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Abstract: Information security is an important area of concern in modern computer-integrated sys-
tems. It involves implementing preventative measures to protect confidential data from potential
vulnerabilities, such as unauthorized access, secret disclosure, modification, or destruction. Consider-
ing such threats, we investigate a particular confidentiality property called opacity, which specifies a
system’s ability to cover its ‘secret’ data from being interfered with by outside observers, termed as
intruders. This paper discusses language-based opacity formulation and verification in the context
of discrete event systems represented by partially observed Petri nets. In this context, we iden-
tify two opacity properties, called consistency and non-secrecy; then, we exploit the mathematical
characterization of a net system, to separately check each property, by specifying two feasibility
problems. The proposed method is carried out for two distinct settings of a system. The first setting
is centralized, where an intruder is granted complete information about the system structure but a
partial observation of its behavior. The second setting is decentralized, where a group of intruders
cooperates to reveal the secret language, by using a coordinator. Finally, experimental findings are
given, to demonstrate the proficiency of the proposed approach.

Keywords: discrete event system; opacity; Petri net; sensor configuration; linear constraints;
integer linear programming

MSC: 93E99

1. Introduction

The growing number of modern cyber-physical systems involving critical information,
such as defense, health care, banking, and communication systems, emphasizes the need
to establish measures to ensure their security against hostile actions. These systems are
particularly subject to unauthorized access, because the risk of information leakage to
unauthorized users may reveal sensitive details about their behavior.

Both the industry and the research communities have recently stressed the importance
of security properties. These properties are primarily categorized into three groups: confi-
dentiality, availability, and integrity, which guide policies for information security within
systems and organizations. Motivated by security concerns about discrete event systems
(DESs), our study concentrates on a specific confidentiality property, called opacity. This
property describes the capability of preventing a hostile observer, referred to as an intruder,
from inferring whether or not a system’s secret behavior has occurred. Numerous aspects
of opacity have recently been investigated in the computer security community.
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Due to their competency for system modeling, Petri nets under partial observations
have been widely used in cyber-physical systems. In the area of DESs, there has been a
deluge of studies on fault diagnosis, deadlock control [1], and supervisory control [2] based
on Petri nets. One significant feature of a Petri net (PN) is its mathematical formalism that
allows the use of integer linear programming (ILP), which can alleviate the state explosion
problem, to some extent. For this reason, we use a Petri net as a modeling framework in
this study.

Opacity is considered as a general information flow property that covers a wide
range of applications in DESs. Bryans et al. [3] proved that certain information flow
properties, such as anonymity and non-interference [4] problems, can be converted into
opacity, by using appropriate observation mappings. In addition, Lin et al. [5] showed that
observability, detectability, and diagnosability [6] can be conceived as opacity problems.

Opacity in DESs is categorized into two main groups, based on the secret’s represen-
tation: state-based opacity [7], where a secret is specified as a subset of the state space,
and language-based opacity (LBO) [8], where a secret is specified as a subset of firable
transition sequences.

This study considers the language-based opacity verification problem in DESs rep-
resented by partially observed Petri nets (POPNs), where a secret is defined as a finite
sub-language of a PN system, and an intruder is allowed to possess complete knowledge
of the system’s structure, but can only identify the firing of visible transitions and (or)
the tokens variation in visible places. Language-based opacity was initially introduced to
DESs modeled with FSA in [5,9], and it was extended recently to bounded labeled Petri
net systems (LPNs) in [10]. In [5], Lin et al. specified two classes of opacity, called strong
and weak opacity. A strongly (resp. weakly) opaque language is a language where strings
from a different language camouflage all (resp. some) of its strings. Specifically, given a
regular system language and a state-based projection information mapping, the authors
in [5] proposed algorithms with exponential complexity, to verify both weak and strong
opacity. In the current study, language-based opacity is attributed to strong opacity. In [10],
Tong et al. studied a special case of LBO, called strict language opacity, in a bounded PN
system. This work was based on the assumption that a secret is defined as a subset of firable
sequences of transitions and an intruder who is interested in observable transitions only.
To check the strict language opacity property, Tong et al. built a finite automaton, called a
verifier, which synchronized the PN system and the secret language, based on observable
transitions. This approach was time-consuming, because it required off-line construction
of the verifier, which suffered an exponential space complexity. In [11], Cong et al. also
established a necessary and sufficient condition for current state opacity (CSO) verification
in LPN through integer linear programming. However, their method cannot be directly
used for LBO verification, unless we convert the CSO problem into an LBO problem, using
the transformation method given in [12]. Furthermore, the research in [11] only considered
secret markings defined by a set of generalized mutual exclusion constraints (GMECs),
which restricts the scope of secret selection.

Another interesting work is found in [13], which investigated the verification problem
of LBO in LPNs, where the unobservable subnet was considered to be acyclic, and the
secret was specified across sequences of events rather than transitions. The study in [13]
was closely related to this particular research, in which the authors solved an integer
linear programming problem (ILPP), to establish a condition that was both sufficient and
necessary for LBO verification. The technique proposed in this study is more general, as it
applies to a greater range of PN systems under partial observations (i.e., PNs equipped
with place and transition sensors).

Nowadays, intruders tend to be highly skilled and intelligent. They are often part
of an organized group providing illegal specialized services, such as credit card fraud,
theft of intellectual property, or counterfeiting documents. This paper investigates the LBO
verification problem in a decentralized setting, where local intruders collaborate by using a
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coordinator. Each local intruder has complete information about the net structure but only
partial information about its evolution.

Decentralized opacity can be reduced to many security properties, such as decentralized
anonymity, secrecy, and non-interference. Specifically, consider a multi-user system that
allows many users to share the resources of a single computer. In our framework, these users
can be viewed as intruders who should not determine whether or not the decentralized
security property is met. Furthermore, many properties employed in discrete event systems
for supervisory control can be restated as a particular instance of decentralized opacity.
Paoli et al. [14] showed that co-opacity is an extension of co-observability [15] used for
supervisory control [16], and that it can be used to check the existence of a group of
decentralized local supervisors (intruders in our framework, with or without a coordinator)
that control a system. Tripakis and Rudie [17] developed a decidable condition called “at
least one can tell”, which ensures that decentralized agents can make correct decisions about
the behavior of a system. This condition is relevant to the decentralized opacity problem,
because it provides a way to verify whether or not a decentralized system is opaque.

This research aims to compose the LBO verification problem in the context of a DES
represented by a POPN, taking into account observations from place and transition sensors.
Then, based on the proposed formulation, new approaches to verifying LBO are set up.
In light of the preceding, the findings of this study contribute the following to the existing
literature:

• We define the concept of secret observation sequences, by considering a case where a
secret involves numerous transition sequences yielding the same observation. This
concept decreases the effort required to check language opacity in a POPN, by avoiding
redundant explorations.

• We identify two language-based opacity properties, called consistency and non-secrecy
properties; we separately check each property; then, we provide necessary and suffi-
cient conditions to check language-based opacity, by defining and solving an ILPP.

• Finally, we extend the above results from a centralized framework to a decentralized
framework with a coordinator, where more than one intruder observes the system.

The following is a breakdown of the paper’s structure. Section 2 provides an overview
of Petri nets and partially observed Petri nets. The theory underlying the partition of
unobservable transitions, as well as the concept of discernible transitions, is presented
in Section 3. The LBO verification problem is formulated in a POPN system in Section 4.
An ILP problem is established in Section 5, to solve the LBO verification problem. In Sec-
tion 7, we discuss opacity in a decentralized case, where a group of local intruders unites to
reveal a secret language via a coordinator. To demonstrate the proposed method, an exam-
ple is given in Section 6. Finally, Section 8 brings the study to a close and points the way
forward for further research.

2. Preliminaries
2.1. Petri Nets

A Petri net structure is a weighted bipartite graph N = (P, T, Pre, Post), where P =
{p1, p2, . . . , pm} is a set of m places and T = {t1, t2, . . . , tn} is a set of n transitions with
P ∪ T 6= ∅ and P ∩ T = ∅. Pre : P× T → N and Post : P× T → N (N denotes the set
of non-negative integer numbers) are the pre- and post-incidence functions designating
arcs from places to transitions and from transitions to places, respectively, in a net, and
they are represented as matrices in Nm×n. The incidence matrix of a PN is defined by
C = Post− Pre.

