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Abstract: The effect of high contrast on the multiscale behaviour of elastic laminates is studied.
Mathematical modelling in this area is of significant interest for a variety of modern applications,
including but not limited to advanced sandwich structures and photovoltaic panels. As an example,
the antiplane shear of a symmetric, three-layered plate is considered. The problem parameters
expressing relative thickness, stiffness and density are assumed to be independent. The high contrast
may generally support extra length and time scales corresponding to degenerated boundary layers
and propagating long-wave low-frequency vibration modes. The main focus is on the relation
between these two phenomena. The developed multiparametric approach demonstrates that those
do not always appear simultaneously. The associated explicit estimates on contrast parameters are
established. In addition, the recent asymptotic extension of the classical Saint-Venant’s principle
is adapted for calculating the contribution of the degenerate boundary layer or long-wave low-
frequency propagation mode. The peculiarity of the limiting absorption principle in application to
layered media is also addressed.

Keywords: laminate; high contrast; multiparametric; multiscale; asymptotic; Saint-Venant’s principle;
boundary layer; long-wave; low-frequency; radiation conditions
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1. Introduction

The mathematical modelling of layered elastic structures has been a subject of numer-
ous publications; see, e.g., [1–4] and references therein. More recently, a growing interest in
high-contrast laminates has been inspired by modern important applications, including
laminated glass, photovoltaic panels, lightweight sandwich-type structures; see, e.g., [5–8].
In addition, we mention the related contributions [9–11].

Two of the most significant observations regarding high-contrast layered structures
include a degeneration of the boundary layers, demonstrating slow decay into the interior,
studied in [12–15], along with the emergence of a specific low-frequency shear vibration
spectra, characterised by a small cut-off frequency with the value tending to zero as powers
of small parameters standing for contrast (see [16]) treating three-layered symmetric papers
for several mechanical and geometrical setups; see also [17]. The eigenvalue problem
on the plate’s transverse cross section also arises in the case of free longitudinal vibra-
tions of a strongly inhomogeneous, three-component rod [18]. The presence of an extra
low-frequency shear mode supports two-mode long-wave low-frequency asymptotic theo-
ries for asymmetric three-layered strips, subject to antiplane elastic deformation; see [19].
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The cited paper also suggests a non-trivial asymptotic generalisation of Saint-Venant’s prin-
ciple for the considered high-contrast scenario, stating the consistent boundary conditions
(see also [20]) for extension to the anti-plane shear of multi-layered structures. The extra
approximate boundary condition in [19] ensures the equilibrium of stress couples applied
along the contour of a soft layer. The number of extra asymptotic boundary conditions
in [20] coincides with that of soft layers and may be interpreted in a similar manner.

The relation between the degenerated boundary layers and the extra low-frequency
modes has not yet been studied systematically, with the exception of [19], addressing only
one specific parametric setup. At the same time, the static analysis in [12–14] is mainly
restricted to studying the roots of the related transcendental equation without a more
general insight into the peculiarities of the stress and strain fields. The main objective
of the present paper is elucidation of the link between these two phenomena. Enhanced
understanding of this link is relevant for new technological advances over virtually all of
the above-mentioned applications, including modern sandwich panels.

A basic example of the antiplane problem in dynamic elasticity for a three-layered
high-contrast symmetric laminate with Neumann boundary conditions on the faces is
considered. The results of the full multiparametric analysis are presented for the anti-
symmetric low-frequency wave. In this case, the ratios of thicknesses, stiffnesses and
densities of the layers are assumed to be independent of each other. The tackled exam-
ple clearly illustrates a multiscale nature of the high contrast effect. Indeed, it brings an
extra relatively large length scale (compared to thickness) corresponding to a degenerate
boundary layer, as well an extra time scale (small compared to the time elastic waves take
to propagate the distance of order thickness) associated with the lowest cut-off, in addition
to laminate thickness. Obviously, the aforementioned length and time scales do not arise in
non-contrast situations.

