively stable. This
behavior stemmed from the fact that when the number of iterations was insufficient, the
genetic algorithm struggled to converge towards the optimal solution that satisfied Equa-
tion (10). Consequently, the error bound remained smaller, resulting in more accurate query
results.Furthermore, Figure 14 highlights that if the number of iterations was either too
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low or too high, this led to increased response times. There are two primary reasons for
this: (1) A lower number of iterations yields inaccurate results from the genetic algorithm,
causing a bias in the error bound of the sub-queries. (2) While this bias may contribute
to more accurate sub-queries results, it simultaneously increases the time consumption of
the sub-queries, ultimately leading to a longer complex aggregate query time. Conversely,
a higher number of iterations consumes a significant amount of time during the iterative
process, with marginal improvements in the relative error rate of the final result.

Figure 14. The response time and relative error with a different number of iterations.

Confidence level 1− α. Figure 15 presents the relative error rate and response time for
complex aggregate query results, while varying the confidence level from 86% to 98%. The
results depicted in Figure 15 reveal a conspicuous trend: as the confidence level increased,
the relative error rate decreased. This phenomenon can be primarily attributed to the
fact that higher confidence levels correspond to smaller half-widths of the result interval,
resulting in a more tightly constrained confidence interval and more precise estimated
results. Furthermore, as illustrated in Figure 15, an escalation in the confidence level was
associated with a gradual increase in query response time. This can be explained by the
need for more query time to obtain a narrower confidence interval when striving for a
higher confidence level.

Figure 15. The response time and relative error with different confidence levels.

5.4.5. Discussion of Complex Aggregate Queries Based on the Cost Model

In the previous sections, we highlighted the importance of parameter optimization,
examined various genetic algorithm crossover and mutation techniques, and evaluated our
model’s performance with complex aggregate queries.

Our experiments stressed the significance of parameter optimization for precise out-
comes with complex aggregate queries. The different crossover and mutation methods
impacted the query efficiency differently. A single-point crossover may become trapped in
local optima, while a uniform crossover slows the convergence. Tailored to our problem, the
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heuristic crossover emerged as the best choice, preserving solutions, reducing redundancy,
and speeding up convergence. Gene-wise mutation lacks diversity expansion, and inver-
sion mutation disrupts the genetic structures. In contrast, uniform mutation diversifies
without disrupting the genetic structures. Our experimental data strongly favored heuristic
crossover and uniform mutation.

Our approach excels in both effectiveness and efficiency when handling complex
aggregate queries, while adhering to user-defined error bounds. The other methods,
lacking optimization or relying on lower-quality factoid query results, fell short in both
effectiveness and efficiency.

In our sensitivity analysis, we explored error bounds, iterations, and confidence
levels. A tighter error bound ensured a higher precision but could lengthen response times.
Increasing iterations introduced increased time overheads, without significant accuracy
gains. Both excessively low and high confidence levels reduced the efficiency. Ultimately,
we found a balance between efficiency and effectiveness, with a 95% confidence level and
50 iterations.

6. Related Work

Online Aggregation. Online aggregation is one of the earliest approaches for performing
an aggregate query. The concept of online aggregation (OLA) was initially introduced
in [35]. This technology relies on sampling techniques to provide approximate aggre-
gate outcomes within relational data contexts. Since its inception, a substantial body of
subsequent research has emerged, considering various dimensions including (1) OLA
implementation concerning joins and group-by operations [36–42], (2) OLA adaptation for
distributed environments [43–48], and (3) optimizing multi-query scenarios for OLA [49,50].
However, it is important to note that none of these established approaches can be readily
applied to address aggregate queries within knowledge graphs (KGs). The inherent reason
behind this incompatibility is the distinctive nature of a KG’s schema-flexible structure,
which significantly diverges from the rigid framework of relational data. To bridge this
gap, a breakthrough was achieved in [18]. Here, a pioneering semantic-aware sampling
methodology, meticulously tailored for KGs, was devised. This groundbreaking innova-
tion acts as a pivotal solution, harmonizing traditional OLA techniques with the complex
landscape of aggregate query processing within knowledge graphs.
Factoid Query for KGs. Factoid query is an important application of knowledge graph
queries, which aims to retrieve clear and factual answers from structured knowledge
storage systems (such as knowledge graphs or semantic databases) in response to specific
questions raised by users [4,7,12,14,51,52]. They retrieve queries for specific facts or factual
information from knowledge graphs or semantic databases through keyword matching,
entity recognition, and learning [4,6–9,12–15,51–54]. However, this querying method
is limited to retrieving direct and factual answers from knowledge graphs or structured
databases. It typically necessitates a one-to-one mapping between the query and the answer,
and furthermore demands that the user provides a highly precise description of the input
question. Otherwise, the query response may yield a substantial error. Simultaneously,
factoid queries are unable to infer additional information concealed within the KGs. This
limitation served as one of the motivations behind the introduction of aggregate queries.
Aggregate Query for KGs. At present, the prevailing methods for addressing aggregate
queries predominantly involve the utilization of fact queries, typically SPARQL aggregate
queries [8,55–58] and AQS. Nevertheless, this approach frequently imposes supplementary
time overheads, due to the incorporation of extra aggregate operations into the factoid
query. Furthermore, the effectiveness of this approach is contingent upon the quality of
the results yielded by the factoid query. However, it is worth noting that AQS still lacks
the capacity to comprehensively support complex aggregate queries employing "sampling
estimation" models. In light of these constraints, we introduced a pioneering cost model
designed to notably enhance the efficiency and precision of complex aggregate queries.
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7. Conclusions

In this paper, we first introduced an execution cost model for AQS for simple aggregate
queries of KGs, using Taylor’s theorem. Then, we utilized runtime statistics gathered from
AQS as training data and employed normal equations to determine the parameters of
the cost model. Building upon this foundational cost mode, we developed a method
explicitly tailored for addressing complex aggregate queries using AQS, which achieved
a trade-off between effectiveness and efficiency. Finally, our empirical findings, based on
real-world datasets, compellingly illustrated the effectiveness and efficiency of our method.
In the future, we will focus on the extension of our method to aggregate queries with the
MAX/MIN function and grouping by operation, thus making applicable to more general
scenarios.
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