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Abstract: This study reports the development of a numerical method to simulate two-phase flows of
Newtonian fluids that are incompressible, immiscible, and isothermal. The interface in the simulation is
located and reconstructed using the geometric volume of fluid (VOF) method. The implementation of the
piecewise-linear interface calculation (PLIC) scheme of the VOF method is performed to solve the three-
dimensional (3D) interface transport during the dynamics of two-phase flows. In this method, the interface
is approximated by a line segment in each interfacial cell. The balance of forces at the interface is accounted
for using the continuum interfacial force (CSF) model. To solve the Navier–Stokes equations, meshless
finite difference schemes from the HiG-Flow computational fluid dynamics software are employed. The 3D
PLIC-VOF HiG-Flow algorithm is used to simulate several benchmark two-phase flows for the purpose of
validating the numerical implementation. First, the performance of the PLIC implementation is evaluated
by conducting two standard advection numerical tests: the 3D shearing flow test and the 3D deforming
field test. Good agreement is obtained for the 3D interface shape using both the 3D PLIC-VOF HiG-Flow
algorithm and those found in the scientific literature, specifically, the piecewise-constant flux surface
calculation, the volume of fluid method implemented in OpenFOAM, and the high-order finite-element
software FEEL. In addition, the absolute error of the volume tracking advection calculation obtained by our
3D PLIC-VOF HiG-Flow algorithm is found to be smaller than the one found in the scientific literature
for both the 3D shearing and 3D deforming flow tests. The volume fraction conservation absolute errors
obtained using our algorithm are 4.48× 10−5 and 9.41× 10−6 for both shearing and deforming flow tests,
respectively, being two orders lower than the results presented in the scientific literature at the same level of
mesh refinement. Lastly, the 3D bubble rising problem is simulated for different fluid densities (ρ1/ρ2 = 10
and ρ1/ρ2 = 1000) and viscosity ratios (µ1/µ2 = 10 and µ1/µ2 = 100). Again, good agreement is obtained
for the 3D interface shape using both the newly implemented algorithm and OpenFOAM, DROPS, and
NaSt3D software. The 3D PLIC-VOF HiG-Flow algorithm predicted a stable ellipsoidal droplet shape for
ρ1/ρ2 = 10 and µ1/µ2 = 10, and a stable cap shape for ρ1/ρ2 = 1000 and µ1/µ2 = 100. The bubble’s rise
velocity and evolution of the bubble’s center of mass are also computed with the 3D PLIC-VOF HiG-Flow
algorithm and found to be in agreement with those software. The rise velocity of the droplet for both the
ellipsoidal and cap flow regime’s is found, in the initial stages of the simulation, to gradually increase from
its initial value of zero to a maximum magnitude; then, the steady-state velocity of the droplet decreases,
being more accentuated for the cap regime.

Keywords: two-phase flows; geometric volume of fluid method; piecewise-linear interface calculation;
HiG-Flow; numerical validation
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1. Introduction

Interfacial multiphase flows play a crucial role in a wide range of industrial fields,
offering opportunities for enhanced process efficiency, product quality, and environmental
sustainability. Understanding and manipulating the dynamics of multiple immiscible
fluids in contact at their interfaces are key challenges that require accurate numerical
computations. These systems exhibit complex behaviors due to the interplay between
bulk fluid coupling and surface effects, necessitating advanced modeling and simulation
techniques [1]. The ability to accurately predict and control interfacial phenomena is of
paramount importance in industrial processes such as oil and gas extraction [2], chemical
reactions [3], pharmaceutical manufacturing [4], food processing [5], and microfluidics [6].

Interfacial multiphase flows exhibit complex and dynamic behavior, requiring sophis-
ticated numerical techniques for their accurate calculation and analysis. Over the years,
various numerical methods have been developed to tackle the challenges associated with
capturing and tracking fluid interfaces [7].

One widely employed approach is the front-tracking method [8,9], which explicitly
tracks the fluid interface using a moving mesh. This method accurately captures the detailed
dynamics of the interface and enables the precise representation of surface effects. An
example of a front-tracking method is the arbitrary Lagrangian–Eulerian (ALE) method [10].
Front-tracking methods are very good at providing an accurate description of the contact
surface but often come with high computational costs. In the realm of the front-tracking
approach, it is imperative to recognize a critical aspect: the efficacy of these methods can
wane in scenarios where intricate surface deformations transpire. While the front-tracking
technique demonstrates significant utility in capturing and tracking interfaces in fluid
dynamics simulations, its performance can be compromised when dealing with complex
and dynamic surface behaviors. This limitation can stem from challenges in accurately
representing and maintaining the evolving interface shape, particularly in cases involving
substantial distortions, breakups, or coalescence.

Another approach is the fixed-mesh method, which represents the fluid interface
implicitly using additional fields. The volume of fluid (VOF) method [11], phase-field
method [12], and level-set method [13] are notable examples. These methods use a fixed
mesh and provide easier coupling formulations and smaller algebraic problems. However,
they may sacrifice some accuracy in the description of the interface compared to front-
tracking methods. In the VOF method, a mass conservation equation is solved to track
the movement of the interface by computing the volume fraction of each fluid. This
method is effective at capturing large-scale interface dynamics and is widely used in
various industrial applications. The phase-field method is a diffuse-interface model that
introduces an additional scalar field to represent the interface, and one of the notable
benefits is arguably the complete avoidance of interface tracking, particularly in cases
where there is no explicit necessity for evaluating interface curvature and normal vectors.
This approach offers a smooth transition across the interface and is particularly useful for
simulating complex interfacial phenomena such as phase separation and morphological
changes. Conversely, the primary drawback associated with phase-field methods lies in
their tendency to generate relatively wide interfaces. The level-set method evolves a scalar
function called the level set function, which tracks the interface as it evolves in time. This
method provides accurate interface capturing and is suitable for simulating topological
changes, such as the merging and breakup of droplets.