It is established that the extra low-frequency modes do not always accompany the
degenerate boundary layers. It is shown that both uniform and non-uniform approxi-
mations of the associated dispersion curve are possible. The asymptotic bounds on the
problem parameters, corresponding to various options are found. Numerical illustrations
are presented.

Another emphasis of the paper is on the explicit solution of the forced problem for a
semi-infinite symmetric three-layered strip with traction-free faces under a self-equilibrated
edge stress. The decay condition in [19] generalising Saint-Venant’s principle is adapted.
Above the cut-off frequency, this transforms to a radiation condition aimed at excluding
the long-wave propagating mode; see [21] for more detail. As a result, the amplitude of the
mode of interest is found. In addition, the peculiarity of the implementation of the limiting
absorption principle for layered structures is briefly addressed for the long propagating
mode originating from the cut-off in question. Along with the analysis of the coexistence of
slowly decaying boundary layers and low-frequency vibration modes, this also contributes
to the novelty of the paper.

The paper is organised as follows. The problem is formulated in Section 2 with the
dispersion relation and the associated eigensolutions derived in Section 3. Section 4 is
concerned with multiparametric analysis of the dispersion relation. The main result of
the paper addressing the general issue of the relation between the degenerated boundary
layer and the low-frequency cut-off is also exposed in this section. The explicit solution
to the forced time-harmonic problem for a semi-infinite three-layered strip is obtained in
Section 5. Several concluding remarks are summarised in Section 6.

2. Problem Statement

Consider a semi-infinite, three-layered, symmetric, elastic laminate; see Figure 1. Let
the horizontal axe pass through the middle of the inner layer. Then, the latter occupies
the domain {0 ≤ x1 < ∞, −h1 ≤ x2 ≤ h1, −∞ < x3 < ∞}, whereas the outer skin layers
are located at {0 ≤ x1 < ∞, h1 ≤ |x2| ≤ h1 + h2, −∞ < x3 < ∞}. Below, we focus on
antiplane shear motion, with the displacement field given by u = (0, 0, u3(x1, x2, t)), more
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specifically, on an antisymmetric problem, for which the out-of-plane displacement satisfies
u3(x1,−x2, t) = −u3(x1, x2, t).
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Figure 1. Schematic of a three-layered laminate.
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The wave equations of motion are written conventionally as

∆u3 −
1
c2

∂2u3

∂t2 = 0, (1)

where ∆ =
∂2

∂x2
1
+

∂2

∂x2
2

is the two-dimensional Laplacian in x1 and x2, and the transverse

wave speed c is defined as

c =





√
µ1

ρ1
, |x2| ≤ h1;

√
µ2

ρ2
, h1 ≤ |x2| ≤ h1 + h2.

(2)

Here, µi and ρi (i = 1, 2) stand for the shear moduli and volume mass densities of the core
and skin layers, respectively.

The traction-free boundary conditions at the faces x2 = ±(h1 + h2) are assumed, i.e.,

σ32 = 0, (3)

while the perfect contact conditions along the interfaces x2 = ±h1 are formulated as

[u] = 0, [σ32] = 0, (4)

where [ ] indicate jumps of the associated quantities.
Here and below, the stresses σ3j (j = 1, 2) are given by

σ3j =





µ1
∂u3

∂xj
, |x2| ≤ h1;

µ2
∂u3

∂xj
, h1 ≤ |x2| ≤ h1 + h2.

(5)

In addition, let a shear edge loading be modelled by the boundary condition

σ31 = f (x2, t) (6)
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at x1 = 0, where f (x2, t) is a prescribed stress, being an odd function in x2, for the sake of
simplicity, in order to exclude the fundamental mode from the consideration. At infinity
x1 → ∞, we impose decay or radiation conditions on the sought-for solution.

The formulated problem has a clear multiparametric nature, characterised by several
dimensionless parameters, including the relative stiffness, density and thickness, given by

µ =
µ1

µ2
, ρ =

ρ1

ρ2
, and h =

h1

h2
. (7)

Below all of them are assumed to be independent unless specified otherwise. The prob-
lem apparently provides the simplest step forward from 1D analysis in [18] to a 2D setup.