A marking is a mapping M : P→ N that attributes to each place a non-negative integer
number of tokens. A PN system with initial marking M0 is denoted by a couple (N, M0).
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A transition ti is enabled at a marking M, denoted by M[ti〉, if M ≥ Pre(·, i), where Pre(·, i)
is the ith column of matrix Pre. Firing an enabled transition yields a marking M′ with

M′ = M + C(·, t), (1)

where C(·, t) is a column vector that denotes the token change generated by firing t. Given
a transition sequence σ ∈ T∗, |σ| denotes the length of σ. Let π : T∗ → Nn be a function
that allocates a Parikh vector y ∈ Nn to a transition sequence σ ∈ T∗, called the firing vector
of σ. The notations M[σ〉 and M[σ〉M′ indicate, respectively, that σ is enabled at M and the
firing of σ at M yields M′, following the equation:

M′ = M + C · π(σ). (2)

Equation (2) is called the state equation of (N, M0). We denote by L(N, M0) = {σ ∈
T∗|M0[σ〉} the set of all firable transition sequences in (N, M0), and by R(N, M0) the
reachability set of (N, M0). A PN is said to be acyclic if there is no directed circuit and
bounded if there exists a positive constant k ∈ N, such that, for all M ∈ R(N, M0) and
p ∈ P, M(p) ≤ k, where M(p) is the tokens number in place p.

2.2. Partially Observed Petri Nets

A partially observed Petri net is a PN system equipped with place sensors that display
the number of tokens in some places, known as observable places, and (or) transition
sensors that display the labels of observable transitions, when fired. In this sense, POPNs
can be seen as a generalization of LPNs, since any LPN can be represented as a POPN.
However, not all POPNs can be represented as LPNs. This is because POPNs allow for the
presence of place sensors, which LPNs do not.

The set of observable places is denoted by Po ⊆ P. We re-index observable places in
Po from 1 to mo, such that Po = {po1 , po2 , . . . , pomo } with oi ∈ {1, 2, . . . , m} and poi ∈ P for
i ∈ {1, 2, . . . , mo}. A partially observed Petri net is a quintuple-tuple Q = (N, M0, E, V, δ),
where (N, M0) is a PN system with m places and n transitions, E is an alphabet (a set of
labels), and V = (vij) ∈ {0, 1}mo×m is a place sensor configuration matrix, where vij = 1
if j = oi and vij = 0, otherwise. A labeling function, δ : T → E ∪ {ε}, represents the
transition sensor configuration, which allocates a label from E or the empty string ε to a
transition t ∈ T. Based on these allocations, we divide the set of transitions T into two
disjoint sets To and Tu, satisfying T = To ∪ Tu and To ∩ Tu = ∅, where To = {t ∈ T|δ(t) ∈
E} is the set of observable transitions and Tu = {t ∈ T|δ(t) = ε} is the set of unobservable
transitions. Thus, a label δ(t) is displayed only when we fire a transition t ∈ To. We denote
by M̂ = V ·M the marking measurement of M using a place sensor configuration matrix V.
Arguably, matrix V characterizes a marking M projection on Po.

Definition 1. Let (N, M0) be a PN system with N = (P, T, Pre, Post). An evolution of N
starting from M0 is denoted as a transition-marking sequence.

M0t1M1t2M2 . . . th Mh,

satisfying M0[t1〉M1[t2〉M2 . . . [th〉Mh, where ti ∈ T, Mi ∈ R(N, M0) for i ∈ {1, . . . , h}, h ≥ 1.

Definition 2. Given a POPN Q = (N, M0, E, V, δ), the collected measure associated with
M[t〉M′ is given as follows:

ρ(M, t) =

 εp, if (M̂ = M̂′) ∧ (δ(t) = ε)

M̂δ(t)M̂′, otherwise,

where M̂ = V ·M, M̂′ = V ·M′ and εp denotes an empty observation.
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We denote by ρ(M, σ) the extension of the operation ρ to transition sequences. Specifically,
let Mt1M1t2M2 . . . Mh−1th Mh be the evolution produced by firing σ = t1t2 . . . th ∈ T∗ at M. We
define the associated measurement sequence by concatenating the successive collected measures, as
seen below:

ρ(M, σ) = ρ(M, t1)ρ(M1, t2) . . . ρ(Mh−1, th)

= M̂e1M̂1M̂1e2 . . . M̂ho−1M̂ho−1eho M̂ho,

where ei ∈ E ∪ {ε} and ho ≤ h. Given a measurement sequence M̂0e1 . . . M̂i M̂i . . . eho M̂ho,
1 ≤ i ≤ ho− 1, the operation Λ fuses each two adjacent M̂i as follows:

Λ(M̂0e1 . . . M̂i M̂i . . . eho M̂ho) = M̂0e1 . . . M̂i . . . eho M̂ho.

Definition 3. Let Q = (N, M0, E, V, δ) be a POPN, M be a marking from R(N, M0), and σ =
t1t2 . . . th ∈ T∗ be a transition sequence, such that M[σ〉. The observation sequence generated when
σ fires at M is

w(M, σ) = Λ(ρ(M, σ))

= Λ(M̂e1M̂1M̂1e2 . . . M̂ho−1M̂ho−1eho M̂ho)

= M̂e1M̂1e2 . . . M̂ho−1eho M̂ho.

Marking measurements are displayed by sensors whenever observable events fire
or when token variations occur in observable places. After obtaining ρ(M, σ), each two
adjacent measures M̂i M̂i are merged into one measure, using the operation Λ. For simplifi-
cation purposes, if no confusion is caused, we use the symbol w to designate an observation
sequence in a POPN.

Example 1. Consider a POPN in Figure 1 with M0 = [1 0 0 0 0 0]T . The place sensor configuration
is derived from Po = {p1, p5} as follows:

V =

( p1 p2 p3 p4 p5 p6

po1 1 0 0 0 0 0
po2 0 0 0 0 1 0

)
.

We have To = {t1, t4} and Tu = {t2, t3, t5}. Given E = {a, b}, we define the event sensor
configuration using the labeling function δ as δ(t1) = a, δ(t4) = b, and δ(t2) = δ(t3) =
δ(t5) = ε. Let σ = t1t3t4 be a transition sequence that is enabled at M0. By Definition 1,
[1 0 0 0 0 0]Tt1[0 1 1 0 1 0]Tt3[0 1 0 0 1 1]Tt4[0 0 0 1 1 1]T is the evolution generated by firing σ
at M0. We have ρ([0 1 1 0 1 0]T , t3) = εp; by Definition 3, the associated observation sequence is
Λ(ρ(M0, σ)) = [1 0]Ta[0 1]Tb[0 1]T .

Let Q = (N, M0, E, V, δ) be a POPN and M be a marking from R(N, M0). We define by

O(Q, M) = {w|∃σ ∈ T∗, M[σ〉, Λ(ρ(M, σ)) = w}

the set of feasible observation sequences generated by Q from M, and by

S(w) = {σ ∈ T∗|M0[σ〉, Λ(ρ(M0, σ)) = w}

the set of transition sequences consistent with w.
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𝑡3(𝜀) 𝑝6

Figure 1. A POPN, where unobservable transitions and places are depicted by gray bars and
circles, respectively.

3. Quasi-Unobservable and Discernible Transitions

Let Q be a POPN with a sensor configuration (V, δ) and Co ∈ Nmo×n be the restriction
of C to Po. Based on Co, the set of unobservable transitions Tu can be partitioned into
two disjoint sets T̃q and T̃u, such that Tu = T̃q ∪ T̃u and T̃q ∩ T̃u = ∅, where T̃q = {t ∈
Tu| Co(·, t) 6= #»

0 mo (
#»
0 mo is an mo-dimensional column vector with all entries being 0) }

is a set of quasi-observable transitions and T̃u = {t ∈ Tu| Co(·, t) =
#»
0 mo} is a set of

truly unobservable transitions. We define Td = To ∪ T̃q as the set of discernible transitions.
For e ∈ E ∪ {ε}, T(e) = {t ∈ T|δ(t) = e} and Td(e) = {t ∈ Td|δ(t) = e}, respectively,
represent the subsets of transitions in T and Td, having the same label, e. We denote by
Γe = {~vt|~vt = Co(·, t), t ∈ T(e)} the set of column vectors in matrix Co associated with
transitions in T(e).