Continued advancements in numerical methods hold the potential for further en-
hancing our understanding and control of interfacial multiphase flows. Specifically, the
modeling and simulation of three-dimensional (3D) interfacial multiphase flows is a critical
area of research that has garnered significant attention in recent years [1,14,15]. The geo-
metric complexity and dynamic nature of the fluid interfaces demand advanced modeling
techniques that can accurately resolve and track the evolving interfaces in three-dimensional
space. Researchers are continuously exploring new approaches to improve the conservation
of mass, capture fluid interfaces, and compute interfacial surface tension. Liovic et al. [14]
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developed a volume tracking method for accurate calculations of interfaces in 3D geome-
tries. The interface geometries, which are approximated as piecewise planar and fully
multidimensional fluxes, are used in a single unsplit step to advect cell volumes. The
definition of these fluxes is based on backward-trajectory remapping, ensuring the reli-
able and precise tracking of the interfaces. To assess the performance of the 3D volume
tracking scheme, Liovic et al. [14] conducted 3D shearing flow and deformation field tests.
Adelsberger et al. [15] conducted 3D simulations of incompressible two-phase flow to in-
vestigate the behavior of rising droplets. Three different flow solvers, namely, DROPS [16],
NaSt3D [17], and OpenFOAM [18], were utilized, each employing distinct numerical tech-
niques. DROPS employed a finite element spatial discretization, an implicit theta scheme
for time discretization, and a level set method for interface capturing. NaSt3D utilized a
finite difference spatial discretization, a second-order Adams-Bashforth scheme for time
discretization, and a level set method for interface capturing. Lastly, OpenFOAM employed
a finite volume spatial discretization, an implicit Euler scheme for time discretization, and
a VOF method for interface capturing. Metivet et al. [1] presented a numerical framework
for simulating multiphase flows using the level-set method. The discretization of the fluid
equations is carried out using a finite element method. For the spatial discretization, the
method can use finite elements of high order. This choice ensures accuracy and stability
in representing the spatial domain. As for the time discretization, the implicit backward
differentiation formulae (BDF) of arbitrary order is used. This approach allows for precise
time stepping and facilitates the accurate simulation of dynamic phenomena in interfacial
multiphase flows. This ongoing research aims to enhance the fidelity and predictive ca-
pabilities of computational models, enabling more accurate simulations of 3D interfacial
multiphase flows, which generally suffer from volume conservation, interface sharpness,
boundedness, and shape preservation.

In this study, we present a geometric formulation of the VOF method, known as
PLIC (piecewise linear interface construction), specifically designed for simulating 3D
interfacial multiphase flows. The PLIC-VOF method is implemented within the HiG-
Flow (hierarchical grid) framework, comprising recently developed computational fluid
dynamics (CFD) software. HiG-Flow utilizes finite differences on hierarchical grids and
enables the simulation of a wide range of flow types, including Newtonian, generalized
Newtonian, and viscoelastic flows in any dimension. The modular design of the software
allows for the easy implementation of new techniques and methods, making it flexible
and adaptable to evolving research needs. Furthermore, HiG-Flow incorporates numerical
stabilization techniques to ensure accurate and stable simulations, even in the presence
of complex flow phenomena, such as 3D multiphase flows. The user-friendly interface
allows researchers to choose specific simulation features, such as the dimension, modules
to be used, and numerical techniques, providing a customizable and efficient simulation
environment.

The paper is organized as follows: in Section 2, we present the governing equations
that describe interfacial multiphase flows. Subsequently, Section 3 describes the numer-
ical method used to discretize the governing equations using the PLIC-VOF method. In
Section 4, we focus on the validation of the numerical algorithm through two 3D advection
tests: the shearing flow and deformation field problems. Furthermore, the validation of the
PLIC-VOF method is also conducted using a 3D multiphase benchmark problem involving
the rising of a bubble. The paper ends with the conclusion in Section 5.

2. Governing Equations

This study examines the characteristics of an unsteady, laminar, isothermal, and
incompressible two-phase flow. The flow consists of two immiscible fluid phases, with no
mass transfer occurring across their interface. The governing equations for this flow are the
mass conservation equation (Equation (1)),

∇ · u = 0, (1)
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and the linear momentum balance equation (Equation (2)),

ρ

[
∂u
∂t

+ u(∇ · u)
]
= −∇p +∇ ·

{
µ
[
∇u + (∇u)T

]}
+ ρg + σκnδ, (2)

where u = (u, v, w) is the velocity field of the flow; ρ is the density, p is the pressure; µ is the
absolute viscosity; g is the gravitational field; σ is the interfacial tension coefficient; κ and n
are the curvature and the normal vector to the interface, respectively; and δ is a function
that takes a value of one at the interface and zero elsewhere in the domain. Equation (2)
can be written in dimensionless form as:

ρ

[
∂u
∂t

+ u(∇ · u)
]
= −∇p +

1
Re
∇ ·

{
µ
[
∇u + (∇u)T

]}
+ ρ

g
g
+

1
Bo

κnδ, (3)

where the non-dimensional parameters Re = (ρ1g1/2L3/2)/µ1 and Bo = (ρ1gL2)/σ repre-
sent, respectively, the Reynolds number, which describes the ratio between inertial and
viscous forces, and the Bond number (also known as the Eötvös number), which describes
the ratio between gravitational force and surface tension. The parameters g, ρ1, L, and µ1
represent the magnitude of the gravitational field, the characteristic density, the charac-
teristic length scale, and the characteristic viscosity, respectively. Note that, for the sake
of conciseness, both dimensional and dimensionless variables are written with the same
symbols. In addition, also note that the characteristic velocity V is intrinsically linked to
gravity. In this context, V =

√
g · 2r =

√
g · L = g1/2L1/2. This velocity description can

also be found in Hysing et al. [19].
In the VOF method, assuming the flow is incompressible, the advection of the volume

fraction is modeled by the following transport equation:

∂ f
∂t

+∇ · (u f ) = 0. (4)

The method used to model the evolution of the interface plays a fundamental role in the
accuracy of the VOF method. In HiG-Flow software, a geometric formulation was taken to
solve the transport equation (Equation (4)), where the fluid–fluid interface is reconstructed
at each time step using the PLIC-VOF method. In this sense, an advection algorithm with a
fractional step (split) was implemented. This technique simplifies the method and prevents
the transportation of the same fluid portion twice, as happens in single-step (unsplit)
methods [20].