3. Dispersion Relation

First, we introduce the travelling wave ansatz for the displacement in the form

u3 = A(x2)ei(kx1−ωt), (8)

where k and ω conventionally denote the wave number and angular frequency, respectively,
and A(x2) is a sought for odd function; hence, below, we may restrict ourselves to the
interval 0 ≤ x2 ≤ h1 + h2.

Then, we infer from (1) that

A(x2) =





A1 sin(α1η), 0 ≤ η ≤ h
h + 1

;

A2 sin(α2η) + A3 cos(α2η),
h

h + 1
≤ η ≤ 1,

(9)

where
η =

x2

h1 + h2
(10)

is the dimensionless transverse variable; A1, A2 and A3 are arbitrary real constants; and the
parameters α1 and α2 are defined by

α1 =
√
(1 + h−1)2Ω2

1 − K2, α2 =
√
(1 + h)2Ω2

2 − K2, (11)

with

K = k(h1 + h2), and Ωj = ωhj

√
ρj

µj
, j = 1, 2, (12)

standing for the dimensionless wave number and frequencies, respectively.
Next, inserting (8) and (9) into boundary and interfacial conditions (3) and (4), we

arrive at the dispersion relation

α2

α1
tan
(

α1h
1 + h

)
tan
(

α2

1 + h

)
= µ. (13)

The eigenform amplitude A(x2) is then given by

A(x2) =





C cos

(
α2

h + 1

)
sec(α2) csc

(
α1h

h + 1

)
sin(α1η), 0 ≤ η ≤ h

h + 1
;

C[tan(α2) sin(α2η) + cos(α2η)],
h

h + 1
≤ η ≤ 1,

(14)

where C is an arbitrary constant.
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In what follows, we consider the long-wave low-frequency behaviour of this dispersion
relation, assuming that

|K| � 1 and Ωi � 1. (15)

This setup has been earlier defined as a global low-frequency one (see [18]), since it is asso-
ciated with polynomial variation of the sought-for displacement field across the thickness
within each of the layers. The absolute value of K in (15) indicates that both propagating
and evanescent modes are studied.

4. Multiparametric Analysis

Below, the dispersion relation (13) is subject to asymptotic analysis in three inde-
pendent parameters (7) over the long-wave low-frequency domain (15). As mentioned
above, the focus is on the relation between the two most importance consequences of high
contrast, namely the degeneration of boundary layers and the shift of cut-off frequencies
to the low-frequency domain. It is worth noting that the latter are related to specific extra
scales, including a large length scale and slow time scale, respectively. For these scales,
a typical decaying rate is much greater than the laminate thickness, and a characteris-
tic time considerably exceeds that elastic waves take to propagate the distance between
laminate faces.

Consider first the static limit at Ωi = 0. In this case, the transcendental equation has
small imaginary roots

K = ±iK∗ ,

where, at leading order,

K∗ ≈
√

µ

h
(h + 1)� 1, (16)

provided that

µ� h
(h + 1)2 . (17)

In contrast to homogeneous structures, the root K∗ corresponds to the so-called degenerated
boundary layer, which does not decay at the distances of order thickness away from the
edge. The asymptotic behaviour (16) was earlier established in [12]. However, the two-
parametric origin of the problem was not taken into consideration; namely, it was supposed
that h ∼ 1. As a result, the restriction (17) has not appeared in the cited paper.

Next, turn to the asymptotic analysis of the lowest cut-off frequencies, coming from
the dispersion relation (13) at K = 0. In this case, the aforementioned global low-frequency
regime (Ωj � 1, j = 1, 2) takes place over the following parameter range:

µ� h� 1
ρ

, (18)

see [16,18] for more detail. Then, for the sought-for cut-off frequency

Ω2 = Ω∗ ≈
√

µ

h
(19)

or

Ω1 =

√
ρ

µ
h Ω∗ ≈

√
ρh. (20)

It might be easily verified that a non-contrast setup, for which Ω∗ ∼ 1, does not support
low-frequency cut-offs.