Example 2. Consider the POPN with the sensor configuration (V, δ) specified in Example 1.
Matrix Co is given as follows:

Co =

[ t1(a) t2(ε) t3(ε) t4(b) t5(ε)

p1 −1 0 0 0 1
p5 1 0 0 0 −1

]
.

It is evident that T̃u = {t2, t3}, T̃q = {t5}, and Td = {t1, t4, t5}.

Definition 4. Let Q = (N, M0, E, V, δ) be a POPN and T̃u be the set of its truly unobservable
transitions. A truly unobservable subnet of Q is defined as Q̃ = (Ñ, E, M0, V, δ), where Ñ =
(P, T̃u, ˜Preu, ˜Postu), with ˜Preu and ˜Postu being, respectively, the restrictions of Pre and Post on T̃u.
A discernible subnet of Q is defined as Qd = (Nd, M0, E, V, δ), where Nd = (P, Td, Pred, Postd),
with Pred and Postd being, respectively, the restrictions of Pre and Post on Td. C̃u and Cd,
respectively, denote the incidence matrices of Q̃ and Qd. Let |T̃u| = ñu and |Td| = nd.

4. Language-Based Opacity

We assume that an intruder is only interested in a limited number of secret sequences,
i.e., the secret is a finite sub-language of the net system.

Definition 5. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a finite secret
language. Q is said to be language-opaque, with regard to Ls, if, for all σ ∈ Ls, there exists a
sequence σ′ ∈ L(N, M0) \ Ls, such that Λ(ρ(M0, σ)) = Λ(ρ(M0, σ′)).
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Definition 6. Given a POPN Q = (N, M0, E, V, δ) and a finite secret language Ls ⊆ L(N, M0),
the set of secret observation sequences associated with Ls is defined as

O(Ls) = {w|∃σ ∈ Ls, Λ(ρ(M0, σ)) = w}.

Let w ∈ O(Ls) be a secret observation sequence. The set of secret transition sequences
consistent with w is given by

Ls(w) = {σ ∈ Ls|M0[σ〉, Λ(ρ(M0, σ)) = w}.

Note that each w ∈ O(Ls) can be associated with at least one transition sequence from
Ls, i.e., |Ls(w)| ≥ 1. Knowing that Ls is finite, then O(Ls) is also finite, with |O(Ls)| ≤ |Ls|.

Now we reformulate the definition of LBO in a POPN, by exploiting the concept of
secret observation sequences.

Definition 7. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a finite secret language.
An observation sequence w ∈ O(Ls) is language-opaque, with regard to Ls, if and only if, at least,
there is a sequence σ ∈ L(N, M0) \ Ls, such that Λ(ρ(M0, σ)) = w, i.e., S(w) * Ls holds.

Based on Definition 7, a POPN system is language-opaque, with regard to a secret
language Ls, if for any w ∈ O(Ls) there exists a transition sequence σ satisfying the
following two properties:

• Consistency property: σ ∈ S(w);
• Non-secrecy property: σ /∈ Ls.

Proposition 1. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a secret language.
Q is language-opaque, with regard to Ls, if and only if, for any w ∈ O(Ls), w is language-opaque,
with regard to Ls.

Proof. (If) Suppose that for any w ∈ O(Ls), w is LBO, with respect to Ls. Thus, for any w ∈
O(Ls) (i.e., σ ∈ Ls), there is at least a sequence σ′ ∈ L(N, M0) \ Ls, such that Λ(ρ(M0, σ′)) =
Λ(ρ(M0, σ)) = w. Based on Definition 5, Q is language-opaque, with regard to Ls.

(Only if) By contradiction, assume that Q is language-opaque, with respect to Ls,
and that there exists an observation sequence w ∈ O(Ls) such that w is not language-
opaque, with regard to Ls, i.e., S(w) ⊆ Ls. In other words, for σ ∈ S(w) ⊆ Ls, there does
not exist σ′ ∈ L(N, M0) \ Ls, such that Λ(ρ(M0, σ′)) = Λ(ρ(M0, σ)) = w. Thus, following
Definition 5, Q is not LBO, which opposes the assumption.

If a secret observation sequence w has several consistent transition sequences from Ls,
i.e., |Ls(w)| > 1, it is more efficient to verify the opacity of w instead of investigating LBO
separately for each σ ∈ Ls(w). Using this proposition, we put our focus on a portion of the
reachability space that allows checking the secret language occurrence O(Ls), rather than
checking the entire PN system language.

Example 3. Consider the POPN in Figure 1. Let Ls = {t1t3t4, t1t3t2t5, t1t2t3t5} be a secret
language. Its associated secret observation sequences are given by O(Ls) = {w1, w2}, where
w1 = [1 0]Ta[0 1]Tb[0 1]T , w2 = [1 0]Ta[0 1]T [1 0]T , Ls(w1) = {t1t3t4}, and Ls(w2) =
{t1t3t2t5, t1t2t3t5}. We have S(w1) = {t1t3t4, t1t4t3} and S(w2) = {t1t2t3t5, t1t3t2t5}. We
observe that S(w1) * Ls, implying that w1 is LBO, with respect to Ls. However, we can see that
S(w2) ⊆ Ls. Hence, based on Definition 7, w2 is not LBO, which, based on Proposition 1, implies
the non-language opacity of Q.

5. Mathematical Characterization of LBO

In this section, we suggest a linear algebraic characterization, to check LBO in a POPN
Q. The following assumption supports this characterization: The truly unobservable subnet
Q̃ and the discernible subnet Qd are acyclic.
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Unfortunately, the majority of studies dealing with the opacity problem in PN sys-
tems [10,11,13], including the proposed approach, have a limitation, due to the assumption
that the unobservable (observable) part of the Petri net is structurally acyclic, which is a
strong requirement that limits their application to more general systems. This assumption
ensures that the state equation is necessary and sufficient to capture the set of reachable
markings by firing unobservable transitions. In this case, the mathematical characterization
of a PN system using the state equation becomes a double-edge sword that reduces the
exhaustive computation load on the one hand, but affects negatively the system generality
on the other hand.

As far as we know, the only research that addresses the verification of language-based
opacity that does not make the assumption of the unobservable subnet being acyclic is
our earlier study, which we introduced in [18], where a verification algorithm employing a
depth-first search approach verifies the presence of a non-secret transition sequence that is
consistent with a secret observation sequence.

5.1. Consistency Assurance

With an observation sequence w ∈ O(Q, M0) being observed, an intruder with full
knowledge of the system structure tries to establish an estimation of the event sequences
consistent with w. In the following proposition, we prove that each σ ∈ S(w) can be
represented by a linear system.