3. Numerical Procedure
3.1. HiG-Tree and HiG-Flow Software

The HiG-Tree software is responsible for the data structure, domains, approximations,
and interpolations, solvers of linear and non-linear systems, used in numerical simulations
in HiG-Flow software.

The HiG-Tree data structure is a hierarchical Cartesian mesh representation that can
be constituted of elements of varying sizes. This structure is based on the recursive spatial
subdivisions (refinements) of its elements, enabling their representation in an m-tree (see
Figure 1). In the HiG-Tree data structure, arbitrary mesh refinement processes can be
applied at any level of the tree, generating an unstructured mesh. Classic examples of
this type of mesh are the data structures Quadtree (two-dimensional) and Octree (three-
dimensional). Although the illustration in Figure 1 is in two dimensions, the framework is
designed to be generic and can be extended to any number of dimensions.
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Figure 1. HiG-Tree data structure.

In the module responsible for domain and subdomain partitioning, the generated
domains are composed of blocks that can be used to simulate problems in channels with
intricate geometries, but this is complicated. Each block is discretized using the HiG-Tree
structure, which enables appropriate spatial refinement for the simulated problems. These
domains are partitioned using the Zoltan-Trilinos library [21,22], which ensures a good load
distribution among processes during execution. This module also allows for the storage
and enumeration of properties represented in the cells and facets of the mesh. The module
for approximations and interpolations handles the estimation of properties within cells
and facets. It allows for the selection of the polynomial approximation order utilized by the
moving least squares (MLS) method, as described by Sousa et al. [23]. In terms of meshes
composed of elements with different levels of refinement, numerical methods based on
approximations of finite differences in Cartesian uniform meshes become limited since they
will require spatial interpolations in unknown points of the stencil, as illustrated in Figure 2.
The accuracy of this type of method heavily depends on the geometric characteristics of the
mesh. The MLS method avoids this geometric dependence by using a cloud of neighboring
points to the unknown to apply the interpolation.

Figure 2. Stencil of the second-order finite difference method, where the unknowns are arranged at
the center of the cells. xc, xl , xr, xb, and xt are approximations of values positioned at the center (c),
left (l), right (r), bottom (b), and top (t) in the 5-point stencil.

To obtain an approximation of the second derivative of variable u in the x direction at
point c, a standard second-order finite difference scheme can be used. The approximation
is given by the following expression:

∂2u
∂x2 ≈

1
∆x2 (ul − 2uc + ur). (5)
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Note that the point ul on the stencil in Figure 2 does not coincide with any point on the
mesh and must be approximated by an interpolation technique on the mesh of unknowns
in the neighborhood of uc. In the HiG-Tree software, the following interpolation is used:

ul = ∑
k∈Il

wl
kuk, (6)

where Il = ik, k = 1, ..., Nl is the set of indices for the unknowns that are in the neigh-
borhood of uc, and the weights wl

k are calculated using the MLS method. The number of
neighbors Nl depends on the number of points are needed to maintain the order of accuracy
of the global approximation. For a detailed description of this interpolation, the reader is
referred to Sousa et al. [23].

Lastly, the module designed for solving linear and non-linear systems consists of
two powerful libraries that utilize parallel computation techniques for efficient solution.
These libraries are specifically tailored for handling both shared and distributed mem-
ory architectures, making use of high-performance routines. These libraries are HYPRE
(high-performance preconditioners) [24] and PETSc (portable, extensible toolkit for scien-
tific computation) [25]. These libraries offer significant advantages in the development
of parallel code, and their performance has been extensively optimized and tested in var-
ious computational fluid dynamics codes. HiG-Flow software allows for the numerical
simulation of fluid flows in various configurations, specifically, it enables the simulation
of single-phase flows of Newtonian, generalized Newtonian, and viscoelastic fluids, as
well as two-phase flows of Newtonian fluids using the volume of fluid method (VOF) for
interface representation. In HiG-Flow software, the most traditional methods for temporal
advancement were implemented. The explicit methods implemented are explicit Euler,
second-order TVD (total variation diminishing) Runge–Kutta (or modified Euler method),
and third-order TVD Runge–Kutta. The implicit methods implemented in the system are
implicit Euler, Crank–Nicholson, and the second-order backward differentiation formula
(BDF). To obtain the pressure and velocity fields, the incremental (second order in time)
and non-incremental (first order in time) projection methods are implemented.

3.2. Discretization Procedure in HiG-Flow

To obtain the pressure fields and flow velocity through the resolution of the
Navier–Stokes Equations (1) and (3), the incremental and non-incremental projection
methods proposed by Chorin [26], in which the pressure and velocity fields are decoupled,
are implemented in HiG-Flow. As stated by Lages [27], in terms of the error arising from
the pressure-velocity decoupling, it has been observed that the non-incremental version of
the method exhibits first-order accuracy in time, whereas the incremental version achieves
second-order accuracy in time. In this work, the incremental projection method was used
to solve the equations. Therefore, discretizing Equations (1) and (3) by the explicit Euler
method we obtain:

∇ · un+1 = 0, (7)
ρn+1un+1 − ρnun

∆t
= −ρn(un · ∇un)−∇pn+1 (8)

+
1

Re
∇ ·

{
µ
[
∇un + (∇un)T

]}
+ Fn,

where
Fn = ρn g

g
+

1
Bo

(κnδ)n. (9)

The superscripts n and n + 1 refer to the time level, and ∆t represents the time step. The
elements with superscript n + 1 are unknowns, and the elements with superscript n are
known.
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In the incremental projection method, initially using pn instead of pn+1, an intermedi-
ate velocity, u∗, is calculated as follows:

ρ∗u∗ − ρnun

∆t
= −ρn(un · ∇un)−∇pn +

1
Re
∇ ·

{
µ
[
∇u∗ + (∇u∗)T

]}
+ Fn, (10)