Let us now investigate the inequalities (17) and (18) simultaneously. First of all, it
is clear that for h . 1, i.e., excluding the laminates with thin skin, the condition (18)



Mathematics 2023, 11, 3905 6 of 11

guarantees not only a low cut-off, but also a slowly decaying static boundary layer. More
generally, both phenomena occur when

µ� h
(h + 1)2 and h� 1

ρ
. (21)

In particular, for h� 1, i.e., for conventional sandwiches with thin skin, the low-frequency
vibration mode appears along with the strongly localised static boundary layer (typical of
homogeneous or weakly inhomogeneous structures), provided that

1
h
� µ� h� 1

ρ
. (22)

Next, by taking leading-order Taylor expansions, we derive a shortened form of the
dispersion relation (13). It is given by

α2
2 = µ

(1 + h)2

h
, (23)

or, equivalently,

Ω2
2 −

K2

(1 + h)2 = Ω2
∗. (24)

As might be expected, the last equation implies the values of K = K∗ at Ω2 = 0,
and also Ω2 = Ω∗ at K = 0, which is in agreement with the estimates (16) and (19),
respectively. Moreover, it is obvious that the approximation (24) of the full dispersion
relation is uniformly valid over the domain

|K| ≤ K∗, 0 ≤ Ω2 ≤ Ω∗, (25)

provided that the conditions (17) and (18) are satisfied. The shortened dispersion relation (24)
also shows that the quasi-static limit occurs at Ω2 � Ω∗.

At the same time, above the cut-off frequency, the validity range of the approximation (24)
is given by

K � min
{

1,
1 + h

h

√
µ

ρ

}
(26)

and

Ω2
2 −Ω2

∗ � min
{

1
(1 + h)2 ,

Ω2∗
ρh

}
. (27)

These strong inequalities generalise earlier considerations for one-parametric setups
in [16,19].

Let us now present several graphical illustrations highlighting the observations above.
First, we present a sketch characterising the domains corresponding to conditions (17) and
(18) in parametric space. For the sake of clarity, we present a 2D graph in µ and h only, but

bearing in the mind the restriction h� 1
ρ

, which is assumed to be valid. The highlighted

domains in Figure 2 correspond to various ranges of the dimensionless parameters µ
and h, defined by the conditions (17) and (18), for which the latter are either satisfied
simultaneously (yellow), or the relation (18) holds but (17) is violated (green), or when both
(17) and (18) fail (blue).

Now, let us illustrate the case of a small cut-off frequency along with a rapidly decaying
boundary layer, i.e., when the the strong inequalities (18) are satisfied but condition (17) is
violated. It is clearly seen from Figure 3, displaying the approximate curve (24) covering
both domains of the real and imaginary wavenumber K. The approximate value in the
static limit at Ω2 = 0 and K ≈ 3.5i on the approximate curve (24) is far off from the
numerical solution of the exact dispersion relation (13) at Ω2 = 0, K∗ ≈ 1.6i. At the same
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time, the approximate curve is clearly passing very close to the exact point of the cut-off
frequency K = 0, Ω2 = Ω∗.
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Finally, we are displaying the setup when both conditions (17) and (18) are satisfied;
see Figure 5. In this case, the approximate curve (24) is shown by a dashed line and is
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complemented by the exact dispersion (13), depicted by solid curve. It is also remark-
able that approximation (24) provides a uniform approximation both for decaying and
propagating modes.
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5. Forced Vibration

Consider now time-harmonic forced vibration of a semi-infinite laminate, starting
from the formulation in Section 2. For the sake of simplicity, restrict ourselves to a one-
parametric scenario in which µ � 1, h ∼ 1 and ρ ∼ µ. In this case, as follows from (14),
the leading-order behaviour of the eigenform becomes

A(x2) =





C
h + 1

h
η, 0 ≤ η ≤ h

h + 1
;

C,
h

h + 1
≤ η ≤ 1.