Proposition 2. Let Q = (N, M0, E, V, δ) be a POPN and w = M̂0e1M̂1e2 . . . M̂ho−1eho M̂ho ∈
O(Q, M0) be an observation sequence. A transition sequence σ′ is consistent with w if σ′ =
σ′u1

σ′e1
σ′u2

σ′e2
. . . σ′uho

σ′eho
σ′uho+1

and its firing vectors ~σ′u1
,~σ′u2

, . . . ,~σ′uho+1
,~σ′e1

,~σ′e2
, . . . ,~σ′eho

satisfy
the following constraint set C(M0, Cd, C̃u, w) =

M0 + C̃u
ho+1
∑

i=1
~σ′ui

+ Cd
ho
∑

j=1
~σ′ej
≥ #»

0 (a)

M0 + C̃u
l

∑
i=1

~σ′ui
+ Cd

l−1
∑

j=1
~σ′ej
≥ Pred ·~σ′el

l ∈ {1, . . . , ho}

 (b)

V · C̃u ·~σ′ui
=

#»
0

V · Cd ·~σ′ej = M̂j − M̂(j−1)

 (c)

∑
t∈Td(ej)

~σ′ej
(t) = 1

∑
t/∈Td(ej)

~σ′ej
(t) = 0

 (d)

~σ′ui
∈ Nñu , i ∈ {1, . . . , ho + 1}

~σ′ej
∈ Nnd , j ∈ {1, . . . , ho}

 (e),

(3)

where

• |σ′ui
| ≥ 0, i ∈ {1, . . . , ho + 1};

• |σ′ej
| = 1, j ∈ {1, . . . , ho};

• Constraints (3.a) represent the state equation;
• Constraints (3.b) represent the enabling condition of discernible transitions;
• Constraints (3.c) represent the token variation generated by firing σ′ui

and σ′ej
;

• Constraints (3.d) define a mutual exclusion condition, to prevent firing more than one dis-
cernible transition.
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Proof. (Only if) Suppose that σ′ is consistent with w, then σ′ = σ′u1
σ′e1

σ′u2
σ′e2

. . . σ′uho
σ′eho

σ′uho+1
,

where σ′ej
∈ Td(ej) with |σ′ej

| = 1, j ∈ {1, . . . , ho}, and σ′ui
∈ T̃∗u , i ∈ {1, . . . , ho + 1}. Evi-

dently, the associated firing vectors satisfy Constraints (3.a), (3.d) and (3.e).
When fired at M0, σ′ generates a trajectory:

M0[σ
′
u1

σ′e1
〉M1 . . . Mho−1[σ

′
uho

σ′eho
〉Mho[σ

′
uho+1
〉Mho+1.

If a discernible transition fires σ′ej
, we have ρ(Mi−1, σ′ui

σ′ej
) = M̂i−1ej M̂i. The firing of

~σ′ui
at Mi−1 enables~σ′ej

but does not produce any token variations in observable places (i.e.,

V · Cu ·~σ′ui
=

#»
0 ), while the firing of~σ′ej

generates a token variation given by M̂i − M̂(i−1).
Therefore, the enabling Constraints (3.b) and the token variation Constraints (3.c) hold.

(If) Assume that there exists σ′, such that σ′ = σ′u1
σ′e1

σ′u2
σ′e2

. . . σ′uho
σ′eho

σ′uho+1
, satisfying

the Constraints Set (3). By Constraints (3.a) and (3.b), σ′ is enabled at M0 and generates the
following trajectory when fired at M0:

M0[σ
′
u1

σ′e1
〉M1 . . . Mho−1[σ

′
uho

σ′eho
〉Mho[σ

′
uho+1
〉Mho+1.

Constraints (3.c) and (3.d) demonstrate the congruity between the transition sequences,
the associated labels, and the marking measurements, which suggests that Λ(ρ(M0, σ′)) =
M̂0e1M̂1e2 . . . M̂ho−1eho M̂ho. Hence, σ ∈ S(w).

5.2. Non-Secrecy Assurance

To ensure the language opacity of a POPN, we simply prove that for each observation
sequence w, there exists one transition sequence σ′ ∈ S(w), such that σ′ /∈ Ls(w). In other
words, for all σ ∈ Ls(w), we prove that σ′ 6= σ. Let zi ∈ Zñu and qj ∈ Znd be two vectors
satisfying zi =~σ′ui

−~σui , i ∈ {1, . . . , ho + 1} and qj =~σ′ej
−~σej , j ∈ {1, . . . , ho}. An entry zik

of vector zi can be characterized as follows: zik = 0, if~σ′ui
=~σui

|zik| > 1, otherwise.
(4)

Similarly, an entry qjk of vector qj can be characterized by qjk = 0, if~σ′ej
=~σej

|qjk| > 1, otherwise.
(5)

To verify that σ 6= σ′, we have to prove that there is at least one entry zik of zi (qjk of
qj), such that |zik| > 1 (|qjk| > 1).

Proposition 3. Let Q = (N, M0, E, V, δ) be a POPN, w = M̂0e1M̂1e2 . . . M̂ho−1eho M̂ho ∈
O(Q, M0) be an observation sequence, and σ = σu1 σe1 σu2 σe2 . . . σuho σeho σuho+1 be a transition
sequence, such that σ ∈ S(w). A transition sequence σ′ = σ′u1

σ′e1
σ′u2

σ′e2
. . . σ′uho

σ′eho
σ′uho+1

∈
S(w) \ {σ} if and only if~σ′u1

,~σ′u2
, . . . ,~σ′uho+1

,~σ′e1
,~σ′e2

, . . . ,~σ′eho
satisfy C(M0, Cd, C̃u, w), together

with the following constraint set:
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~zi =~σ′ui
−~σui

ho+1
∑

i=1

ñu
∑

k=1
|zik| ≥ 1 · y1

~zi = (zik)k∈[1,...,ñu ]

 (a)

~qj =~σ′ej
−~σej

ho
∑

j=1

nd
∑

k=1
|qjk| ≥ 1 · y2

~qj = (qjk)k∈[1,...,nd ]

 (b)

Mi−1 = M0 + C̃u
i−1
∑

k=1
~σ′uk

+ Cd
i−1
∑

k=1
~σ′ek

Mi−1 + C̃u(
r−1
∑

k=1
~xik) ≥ ˜Preu ·~xir

Li
∑

k=1
~xik ≤~σ′ui

vi =
Li
∑

k=1
~xik(tik)

ho+1
∑

i=1
vi ≤

ho+1
∑

i=1
Li − y3

i = 1, . . . , ho + 1, j ∈ {1, . . . , ho},
r = 1, . . . , Li, l = 1, . . . , Li − 1,
~xik ∈ {0, 1}ñu , vi ∈ N



(c)

y1 + y2 + y3 ≥ 1
y1, y2, y3 ∈ {0, 1}

 (d),

(6)

where:

• σui = (tik)k∈[1,...,Li ]
, with Li = |σui | if |σui | ≥ 1 and Li = 1 otherwise, for i ∈ {1, . . . , ho+ 1};

• Const. (6.a) checks the difference between~σ′ui
and~σui ;

• Const. (6.b) expresses the difference between~σ′ej
and~σej ;

• Const. (6.c) indicates whether~σui and~σ′ui
have the same firing order or not;

• Const. (6.d) uses three binary variables, y1, y2, and y3, to ensure that at least one of Constraints
(6.a), (6.b) or (6.c) is satisfied.

Proof. (If) If there exists σ′ = σ′u1
σ′e1

σ′u2
σ′e2

. . . σ′uho
σ′eho

σ′uho+1
, whose firing vectors~σ′u1

,~σ′u2
,

. . . ,~σ′uho+1
,~σ′e1

,~σ′e2
, . . .,~σ′eho

satisfy the Constraint Set C(M0, Cd, C̃u, w), then by Proposition 2,
σ′ ∈ S(w). In Constraint Set (6.a), we compute the difference between the firing vectors
of σ′ and the associated firing vectors of σ, using ~zi and ~qj. Then, we check for each
~zi, i ∈ {1, . . . , ho + 1}(~qj, j ∈ {1, . . . , ho)} if there exists at least an entry zik(qjk), such that
|zik| ≥ 1(|qjk| ≥ 1), to ensure that σ′ is different from σ for at least one firing vector.
In fact, σ′ej

and σej are both composed of one transition (i.e., |σej | = |σ′ej
| = 1), so it is

easy to check whether σej = σ′ej
, using the firing vectors only. However, in the case of

~σ′ui
= ~σui , only the transition firing order can distinguish σ′ui

from σui . In this situation,
for Li ≥ 1, we split~σ′ui

into Li sub-firing vectors ~xik, using the enabling condition Mi−1 +

C̃u
r−1
∑

k=1
~xik ≥ ˜Preu ·~xir, such that~σ′ui

=
Li
∑

k=1
~xik. The value vi =

Li
∑

k=1
~xik(tik) corresponds to the

number of unobservable transitions with the same firing order in σ′ui
and σui . Therefore,

if vi ≤ Li − y3 holds, where y3 is a binary decision variable, then σ′ui
is different from σui for

at least one transition. Given the binary decision variables y1, y2, and y3, Constraints (6.d)
indicate that the satisfaction of either (6.a), (6.b) or (6.c) correspond to the satisfaction of the
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linear constraint y1 + y2 + y3 ≥ 1. Thus, σ and σ′ are different for at least one transition.
Accordingly, σ′ ∈ S(w) \ {σ} holds.