Subsequently, the difference between the pressure gradients pn and pn+1 is calculated to
correct the intermediate velocity, and, lastly, the final velocity un+1 is obtained:

ρn+1un+1 − ρnu∗

∆t
= −∇(pn+1 − pn) = −∇∆p, (11)

or rather,
ρn+1un+1 = ρnu∗ − ∆t∇∆p. (12)

To calculate the pressure, the divergent operator is applied on both sides of Equation (12)
and the incompressibility hypothesis, Equation (7), is invoked, to give the Poisson equation
for pressure:

∇ ·
(

1
ρn∇∆p

)
=

1
∆t
∇ · u∗. (13)

Since the phenomena treated in this work involve two-phase flows, that is, they
involve two fluids with different physical properties, it follows that ρ and µ are not constant
throughout the domain. Thus, the resolution of the Poisson equation for the pressure and
momentum equation presents greater difficulties and requires special care. To remediate
this issue, in this work, the BiCGS (BiConjugate Gradient Squared) iterative method [28]
with Block Jacobi preconditioner [29] was used, considering the convergence tolerance on
the residual norm of 1× 10−7.

3.3. Interface Reconstruction

In the existing literature, various methods have been proposed in conjunction with
the VOF technique to handle the geometric reconstruction of the interface. These meth-
ods aim to locally approximate the interface within each interfacial cell by utilizing the
volume fraction as a fundamental piece of information. Traditional examples of methods
for the reconstruction of interfaces are the SLIC (simple line interface calculation) [30],
Hirt–Nichols-VOF (original VOF method) [31] and PLIC (piecewise-linear interface calcula-
tion) [32]. A comparison of these methods was performed by Rudman [33], where the PLIC
method showed more consistent results. Therefore, the PLIC method was implemented in
the HiG-Flow solver to represent the interface.

In the PLIC-VOF method, assuming that the volume fraction and the normal vector
are known in each interfacial cell, the interface is approached by a plane defined as follows:

n · x = α, (14)

where n is the normal vector over the interface, x is the position of a point on the plane,
and α is the smallest distance from the plane to the origin of the computational cell. The
distance α must be adjusted so that the volume fraction below the reconstructed plane (say,
f̄ ) is equal to f , i.e.,

f̄ (α, n, ∆)− f = 0. (15)
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Given a cell with dimension ∆ = (∆x, ∆y, ∆z) and the normal vector, n = (nx, ny, nz), the
fluid volume below the interface within the interfacial cell is defined as follows:

V =
1

6|nx||ny||nz|
[α3

−R(α− |nx|∆x) · (α− |nx|∆x)3

−R(α− |ny|∆y) · (α− |ny|∆y)3

−R(α− |nz|∆z) · (α− |nz|∆z)3

+R(α− |nx|∆x− |ny|∆y) · (α− |nx|∆x− |ny|∆y)3

+R(α− |nx|∆x− |nz|∆z) · (α− |nx|∆x− |nz|∆z)3

+R(α− |ny|∆y− |nz|∆z) · (α− |ny|∆y− |nz|∆z)3], (16)

where

R(a) =

{
0, if a ≤ 0,
1, if a > 0.

(17)

Equation (16) can be simplified based on the intersection of the plane with the cell, allowing
one to estimate the distance from the plane to the origin of the cell and the volume of
fluid below the plane. To calculate the normal vector, the second-order accurate method
described by Mehta et al. [34] was used. In this method, the normal vector is defined as the
gradient of the volume fraction (i.e., n = ∇ f /||∇ f ||), where the gradient is approximated
using a 3× 3× 3 stencil around each interfacial cell.

3.4. Interface Advection

Following the same strategy that Puckett et al. [35] adopted in the two-dimensional
case, in order to maintain the conservation of f , the incompressibility condition was taken
into account (i.e., ∇ · u = 0), resulting in the following modification to the volume fraction
transport equation (Equation (4)):

∂ f
∂t

+∇ · (u f ) = f∇ · u, (18)

or rather,

∂ f
∂t

+∇.(u f ) = f∇.u, (19)

∂ f
∂t

+∇.(v f ) = f∇.v, (20)

∂ f
∂t

+∇.(w f ) = f∇.w. (21)

According to Rider and Kothe [36], who also presented this strategy for the two-dimensional
case, this “divergence correction” satisfies the local and global volume-filling constraints
much more closely since the discrete velocity divergences are not necessarily zero but rather
a function of the convergence tolerance used in obtaining the solutions of the linear system.

The calculation of the transport of the volume fraction is divided into three steps:
the first in the x direction, the second is in the y direction, and the third is in the z di-
rection. Thus, three consecutive updates are needed to carry f at each time step, i.e.,
f n → f ∗ → f ∗∗ → f n+1. Thus, discretizing f implicitly on the right-hand side of
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Equation (19), implicitly on the right-hand side of Equation (20), and explicitly on the
right-hand side of Equation (21) leads to

f ∗i,j,k =
f n
i,j,k +

∆t
∆x

(
Fn

i−1/2,j,k − Fn
i+1/2,j,k

)
1− ∆t

∆x

(
un

i+1/2,j,k − un
i−1/2,j,k

) , (22)

f ∗∗i,j,k =
f ∗i,j,k +

∆t
∆y

(
G∗i,j−1/2,k − G∗i,j+1/2,k

)
1− ∆t

∆y

(
vn

i,j+1/2,k − vn
i,j−1/2,k

) , (23)

f n+1
i,j,k = f ∗∗i,j,k +

∆t
∆z

[
f ∗∗i,j,k

(
wn

i,j,k+1/2 − wn
i,j,k−1/2

)
−
(

H∗∗i,j,k+1/2 − H∗∗i,j,k−1/2

)]
, (24)

where f n
i,j,k is the volume fraction in the (i, j, k)-th cell; at time tn = n∆t, u, v, and w are the

velocity components in each coordinate direction and F; and G and H denote the fluxes of
f in the facets of cell (i, j, k). Suppose, without loss of generality, that the velocity ui+1/2,j,k
is positive; then, the flux volume, Fn

i+1/2,j,k, is given by:

Fn
i+1/2,j,k =

un
i+1/2,j,k ·Vi+1/2,j,k

un
i+1/2,j,k · ∆t · ∆y · ∆z

=
Vi+1/2,j,k

∆t · ∆y · ∆z
, (25)

where Vi+1/2,j,k is the volume of fluid that must be transported to the neighboring cell.