(28)

To determine the constant C, we adapt the decay conditions in [19,20], generalising the
classical Saint-Venant’s principle for high-contrast laminates. For a three-layered symmetric
structure excited by a prescribed (self-equilibrated) shear edge stress P(x2), an appropriate
asymptotic condition becomes

h1∫

0

x2P(x2)dx2 + h1

h1+h2∫

h1

P(x2)dx2 = 0. (29)

This condition ensures the static equilibrium of the soft layer with respect to stress
couples applied to both its edge and interfaces; in doing so, the first and second terms
in (29) correspond to the contributions of edge x1 = 0 and interfaces x2 = ±h1, x1 > 0,
respectively. In fact, this condition is also applicable at leading-order to low-frequency
vibration, see [22]. Below, the factor e−iωt is assumed to be omitted. Note that for the
frequencies above the cut-off Ω∗, this condition becomes a radiation one, prohibiting
long-wave propagating modes; see [21].

Let us now implement the substitution

P(x2) = f (x2)− σ31(0, x2), (30)

in (29), where σ31 is calculated from (5) starting from the leading-order eigenform (28). This
guarantees rapid decay (at the scale of the thickness) of the boundary layer corresponding
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to the discrepancy between the given edge load f (x2) and the stress σ31(0, x2) associated
with the low-frequency mode of interest. As a result, we arrive at

C ≈ 1
ikµ2h1h2




h1∫

0

x2 f (x2)dx2 + h1

h1+h2∫

h1

f (x2)dx2


. (31)

The related wave number in the exponential term in (8) is approximated from (24) by

k ≈ i
1
h2

√
r, (32)

below the cut-off, and

k ≈ 1
h2

√
r, (33)

above the cut-off, where

r =
µ1h2 − ρ2ω2h1h2

2
µ2h1

. (34)

The last expression satisfies the Sommerfeld radiation principle, also giving room for
the simple implementation of the alternative limiting absorption principle; see [23,24] and
references therein. To this end, we assume in (34)

µj = µj0(1− iγj), j = 1, 2, (35)

where γj � 1. As a result,

r =
h2
(
µ10(1− iγ1)− ρ2ω2h1h2

)
(1 + iγ2)

h1µ20(1 + γ2
2)

. (36)

It may be seen from the latter that when Ω2 = Ω∗,

r = − iγ1h2µ10(1 + iγ2)

h1µ20(1 + γ2
2)

. (37)

hence, on the cut-off frequency only the absorption over the soft inner layer appears in
the expression for Im(r). Clearly, for low-frequency propagating modes (with frequencies
above the cut-off) the absorption in both soft and stiff layers needs to be taken into consid-
eration. At the same time, as in most of the cases, the results coming from Sommerfeld and
limiting absorption principles agree with each other.

6. Conclusions

The developed multiparametric framework for high-contrast elastic laminates demon-
strates that degenerated boundary layers do not always coexist with specific low cut-off
frequencies. Explicit conditions in the form of strong inequalities on the contrast problem
parameters along with numerical illustrations are presented in Section 4.

For a semi-infinite strip, the amplitude of the mode varying slowly both in space
and time (decaying or propagating) is determined in Section 5 using a generalisation of
Saint-Venant’s principle [19,20] oriented to strongly inhomogeneous laminates. For low-
frequency propagating modes, it is shown that the implementation of the limiting absorp-
tion principle assumes taking into consideration small dissipation in both the core and skin
layers, whereas on the cut-off frequency, only the absorption in the soft inner layer plays
a role.

The basic example considered in the paper appears to be highly informative for
elucidating a number of important multiscale phenomena characteristic of high-contrast
laminates. In particular, it elucidates the general idea of the near-cut-off long-wave be-
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haviour typical for elastic waveguides with strong transverse inhomogeneity, characterised
by the transition from slowly decaying boundary layers to low-frequency propagating
modes. The established framework allows for various extensions, including asymmetric
multi-layered thinwalled structures of more general geometry; vector plane and 3D prob-
lems; and analysis of various boundary conditions along faces and interfaces, e.g., arising
at the mathematical modelling of elastic coatings.
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