(Only if) Given a transition sequence σ ∈ S(w), assume that there exists σ′ ∈
S(w) \ {σ}. By Proposition 2, σ′ = σ′u1

σ′e1
σ′u2

σ′e2
. . . σ′uho

σ′eho
σ′uho+1

, such that its firing vec-
tors satisfy C(M0, Cd, C̃u, w). In addition, we have σ 6= σ′, which possibly implies the
existence of a particular step i, such that~σ′ui

6= ~σui or a step j, such that~σ′ej
6= ~σej . Thus,

Constraints (6.a) and (6.b) hold. If not, there exist two sub-sequences σ′ui
and σui with

identical firing vectors but different transition firing orders, and then Constraint (6.c)
holds. Finally, the satisfaction of either (6.a), (6.b) or (6.c) implies the satisfaction of Con-
straint (6.d).

Evidently, with the use an absolute value function in (6.a) and (6.b), the problem
becomes non-linear. In this case, it is difficult to apply standard ILP solvers to solve it.
However, it is possible to linearize the absolute value of an integer variable (i.e., |zik|), by
replacing zik and |zik|, using two integer variables z+ik and z−ik as follows:

zik = z+ik − z−ik (a)
|zik| = z+ik + z−ik (b)
z+ik ≤ U · aik (c)
z−ik ≤ U · (1− aik) (d).
aik ∈ {0, 1}, z+ik , z−ik ∈ N

(7)

U is an integer satisfying U ≥ max{B(p)|p ∈ P}, where B(p) denotes place p upper
bound [19]. Constraints (7.c) and (7.d) guarantee that either z+ik or z−ik (or both, if zik = 0)
will be 0. Thus, zik = z+ik when zik ≥ 0, and zik = z−ik when zik ≤ 0. We can exploit
the notation in (7) to remove |zik| in (6.a) and |qjk| in (6.b), to relax (6) into a set of linear
constraints NS(M0, Cd, C̃u, σ) =
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~z+i −~z
−
i =~σ′ui

−~σui (a1)
ho+1
∑

i=1

ñu
∑

k=1
z+ik + z−ik ≥ 1 · y1 (a2)

z+ik ≤ U · aik

z−ik ≤ U · (1− aik)

 (a3)

~z+i = (z+ik)k∈[1,...,ñu ],
~z−i = (z−ik)k∈[1,...,ñu ],


(a)

~q+j −~q−j =~σ′ej
−~σej (b1)

ho
∑

i=1

nd
∑

k=1
q+jk + q−jk ≥ 1 · y2 (b2)

q+jk ≤ U · bjk

q−jk ≤ U · (1− bjk)

 (b3)

~q+j = (q+jk)k∈[1,...,nd ]
,

~q+j = (q−jk)k∈[1,...,nd ]


(b)

Mi−1 = M0 + C̃u
i−1
∑

k=1
~σ′uk

+ Cd
i−1
∑

k=1
~σ′ek

(c1)

Mi−1 + C̃u(
r−1
∑

k=1
~xik) ≥ ˜Preu ·~xir (c2)

Li
∑

k=1
~xik ≤~σ′ui

(c3)

vi =
Li
∑

k=1
~xik(tik) (c4)

ho+1
∑

i=1
vi ≤

ho+1
∑

i=1
Li − y3 (c5)

i = {1, . . . , ho + 1}, j ∈ {1, . . . , ho}
r = {1, . . . , Li}, l = {1 . . . , Li − 1},
~xik ∈ {0, 1}ñu , vi ∈ N



(c)

y1 + y2 + y3 ≥ 1
y1, y2, y3 ∈ {0, 1}

 (d).

(8)

Theorem 1. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a secret language. Q is
language-opaque, with regard to Ls, if, for any w ∈ O(Ls), the following system of linear equations
and inequalities (combining (3) and (6)), denoted by G(w),

G(w) =

 C(M0, Cd, C̃u, w),
NS(M0, Cd, C̃u, σ), σ ∈ Ls

(9)

admits at least one feasible solution.

Proof. Let w ∈ O(Q, M0) be an observation sequence. Assume that there exists σ′, such
that σ′ = σ′u1

σ′e1
σ′u2

σ′e2
. . . σ′uho

σ′eho
σ′uho+1

satisfying the Constraints Set G(w). We have the fir-
ing vectors of σ′ satisfy the constraint set C(M0, Cd, C̃u, w). According to Proposition 2,
σ′ ∈ S(w). We also have the firing vectors of σ′ satisfy NS(M0, Cd, C̃u, σ) f or σ ∈ Ls. Based
on Proposition 3, σ′ ∈ S(w) \ {σ} for each σ ∈ Ls: that is to say, σ′ ∈ S(w) \ Ls. According
to Defintion 7, w is LBO, with regard to Ls.
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Note that the Constraint set G(w) is usually referred to as a “feasibility problem”. One
way to solve a feasibility problem is to convert it into an optimization problem with a
dummy objective function, and then solve it using ILP solvers. This objective function could
be a linear combination of the subset of decision variables. When we aim to maximize it,
we will discover a feasible solution, provided one exists. Conversely, if we aim to minimize
it, we will attain a different feasible solution, typically located on the opposite side of the
feasible region. One option for the objective function would be

min~1T
ñu
·

ho+1
∑

i=1
~σ′ui

.

5.3. Complexity Analysis and Comparison

Theoretically, an ILP problem is NP-hard, and the computational overhead of its
resolution depends on its variables and constraints numbers. In Table 1, we analyze
the number of variables and constraints of ILPP (9). Columns 1, 2, and 3 denote the
lists of variables, their types, and their sizes, respectively. Column 4 indicates the range
of subscripts associated with each variable, and Column 5 denotes the total number of
variables in scalar form. From the presented results, it is obvious that the numbers of
variables in the worst case is

ñu · (ho + 1) · (1 + 3 · η + Li · η) + nd · ho · (1 + 3 · η) + (ho + 1) · η · (m + 1) + 4 · η,

where η = |Ls(w)|.

Table 1. Integer variables of ILPP G(w).

Variable Type Size Range Total

~σui Integer ñu × 1 i ∈ {1, . . . , ho + 1} ñu · (ho + 1)

~σej Integer nd × 1 i ∈ {1, . . . , ho + 1} nd · ho

z+ik Integer 1× 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , ñu} ñu · (ho + 1) · η

z−ik Integer 1× 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , ñu} ñu · (ho + 1) · η

q+jk Integer 1× 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , nd} nd · ho · η

q−jk Integer 1× 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , nd} nd · ho · η

aik Binary 1× 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , ñu} ñu · (ho + 1) · η

bjk Binary j× 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , nd} nd · ho · η

U Integer 1× 1 1 1 · η

Mi−1 Integer m× 1 i ∈ {1, . . . , ho + 1} m · (ho + 1) · η
~xik Binary ñu × 1 i ∈ {1, . . . , ho + 1}k ∈ {1, . . . , Li} ñu · (ho + 1) · Li · η

vi Integer 1× 1 i ∈ {1, . . . , ho + 1} (ho + 1) · η
y1 Binary 1× 1 1 1 · η

y2 Binary 1× 1 1 1 · η

y3 Binary 1× 1 1 1 · η

In Table 2, the first column denotes the constraint sets involved in ILPP (9), the second
column represents the sub-constraints of each constraint set, the third column shows the
extent in lines of each sub-constraint, and the fourth column denotes the range of their
associated indexes. Finally, Column 5 denotes the total number of constraints contained in
each sub-constraint set. According to the results reported in Table 2, we can deduce the
number of constraints in ILPP (9), which is given by (ho + 1) · (4 · ñu · η + mo + m · Li · η +
2 · η + m) + ho · (mo + 3 · nd · η + 2) + 4 · η + 1. As a result, the variables and constraints
numbers are polynomial in the secret observation sequence length.
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Table 2. Constraints of ILPP G(w).