3.5. Surface Tension Force and Curvature

In this work, the CSF (continuum surface force) method presented by Brackbill et al. [37]
was adopted to model the interfacial tension force described in the momentum equation
(Equation (3)). In this model, the body force is defined by:

Fσ = σκnδ. (26)

In the VOF method, Equation (26) is generally rewritten as:

Fσ = σκ
∇ f
||∇ f || ||∇ f || = σκ∇ f . (27)

To obtain the curvature κ, the traditional height function method, described by Torrey et al. [38],
was used. This method takes nine heights to form a stencil 7× 3× 3, 3× 7× 3 or 3× 3× 7
around each interfacial cell, according to the orientation of the interface, where the con-
struction of height functions is defined as follows:

hi,j =
k+3

∑
k−3

fi,j,k∆z, to j = j′ − 1, j′, j′ + 1 and i = i′ − 1, i′, i′ + 1, (28)

for the case where the largest component of the normal vector is in the z direction. Knowing
the nine height functions, the interfacial curvature can be calculated as follows:

κ = sgn(n) ·
hxx + hyy + hxxh2

y + hyyh2
x − 2hxyhxhy

(1 + h2
x + h2

y)
3/2 , (29)

where the derivatives hx, hy, hxx, hyy, and hxy are calculated using centered finite difference
schemes.

3.6. Time-Step Constraint

During the geometric advection of the interface, it is necessary to consider certain
constraints to ensure the proper functioning of the method. In HiG-Flow, in order to



Mathematics 2023, 11, 3900 10 of 21

prevent the same fluid portion from being transported twice, due to the use of a fractional
step advection algorithm, and to ensure that the advected fluid volume does not exceed
the computational cell volume, the following condition has been imposed:

∆t <
∆

2|u| ≡ ∆tAdvection. (30)

The inclusion of the interfacial tension term in the Navier–Stokes equation demands
one more restriction for the time step. According to Popinet [7], the explicit discretization
of the interfacial tension term leads to a condition of temporal stability of the form:

∆t <

√
(ρ1 + ρ2)∆3

4πσ
≡ ∆tσ, (31)

where ρ1 and ρ2 represent the density of each fluid. According to the rationale provided
by Popinet [7], the limitation on the time step size is justified by the need to adequately
capture the propagation of the fastest capillary wave within the system.

Furthermore, the CFL (Courant–Friedrichs–Lewy) condition should be taken into
account for the parabolic and hyperbolic terms in Equation (8),

∆t < Re∆2 ≡ ∆tParabolic, (32)

and
∆t <

∆
ρ|u| ≡ ∆tHyperbolic. (33)

Therefore, the time step constraint is:

∆t = min(∆tAdvection, ∆tσ, ∆tParabolic, ∆tHyperbolic). (34)

4. Validation

In this section, we present the validation of the numerical results obtained using
HiG-Flow software by comparing them with the results reported in the scientific literature.
The purpose is to assess the accuracy and reliability of HiG-Flow software by evaluating
its agreement with established findings. To assess the performance of the implemented
interface reconstruction and advection methods, benchmark problems were simulated.
These benchmark problems, namely, the 3D shearing flow test and the 3D deforming field
test, were chosen based on their relevance and availability in the literature, particularly in
the work by Liovic et al. [14]. In these tests, since the velocity field is given, the sphere is
not affected by the numerical dissipation of the methods used to obtain the flow velocity
and pressure. In other words, the Navier–Stokes equations do not need to be solved, just
the volume fraction transport equation. Therefore, it is expected that the sphere maintains
its original shape at the final time of the simulation. By comparing the results obtained
from the HiG-Flow simulations with the established solutions, the accuracy and fidelity of
the implemented methods can be evaluated. Furthermore, the solver for the Navier–Stokes
equations developed in HiG-Flow was validated using the 3D rising drop test proposed
by Adelsberger et al. [15]. This test serves as a benchmark to assess the accuracy and
performance of the solver in simulating the rising behavior of a three-dimensional droplet.
Both quantitative and qualitative analyses of the results obtained from the simulations of
these benchmark problems are presented in the following sections.

To quantitatively evaluate the performance of the advection algorithm implemented
in HiG-Flow, the volume of fluid at the initial time (VI) and the volume of fluid at the final
time (VF) of the simulation were compared for both the 3D shearing flow test and the 3D
deforming field test. The absolute error, εL1 , between the volumes is defined as follows:

εL1 = |VI −VF|. (35)
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To quantitatively evaluate the 3D rising drop test, the evolution of the bubble’s center
of mass and the bubble’s rise velocity were analyzed. The evolution of the bubble’s center
of mass is given by:

zc =
∫

Ω1

z dz, (36)

where Ω1 is the region of the domain filled by the bubble. By utilizing the volume fraction
f , Equation (36) can be expressed in a different form, as follows:

zc =
N

∑
i=1

zi · f · ∆x∆y∆z, (37)

where N is the number of cells that contain a non-zero volume fraction.
Lastly, the bubble’s rise velocity is given by:

vc =
d
dt

zc. (38)

4.1. 3D Shearing Flow Test

The 3D shearing flow test is widely used in the literature to verify the accuracy of
interface advection algorithms in two-phase flows [14,39,40]. In this test, a sphere is
subjected to a prescribed velocity field defined by the combination of a single vortex in the
x− y plane and laminar pipe flow in the z direction.

To simulate this test, a sphere with a radius of 0.15 was considered, centered at the
point (0.5, 0.75, 0.25), in a domain with dimensions of [0, 1]× [0, 1]× [0, 2]. The velocity
field used to move the sphere within the domain is defined by:

u =


u = −sin(πx)2sin(2πy)cos(πt

T ),
v = sin(πy)2sin(2πx)cos(πt

T ),
w = umax

(
1− r

R
)2cos(πt

T ),

(39)

where T = 6.0, r =
√
(x− 0.5)2 + (y− 0.5)2, R = 0.5 and umax = 1.0. This velocity field

generates a vortical flow, causing the initially spherical interface to take on a spiral shape.
After reaching half of the total simulation time (i.e., t = 3.0), the interface reverses its
trajectory, returns to its initial position at time t = 6.0, and reverts to its original shape.

Figure 3a shows the point of maximum interface deformation in the 3D shear flow
test simulated in HiG-Flow. A mesh with a resolution of 64 × 64 × 128 and time-step
of ∆t = 1× 10−3 were used in the numerical simulations. The result obtained by HiG-
Flow is compared with the findings presented by Liovic et al. [14], as shown in Figure 3b,
where a mesh with a resolution of 64 × 64 × 128 was also used. The interface shape
calculated by HiG-Flow demonstrates qualitative agreement with the results obtained by
Liovic et al. [14].

To perform a quantitative analysis of the 3D shearing flow test, the volume fraction
absolute error was calculated using Equation (35). The obtained result was then compared
with the values reported in the scientific literature at t = 6. This comparison is shown
in Table 1, where HiG-Flow software showed superiority, in terms of volume fraction
conservation, when compared to the results presented by Liovic et al. [14], Duz et al. [39],
and Lopez et al. [40].

In addition, Figure 4 shows the time history of the volume fraction variation for the
3D shearing flow test when using mesh 64× 64× 128. It can be seen that the L1 errors
magnitude is in the range of 10−6 to 10−5 during all the simulation time, thus proving the
reliability of the numerical method developed in this work.
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(a) HiG-Flow (this work). (b) Liovic et al. 2006.

Figure 3. Comparison of the interface shape at time t = 3 for the 3D shearing flow test. Results
obtained using (a) HiG-Flow software and (b) PCFSC (piecewise-constant flux surface calculation)
unsplit advection scheme presented by Liovic et al. [14], both with a mesh of 64× 64× 128 elements.

Table 1. Comparison of the L1 errors for the volume fraction conservation in the 3D shearing flow
test at t = 6. The HiG-Flow errors are compared against the ones reported by Liovic et al. [14],
Duz et al. [39], and Lopez et al. [40].

Solver Mesh Error (εL1 )

HiG-Flow 50× 50× 100 2.86× 10−4

HiG-Flow 64× 64× 128 4.48× 10−5

CVTNA + unsplit [14] 64× 64× 128 3.64× 10−3

ELVIRA + COSMIC [39] 64× 64× 128 3.97× 10−3

CLC-CBIR [40] 64× 64× 128 3.27× 10−3

Figure 4. Transient behaviour of the L1 errors, εL1 , for the volume fraction conservation in the 3D
shearing flow test using mesh 64× 64× 128.
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4.2. 3D Deforming Field Test

The 3D deforming field test is also widely used in the literature to verify interface
advection methods [14,40] as the prescribed velocity field causes the interface to assume
a complex geometry during its motion. To perform this test, a sphere with a radius of
0.15 was considered, centered at the point (0.35, 0.35, 0.35), within a cubic cavity with
dimensions [0, 1]× [0, 1]× [0, 1]. The velocity field used to move the sphere within the
domain is defined by:

u =


u = 2sin(πx)2sin(2πy)sin(2πz)cos(πt/T),
v = −sin(πy)2sin(2πx)sin(2πz)cos(πt/T),
w = −sin(πz)2sin(2πx)sin(2πy)cos(πt/T),

(40)

where T = 3.0.
Similarly to the 3D shearing flow test studied in Section 4.1, the prescribed solenoidal

velocity field causes the sphere to deform until reaching half of the total simulation time
and then follows a reverse trajectory, tending back to its original shape and position.

Figure 5a shows the point of maximum interface deformation in the 3D deforming field
test simulated in HiG-Flow. A mesh with a resolution of 1283 and time-step of ∆t = 1× 10−3

was used in the numerical simulations. The result is compared with the findings presented
by Liovic et al. [14], as shown in Figure 5b, where a mesh with a resolution of 1283 was also
used. The interface shape obtained by HiG-Flow exhibits qualitative agreement with the
results obtained by Liovic et al. [14], with fewer regions of void volume fraction compared
to their results, despite using the same level of mesh refinement.

(a) HiG-Flow (this work). (b) Liovic et al. 2006.

Figure 5. Comparison of the interface shape at time t = 3 for the 3D deforming field test. Results
obtained using (a) HiG-Flow software and (b) PCFSC (piecewise-constant flux surface calculation)
unsplit advection scheme presented by Liovic et al. [14], both using a mesh constituted of 1283 ele-
ments.

Analogously to the previous test shown in Section 4.1, we quantitatively analyze
the results obtained here for the 3D deforming field test. For that purpose, the volume
fraction absolute error was calculated using Equation (35) in order to verify the ability of the
volume tracking scheme to conserve volume. The results obtained by our newly developed
multiphase algorithm were compared with the results presented by Liovic et al. [14] and
by Lopez et al. [40], as shown in Table 2. Across all levels of mesh refinement utilized,
our numerical formulation consistently yields lower errors compared to those reported in
references [14,40]. These results support the methodology of developing an interface ad-
vection scheme with a divergence correction approach inside the volume fraction transport
equation (see right-hand side of Equation (18)), which leads to the closer satisfaction of
both local and global volume-filling constraints.
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Table 2. Comparison of the L1 errors for the volume fraction conservation in the 3D deformation
field test. The HiG-Flow errors are compared against the ones reported by Liovic et al. [14] and
Lopez et al. [40].