Constraint Set Sub-Constraints Extent Range Total

f 1 1 1 1

3.a m 1 m

3.b m l ∈ {1 . . . ho} m · ho

C(M0, Cd, C̃u, w) 3.c mo
i ∈ {1 . . . ho + 1}

j ∈ {1 . . . ho}
mo · (ho + 1)

mo · ho

3.d 2 j ∈ {1 . . . ho} 2 · ho

8.a1 ñu i ∈ {1 . . . ho + 1} ñu · (ho + 1) · η
8.b1 nd j ∈ {1 . . . ho} nd · ho · η
8.a2 1 1 1 · η
8.b2 1 1 1 · η

8.a3 2 i ∈ {1 . . . ho + 1}
k ∈ {1 . . . ñu}

2 · ñu · (ho + 1) · η

NS(M0, Cd, C̃u, σ) σ ∈ Ls(w) 8.b3 2 j ∈ {1 . . . ho}
k ∈ {1 . . . nd}

2 · nd · ho · η

8.c1 m i ∈ {1 . . . ho + 1} ñu · (ho + 1) · η

8.c2 m i ∈ {1 . . . ho + 1}
r ∈ {1 . . . Li}

m · Li(ho + 1) · η

8.c3 1 i ∈ {1 . . . ho + 1} (ho + 1) · η
8.c4 1 i ∈ {1 . . . ho + 1} (ho + 1) · η
8.c5 1 1 1 · η
8.d 1 1 1 · η

In Table 3, the proposed approach is compared to previous works on LBO verification
presented in [5,10,13]. The second column presents the application framework. The third
column indicates whether the verification approach is based on an off-line graph computa-
tion or not. The fourth column denotes the secret nature. Finally, the fifth column reports
the complexity of each approach.

Table 3. LBO verification approaches.

Framework Graph Secret Nature Complexity

[5] Automaton No Labels Exponential

[10] LPN Yes Observable transitions Exponential

[13] LPN No Labels NP-hard

Proposed approach POPN No Transitions NP-hard

6. Experimental Results: A Manufacturing System

In this section, we exhibit the above results, using the example of an automated manu-
facturing system from [20], as shown in Figure 2. It contains 46 places and 39 transitions,
including two inputs (I1 and I2), two outputs (O1 and O2), four machines (M1–M4), one
buffer with finite capacity (B), and four robots (R1–R4). In [20], the operation of this system
is discussed in detail. Assume that I1 and I2 each include a sensor that displays the number
of items handled by the corresponding lines L1 and L2. Furthermore, sensors are installed
on the machines (M1–M4), the two robots (R1 and R2), and the buffer (B), to indicate when
an item is added. This PN might be considered as a POPN.
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Figure 2. An automated manufacturing system’s Petri net model.

We have:
Td = {t1, t2, t6, t7, t8, t9, t13, t14, t15, t16, t17, t21, t22, t23, t24, t28, t29, t30, t34, t35, t38, t39}.
T̃u = {t3, t4, t5, t10, t11, t12, t18, t19, t20, t25, t26, t27, t31, t32, t33, t36, t37}.

Let Ls = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12} be a secret language and O(Ls) =
{w1, w2, w3} be its associated secret observation sequences, as specified in Tables 4 and 5,
respectively. The results reported in this paper were obtained by solving (9) using CPLEX,
which is a commercial Python library for linear programming optimization.

For G(w1), there exists a sequence σ′1 = σ′u1
σ′e1

σ′u2
σ′e2

σ′u3
σ′e3

σ′u4
= t1t2t3t4t5t6 enabled at

M0, such that σ′1 /∈ Ls and Λ(ρ(M0, σ′1)) = w1, whose firing vectors ~σ′u1
=

#»
0 ,

~σ′e1
= b1,~σ′u2

=
#»
0 ,~σ′e2

= b2,~σ′u3
= a1 + a2 + a3,~σ′e3

= b3,~σ′u4
=

#»
0 satisfy (9), where ai

and bi are called standard basis vectors for Nñu and Nnd , respectively, having all entries
zero, except that the ith entry equals 1. Notice that the solver takes into account the firing
order of transitions, since σ′ has the same firing vector as the secret sequence t1t2t4t3t5t6.
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Table 4. Secret transition sequences.

σi Value Ls(σ)

σ1 t1t2t4t3t5t6 w1
σ2 t1t2t16 w2
σ3 t1t2t16t3, t1t2t3t4t5t36t16 w2
σ4 t1t2t3t4t5t16, t1t2t3t4t16t5 w2
σ5 t1t2t3t4t5t36t34 w1
σ6 t1t2t3t4t5t16t36 w2
σ7 t1t2t3t4t16 w2
σ8 t1t2t3t4t16t5t36 w2
σ9 t1t2t16t3t4t5 w2
σ10 t1t2t16t3t4 w2
σ11 t1t2t16t3t4t5t36 w2
σ12 t1t2t3t4t5t6t7t8t9t10t11t12t13 w3

Table 5. Secret observation sequences.

wi Value

w1 [1108111111]T a[0108111111]T [0118110111]Tb[0118111111]T

w2 [1108111111]T a[0108111111]T [0118110111]Te[0008110111]T

w3 [1108111111]T a[0108111111]T [0118110111]Tb[0118111111]T

[0117111111]Tb[0118111111]T [0118111101]Tc[0118011111]T

For G(w2), there exists a sequence σ′2 = σ′u1
σ′e1

σ′u2
σ′e2

σ′u3
σ′e3

σ′u4
= t1t2t4t16 enabled at

M0, such that σ′2 /∈ Ls and Λ(ρ(M0, σ′2)) = w2, whose firing vectors ~σ′u1
=

#»
0 , ~σ′e1

= b1,
~σ′u2

=
#»
0 ,~σ′e2

= b2,~σ′u3
= a2,~σ′e3

= b10, and~σ′u4
=

#»
0 satisfy (9).

For G(w3), however, the ILP solver does not find any feasible solution, which implies
the non-language opacity of the considered POPN.

7. LBO in Decentralized Setting

Modern networking technologies have rendered distributed systems increasingly
more broadly used. These systems are composed of multiple networked components that
communicate and coordinate actions, to achieve a common goal and appear to end-users as
a single coherent entity. Figure 3 illustrates the privacy risks in an IoT-based smart house,
where a set of intruders, distributed at different sites, are collecting sensing data and trying
to deduce private information.

Home Space

Cloud Platform

End Application

External System
Access Control 

Mechanism

Smart Device S
m

a
rt

 A
p

p
s

Smart Hub

Figure 3. Privacy risks of Iot-based smart houses.

7.1. Decentralized Opacity with Coordinator

At this point, language-based opacity has been discussed in a centralized framework,
where only a single intruder is trying to infer the system’s secret behavior. In this section,
we consider decentralized settings, as shown in Figure 4, where a POPN is watched by
a set of intruders J = {1, 2, . . . , n} who collaborate to verify, under a given observation
sequence, if their language estimation is entirely contained in a secret. Formally, the system
Q, with regard to the jth intruder, can be described as follows:
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Qj = (N, M0, Ej, Vj, δj) is a POPN system, where N = (P, T, Pre, Post) and Ej ⊆ E is
the set of observable labels by the jth local intruder. As in the previous section, it holds
that P = Po,j ∪ Pu,j and Po,j ⊆ Po(Pu,j = P \ Po,j) comprise the set of locally observable
(unobservable) places of intruder j. In addition, T = To,j ∪ Tu,j and To,j ⊆ To(Tu,j = T \ To,j)
comprise the set of locally observable (silent) transitions of intruder j. Moreover, we denote
by Td,j ⊆ Td (T̃u,j = T \ Td,j) the set of locally discernible (truly unobservable) transitions of
intruder j. It holds that |Po,j| = mo,j, |Pu,j| = mu,j, |Td,j| = nd,j and |T̃u,j| = ñu,j. The matrices
C̃u,j = ˜Postu,j − ˜Preu,j and Cd,j = Postd,j − Pred,j, respectively, denote the restrictions of C
to T̃u,j and Td,j.