Solver Mesh Error (εL1 )

HiG-Flow 50× 50× 50 1.15× 10−4

HiG-Flow 64× 64× 64 2.19× 10−5

HiG-Flow 128× 128× 128 9.41× 10−6

CVTNA + PCFSC unsplit [14] 64× 64× 64 1.99× 10−3

CVTNA + PCFSC unsplit [14] 128× 128× 128 3.09× 10−4

CLC-CBIR [40] 64× 64× 64 2.09× 10−3

CLC-CBIR [40] 128× 128× 128 3.52× 10−4

Lastly, Figure 6 shows the time history of the volume fraction variation for the 3D
deforming field test when using mesh 64× 64× 64. Again, we can conclude that the L1
errors magnitude is in the range of 10−6 to 10−5 during all the simulation time, thus proving
the reliability of the numerical method developed in this work.

Figure 6. Transient behaviour of the L1 errors, εL1 , for the volume fraction conservation in the 3D
deforming field test using mesh 64× 64× 64.

4.3. 3D Buoyancy-Driven Rising Drop

To conclude the validation of the newly implemented numerical algorithm for simulat-
ing 3D multiphase flows, we now turn our attention to the problem of the buoyancy-driven
rise of a bubble immersed in a Newtonian fluid. In this test case, we consider a bubble with
a density lower than the fluid filling the column. As a result, the pressure gradient induced
by gravity causes the bubble to move in the direction opposite to the gravitational field.

A bubble with a radius of R = 0.25 was positioned at the point (0.5, 0.5, 0.5) inside a
tank with dimensions of [0, 1]× [0, 1]× [0, 2]. The no-slip boundary condition was imposed
on the domain walls. The simulations were performed until time reached t = 3.0. A mesh
size of 50× 50× 100 elements and a time-step of ∆t = 2.0× 10−3 were employed in the
simulations. The two test cases proposed by Adelsberger et al. [15] were simulated. In
the first case, the density and viscosity ratios between the two fluids in the tank are both
equal to 10 (ρ1/ρ2 = µ1/µ2 = 10). In the second case, the density ratio between the fluids
is 1000 (ρ1/ρ2 = 1000) and the viscosity ratio is 100 (µ1/µ2 = 100). In test case 1, the
droplet undergoes a transformation into an ellipsoidal shape. On the other hand, in test
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case 2, the droplet has the potential to break up due to the lower surface tension. Test case
1 can be categorized as an ellipsoidal regime, while test case 2 falls somewhere between the
skirted and dimpled ellipsoidal-cap regimes. The physical and dimensionless parameters
considered for simulating these two cases are presented in Table 3. These parameters were
also used by Metivet et al. [1] with high-order finite-element software, so-called FEEL.

Table 3. Physical and dimensionless parameters used on the 3D buoyancy-driven rising drop
simulation.

Test Cases ρ1 ρ2 µ1 µ2 g σ Re Bo

case 1 1000 100 10 1 0.98 24.5 35 10
case 2 1000 1 10 0.1 0.98 1.96 35 125

Figure 7 illustrates a comparison of the bubble shapes at time t = 3 simulated using
HiG-Flow and OpenFOAM, for the test case 1 (ellipsoidal regime). The interface shape ob-
tained by HiG-Flow exhibits qualitative agreement with the result obtained by Adelsberger
et al. [15] using OpenFOAM software, where the droplet reaches a stable ellipsoidal shape
at steady-state regime.

(a) HiG-Flow (this work). (b) OpenFOAM

Figure 7. Comparison of the bubble shape at time t = 3 for the test case 1 of the 3D buoyancy-
driven rising drop problem. The results were compared between (a) HiG-Flow and (b) OpenFOAM
(Adelsberger et al. [15]) software.

For a better comparison of the actual droplet shape, Figure 8 illustrates the two-
dimensional contour through the droplet’s center generated by the HiG-Flow (this work)
and FEEL [1] software at time t = 3. The contour lines of HiG-Flow (blue) and FEEL (green)
exhibit a close resemblance to each other, with a small difference at the bottom of the drop.

Figure 8. Comparison of the bubble contours at time t = 3 for the test case 1 of the 3D buoyancy-
driven rising drop problem. The results were compared between HiG-Flow (blue) and FEEL (green)
software.

Figure 9 shows the evolution of the bubble’s center of mass and bubble’s rise velocity
for test case 1. The results obtained using the newly-developed algorithm in HiG-Flow
are compared to the results computed by FEEL [1], as well as OpenFOAM, DROPS, and
NaSt3D [15]. In Figure 9a, at the initial stage of the simulation, up until approximately t ≈ 1,
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the drop position is nearly identical in all simulations. Afterwards, the vertical position of
the droplet in OpenFOAM and FEEL software is lower than the one obtained in HiG-Flow,
DROPS, and NaSt3D. Our results are in excellent agreement with the findings obtained
by DROPS and NaSt3D. Figure 9b illustrates the rise velocity of the droplet. In the initial
stages of the simulation, the vertical velocity component (w) of the fluid velocity gradually
increases from its initial value of zero, reaching a maximum magnitude of approximately
0.35–0.36 at around t ≈ 0.9. Then, the steady-state velocity of the droplet decreases, being
again in agreement with the findings obtained by DROPS and NaSt3D.

Figure 10 illustrates a comparison of the bubble shapes at time t = 3 simulated using
HiG-Flow and OpenFOAM, for the test case 2 (skirted and dimpled ellipsoidal-cap regimes).
Again, the interface shape obtained by HiG-Flow exhibits qualitative agreement with the
result obtained by Adelsberger et al. [15] using OpenFOAM software, where the droplet
reaches a stable cap shape at steady-state regime. In the simulated time, our results do
not indicate the presence of satellite droplets, contrary to the OpenFOAM results, which
predict 8 satellite droplets, as stated in Adelsberger et al. [15].

(a) Evolution of the bubble’s center of mass. (b) Bubble’s rise velocity.

Figure 9. 3D buoyancy-driven rising drop: Test case 1 (ellipsoidal regime). (a) Bubble’s center of
mass z and (b) bubble’s rise velocity component w.

(a) HiG-Flow (this work). (b) OpenFOAM.