The following assumptions are now introduced to this decentralized setting:

A1: Each intruder has full understanding of the system’s structure and initial marking,
but uses his own sensor configuration θj = (Vj, δj) to track its evolution, where
Vj = (vik) ∈ {0, 1}mo,j×m, such that vik = 1 if the ith observable place by intruder j
corresponds to place pk and to 0, otherwise, and where δj is a local labeling function,
such that δj(t) = δ(t) if t ∈ Td,j and δj(t) = ε, otherwise.

A2: An observable place is observed by at least one local intruder, i.e.,
⋃

j∈J Po,j = Po.
A3: A discernible transition is discerned by at least one local intruder, i.e.,

⋃
j∈J Td,j = Td.

A4: Let � be an ordering relation defined between sensor configurations, such that θi � θj
if intruder j observes more than intruder i, i.e., θi � θj if Td,i ⊆ Td,j ∧ Po,i ⊆ Po,j.

Given M[t〉M′, a state transition, the obtained measurement with respect to a sensor
configuration θj associated with the jth local intruder is defined as follows:

ρj(M, t) =

 εp, if (M̂ = M̂′) ∧ (δj(t) = ε)

M̂δj(t)M̂′, otherwise.

Given σ = t1t2 . . . th ∈ T∗ and Mt1M1t2M2 . . . Mh−1th Mh, the evolution generated by
firing σ at M, the measurement sequence associated with each local intruder j is defined as

ρj(M, σ) = ρj(M, t1)ρj(M1, t2) . . . ρj(Mh−1, th)

= M̂e1M̂1M̂1e2 . . . M̂hoj−1M̂hoj−1ehoj
M̂hoj

,

where ei ∈ Ej ∪{ε}, hoj ≤ h, and the associated local observation sequence for each intruder
j is defined as wj = Λ(ρj(M, σ)) = M̂e1M̂1e2 . . . M̂hoj−1ehoj

M̂hoj
.

POPN system

Coordinator C

Intruder 1 Intruder 2 Intruder n

𝜎 𝜎 𝜎

𝑤1 𝑤2 𝑤𝑛

𝑆(w1) 𝑆(w2) 𝑆(wn)

Λ(𝜌1(𝑀0, 𝜎)) Λ(𝜌2(𝑀0, 𝜎)) Λ(𝜌𝑛(𝑀0, 𝜎))

….

….

Figure 4. The decentralized architecture.

The firing sequences consistent with a local observation wj are denoted by Sj(wj) =
{σ ∈ T∗|Λ(ρj(M0, σ)) = wj}. As illustrated in Figure 4, after the firing of a transition
sequence σ, each intruder j performs an event sequence estimation Sj(wj), using its local
observation sequence wj, then sends it to a coordinator C. Based on the received information
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from all intruders, the coordinator evaluates its general estimation Γ(w) by finding the
intersection of the received local estimations. Therefore, the coordination between intruders
is called an intersection-based coordination protocol P .

Definition 8. An intersection-based coordination protocol P is defined by the following rules:

R1: The Tu,j-induced subnet and the To,j-induced subnet are acyclic for any local intruder j ∈ J .
R2: The general estimation is Γ(w) =

⋂
j∈J Sj(wj).

R3: The more an intruder observes, the better its estimation will be, i.e., θi � θj if, for all
w ∈ O(Q, M0), Sj(wj) ⊆ Si(wi).

R4: The coordinator collects the event sequence estimation generated by each intruder without delay.

Remark 1. Let Q be a POPN, and P be an intersection-based coordination protocol; Td,c ⊆ Td
and Po,c ⊆ Po are, respectively, the discernible transitions and observable places of Q, with regard to
a coordinator C. Protocol P allows the coordinator to see the system’s original behavior: namely,
Td,c = Td and Po,c = Po.

In detail, we have Γ(w) =
⋂

j∈J Sj(wj); then, for all w ∈ O(Q, M0), Γ(w) ⊆ Sj(wj), j ∈
J . We denote by θc the sensor configuration of the coordinator. Under Rule R3, θj � θc
for j ∈ J ; thus, we can say that the coordinator observes more than all intruders j ∈ J .
According to Assumption (A4), for all j ∈ J , we have Td,j ⊆ Td,c and Po,j ⊆ Po,c. As⋃

j∈J Td,j = Td and
⋃

j∈J Po,j = Po, we have Td ⊆ Td,c and Po ⊆ Po,c. Consequently, Td,c = Td
and Po,c = Po. Finally, we conclude that our coordination protocol allows the coordinator
to see the system’s original behavior, by taking off the observation masks associated
with intruders.

Now, let us characterize LBO in a decentralized setting with coordination: namely,
co-language-based opacity (co-LBO).

Definition 9. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a secret language. Q
is co-LBO, with regard to Ls, if and only if, for all w ∈ O(Ls), Γ(w) * Ls holds.

In simple terms, a PN system is co-LBO if it is language-opaque, with regard to the
coordinator. Specifically, if two observations are indistinguishable for the coordinator, they
are indistinguishable for any intruder j ∈ J .

Proposition 4. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a secret language.
If there is at least w ∈ O(Ls) and j ∈ J , such that Sj(wj) ⊆ Ls, then Q is not co-LBO, with
regard to Ls.

Proof. Let w ∈ O(Ls) be a secret observation sequence. By Rule R2, we have Γ(w) =⋂
j∈J Sj(wj), which implies Γ(w) ⊆ Sj(wj), j ∈ J . If there exists w ∈ O(Ls) and j ∈ J ,

such that Sj(wj) ⊆ Ls, then Γ(w) ⊆ Ls holds. Therefore, by Definition 9, Q is not co-LBO,
with regard to Ls.

The main feature of investigating decentralized opacity consists in preventing a com-
prehensive computation of all possible sequences that could have fired. According to
Proposition 4, if we find at least one intruder j, such that Sj(wj) ⊆ Ls holds, then Q is not
co-LBO, with regard to Ls.

If there is no coordination between the intruders, we simply check the LBO for each
intruder separately, as indicated in the previous sections. Accordingly, the achieved results
can be extended from centralized to decentralized opacity. Therefore, we apply the results
of Theorem 1 to each intruder j ∈ J as follows:
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Let Q = (N, M0, V, δ) be a POPN and Ls ⊆ L(N, M0) be a secret language. Q is
language-opaque, with regard to Ls, if, for all w ∈ O(Ls), the following ILPP,

min f
s.t. C(M0, Cd,j, C̃u,j, wj), j ∈ J

NS(M0, Cd,j, C̃u,j, σ), σ ∈ Ls

(10)

admits at least one feasible solution.

Definition 10. Let Ls be a secret language, w = M̂e1M̂1e2 . . . M̂ho−1eho M̂ho(ho ≥ 1) be a
secret observation sequence, i.e., w ∈ O(Ls), and wj = M̂′ e′1M̂′1e′2 . . . M̂′hoj−1M̂′hoj−1e′hoj

M̂′hoj

(hoj ≤ ho) be the word projection of w, with regard to the local intruder j ∈ J. We define by
Jmax(w) = {j ∈ J|hj ≥ hj′ , j′ ∈ J} the set of local intruders that can observe the maximum of w,
called the maximal observers.

Proposition 5. Let Q = (N, M0, E, V, δ) be a POPN and Ls ⊆ L(N, M0) be a secret language.
Q is co-LBO, with regard to Ls, if and only if for each secret observation sequence w ∈ O(Ls) and,
for at least j ∈ Jmax(w), there exists σ ∈ S(wj) \ Ls(w), such that for each local intruder j′ ∈ J ,
Λ(ρj′(M0, σ)) = wj′ .

Proof. (If) Suppose that, for all w ∈ O(Ls) and for at least j ∈ Jmax(w), there exists
σ ∈ S(wj) \ Ls(w), such that for each local intruder j′ ∈ J , Λ(ρj′(M0, σ)) = wj′ . Conse-
quently, σ is a non-secret transition sequence that is consistent with wj′ for j′ ∈ J (i.e.,
σ ∈ S(wj′), j′ ∈ J ).

We have Γ(w) =
⋂

j∈J Sj(wj), and thus, σ ∈ Γ(w) \ Ls(w). Based on Proposition 4, Q
is co-LBO, with regard to Ls.

(Only if) Let us suppose that Q is co-LBO, with regard to Ls, and for at least w ∈ O(Ls),
and for each j ∈ Jmax(w), there does not exist σ ∈ S(wj) \ Ls, such that for each j′ ∈ J ,
Λ(ρj′(M0, σ)) = wj′ ; thus,

⋂
j∈J Sj(wj) ⊆ Ls. We have Γ(w) =

⋂
j∈J Sj(wj) ⊆ Ls and,

therefore, Q is not co-LBO, with regard to Ls, which opposes the hypothesis.

Example 4. Consider the POPN in Figure 1. Let Ls = {t1t3t4, t1t3t2t5, t1t2t3t5} be a secret
language. Its associated secret observation sequences are given by O(Ls) = {w1, w2}, where
w1 = [1 0]Ta[0 1]Tb[0 1], w2 = [1 0]Ta[0 1]T [1 0]T , Ls(w1) = {t1t3t4}, and Ls(w2) =
{t1t3t2t5, t1t2t3t5}. We have S(w1) = {t1t3t4, t1t4t3} and S(w2) = {t1t2t3t5, t1t3t2t5}. Let
J = {1, 2, 3} be three local intruders satisfying Assumptions (A1–A4). Their observable places
are Po,1 = {p1}, Po,2 = {p1, p5}, and Po,3 = ∅, respectively, and their discernible transitions are
Td,1 = {t1, t5}, Td,2 = {t1}, and Td,3 = {t1, t5}, respectively.

Based on the results reported in Table 6, we have:
• Jmax(w1) = {3}; then, we only need to consider the estimation of intruder 3, which is

given by S3(ab) = {t1t3t4, t1t4t3, t1t3t4t5, t1t4t3t5}. We have t1t4t3 /∈ Ls, Λ(ρ1(M0, t1t4t3)) =
[1]a[0] and Λ(ρ2(M0, t1t4t3)) = [1 0]T [0 1]T ; then, w1 is co-LBO, with regard to Ls.

• Jmax(w2) = {1, 2}. Since intruders 1 and 2 observe two discernible transitions, while
intruder 3 only observes one discernible transition, then we only need to consider the estima-
tion of either intruder 1 or 2. Let us consider the estimation of intruder 2, which is given by
S2([1 0]T [0 1]T [1 0]T) = {t1t2t3t5, t1t4t3t5, t1t3t2t5, t1t3t4t5}. We have S2(w2) \ Ls(w2) =
{t1t4t3t5, t1t3t4t5}. For intruder 3, Λ(ρ3(M0, t1t3t4t5)) = Λ(ρ3(M0, t1t4t3t5)) = ab 6= a, then
w2 is not co-LBO, with regard to Ls.
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Table 6. Secret words associated with each intruder.

Intruder Projection of w1 Projection of w2

1 [1]a[0] [1]a[0][1]
2 [1 0]T [0 1]T [1 0]T [0 1]T [1 0]T

3 ab a

7.2. Study Case: Temperature Control System

Modern inference techniques, such as machine learning algorithms, can provide
enough data to infer user activities, including house occupancy, sleeping patterns, and work
schedules. For instance, innocuous data, such as in-home temperatures, could violate the
user’s privacy of location, which is the right of individuals to be present in a space without
being tracked or monitored or without anyone knowing where they are.

We use a smart thermostat as a case study, which controls the heating and air con-
ditioning in Alice and Bob’s bedroom, shown in Figure 5. The bedroom mainly includes
one bed, a window, a door, an air conditioner (AC), a smart thermostat connected to an
HVAC (heating, ventilation, and air conditioning) system, a camera, and sensors to measure
the necessary data. The thermostat allows for creating a heating and cooling schedule
during the day, to save energy. It can also use sensors to check room occupancy, and it
automatically sets itself to a standby temperature when the room is empty. The thermostat
temperature-control system is modeled by a POPN, as shown in Figure 6. The system
turns off (place p1) at 8:00 a.m. (transition t4), when Bob and Alice are outside for work,
and starts around 7:00 p.m. (transition t1), then goes directly into a standby state (place
p3), which prepares the room for the arrival of Bob and Alice in the evening. From this
time on, the system is either in an ON state (place p2), when the presence sensor detects
someone inside the room (place p4) or in a Standby state, when the presence sensor does
not detect anyone inside the room. Note that the token number in place p5 indicates the
number of persons inside the bedroom. When the system goes into the ON state, a quick
user identification process starts (place p5), based on a smart facial recognition camera
powered by artificial intelligence and placed in the room’s upper left corner. At the end of
this process, there are four possibilities:

• Bob is identified (transition t9); then, his preferred reference temperature To
1 (place p6)

will be displayed.
• Alice is identified (transition t10) in the room. In this case, the preferred reference

temperature will be To
2 (place p7).

• Bob and Alice are simultaneously present in the room (transition t11); then, the refer-
ence temperature To

3 (place p8), on which Bob and Alice have agreed, will be displayed.
• Neither Bob nor Alice is identified (transition t8).

The chosen temperature will remain activated for a duration of 20s (transitions
t12, t13, t14). At the end of this period, the system saves a temperature record (place p9),
to keep track of the user’s schedule and habits, and it then programs itself to match his
temperature patterns.

Now, let us check whether intruders can violate Bob and Alice’s privacy of location.
Let the secret information be

“Alice is alone inside the bedroom”.
Intruder 1 is observing the occupancy sensor’s activity, and intruder 2 is observing the

thermostat’s activity. We have:
Td,1 = {t5, t6}
T̃u,1 = {t1, t2, t3, t4, t7, t8, t9, t10, t11, t12, t13, t14, t15}
Td,2 = {t2, t3, t7, t9, t10, t11, t12, t13, t14, t15, t1, t4}
T̃u,2 = {t5, t6, t8}.

When Alice enters the bedroom at 7:30 pm, transition sequence t1t6t3t7t8 fires, and
intruder 1 observes w1 = [0][1], which makes him conclude that someone is alone inside
the room, but he is not sure whether it is Alice or not.
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On the other hand, intruder 2 observes w2 = [100000]Ta[001000]T [010000]T [000000]T

[000010]T , and the presence of a token in places p7 indicates that Alice is inside the room,
but intruder 2 is not sure whether she is alone or not. We check the opacity for each intruder
separately, using Theorem 1. We find that both ILPPs G(w1) and G(w2) admit a feasible
solution. Therefore, the temperature-control system is LBO, with regard to to intruders 1
and 2. However, there is no solution available for ILPP (10). Consequently, the coordination
between intruders 1 and 2 can disclose the secret information and infer that Alice is alone
inside the room.
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Figure 5. Bedroom layout.
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Figure 6. PN-based temperature generator.

8. Conclusions and Future Work

The formulation and verification of LBO in the context of DESs modeled with POPNs
were discussed in this research. We provided a necessary and sufficient condition for LBO
verification, based on a mathematical description of a net system. Specifically, we proposed
linear constraints to check the consistency and non-secrecy aspects of transition sequences.
Moreover, these findings were extended to encompass scenarios of decentralized opacity.
In these scenarios, the system was examined by multiple intruders, who subsequently
shared their observation outcomes with a coordinator, in order to disclose a secret behavior.
The proposed approach is more general and scalable than the existing methods for LBO
verification in LPNs, as it can be applied to both bounded and unbounded POPNs without
requiring any expensive offline computation.

Our future study will extend the proposed ILP-based approach to fault diagnosis in
a POPN. Furthermore, it would be of interest to investigate other security problems and
potential vulnerabilities, such as unauthorized access, cyber-attacks, intrusion detection,
prevention, etc.
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