Figure 10. Comparison of the bubble shape at time t = 3 for the test case 2 of the 3D buoyancy-
driven rising drop problem. The results were compared between (a) HiG-Flow and (b) OpenFOAM
(Adelsberger et al. [15]) software.

Figure 11 illustrates the comparison between two-dimensional contours through the
droplet’s center generated by the HiG-Flow (this work) and FEEL [1] software at time t = 3.
The shape of the contour lines of the bubbles obtained by both software are similar and
reach a skirted format since the surface tension is lower and the ratio between the densities
and viscosities between the fluids present in the flow is higher. The differences between the
two simulations are particularly noticeable along the bottom edge of the droplet, where the
curvature is most pronounced. As depicted in the contour plot, the contour line in FEEL
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(green) appears more extended than in HiG-Flow. Furthermore, FEEL exhibits a higher
contour line at the top edge of the droplet and a smaller contour line at the central part of
the bottom side, when compared to that one obtained with HiG-Flow software.

Lastly, Figure 12 shows the evolution of the bubble’s center of mass and bubble’s
rise velocity for test case 2. In Figure 12a, we show that the droplet’s position over time
is similar for all the simulation times in all the flow solvers, except for FEEL software,
which can explain the differences shown in the contour plot in Figure 11. Figure 12b
illustrates the rise velocity of the droplet. In the initial stages of the simulation, the vertical
velocity component (w) of the fluid velocity gradually increases from its initial value of
zero, reaching a maximum magnitude of approximately 0.37 at around t ≈ 0.54. Then,
the steady-state velocity of the droplet decreases so that a final velocity of 0.32 at t = 3
is obtained using HiG-Flow software. Our result is similar to OpenFOAM, DROPS, and
NaSt3D software, which predict a final velocity of 0.31. The final velocity predicted by FEEL
is approximately 0.28, showing the most significant difference compared to the velocities
obtained from other software.

Figure 11. Comparison of the bubble contours at time t = 3 for the test case 2 of the 3D buoyancy-
driven rising drop problem. The results were compared between HiG-Flow (blue) and FEEL (green)
software.

(a) Evolution of the bubble’s center of mass. (b) Bubble’s rise velocity.

Figure 12. 3D buoyancy-driven rising drop: Test case 2 (skirted and dimpled ellipsoidal-cap regimes).
(a) Center of mass z and (b) rise velocity component w.

5. Conclusions

In conclusion, this study presents a newly developed numerical method for simulating
two-phase flows of incompressible, immiscible, and isothermal Newtonian fluids. The
geometric volume of fluid (VOF) method is employed to locate and reconstruct the interface
during the dynamics of the two-phase flow. Specifically, the piecewise-linear interface
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calculation (PLIC) technique is implemented for three-dimensional (3D) interface transport.
This technique approximates the interface in each interfacial cell using line segments. The
methodology of developing an interface advection scheme with a divergence correction
approach inside the volume fraction transport equation leads to a closer satisfaction of
both local and global volume-filling constraints. In addition, the continuum interfacial
force (CSF) model is utilized to account for the balance of forces at the interface. Lastly, the
Navier–Stokes equations are solved using meshless (possibly high-order) finite difference
schemes from HiG-Flow computational fluid dynamics software.

To validate the numerical implementation, several benchmark two-phase flows are
simulated with the 3D PLIC-VOF HiG-Flow algorithm. Two standard advection numerical
tests, namely, the 3D shearing flow test and the 3D deforming field test, are conducted, and
the following conclusions can be devised:

• Good agreement is observed between the 3D interface shapes obtained by the 3D PLIC-
VOF HiG-Flow algorithm and those found in the scientific literature, specifically, the
piecewise-constant flux surface calculation, the volume of fluid method implemented
in OpenFOAM, and the high-order finite-element software FEEL.

• The absolute errors of the volume tracking advection calculation obtained using our
algorithm are 4.48 × 10−5 and 9.41 × 10−6 for both shearing and deforming flow
tests, respectively, being two orders lower than the results presented in the scientific
literature at the same level of mesh refinement.

Additionally, the 3D bubble rising problem is simulated for different fluid densities
(ρ1/ρ2 = 10 and ρ1/ρ2 = 1000) and viscosity’s ratios (µ1/µ2 = 10 and µ1/µ2 = 100),
mimicking two different regimes (the ellipsoidal regime and the skirted and dimpled
ellipsoidal-cap regime). The results obtained with the newly implemented algorithm for
the 3D bubble rising problem can be summarized as follows:

• Good agreement is obtained for the 3D interface shape using both the newly im-
plemented algorithm and OpenFOAM, DROPS, and NaSt3D software. Specifically,
the 3D PLIC-VOF HiG-Flow algorithm predicted a stable ellipsoidal droplet shape
for ρ1/ρ2 = 10 and µ1/µ2 = 10, and a stable cap shape for ρ1/ρ2 = 1000 and
µ1/µ2 = 100.

• The bubble’s rise velocity and center of mass evolution are computed with the 3D
PLIC-VOF HiG-Flow algorithm and found to be consistent with OpenFOAM, DROPS,
and NaSt3D software. In the initial phases of the simulation, the rise velocity of
the droplet experiences a gradual increment from its initial zero value to reach a
maximum magnitude. Following this, in the steady-state phase, the droplet’s velocity
decreases. This trend is particularly pronounced in the cap regime compared to the
ellipsoidal regime.

Overall, the developed method demonstrates promising accuracy and reliability in
simulating complex two-phase flows, making it a valuable tool for future fluid dynamics
research. Particularly, its applicability extends to the study of complex fluid rheology,
including viscoelastic fluids.
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Abbreviations
The following abbreviations are used in this manuscript:

BDF Backward differentiation formula
BiCGS Biconjugate gradient squared
Bo Bond number
CFL Courant–Friedrichs–Lewy
CSF Continuum surface force
HiG Hierarchical grid
HYPRE High performance preconditioners
MLS Moving least squares
PETSc Portable, extensible toolkit for scientific computation
PLIC Piecewise-linear interface calculation
Re Reynolds number
SLIC Simple line interface calculation
TVD Total variation diminishing
VOF Volume of fluid
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