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Abstract: Let R be an associative ring with unity, X be a finite group, H be a subgroup of X, and G

be a set of left coset representatives for the left action of H on X. In this article, we introduce two
different ways to put R into a non-trivial G-weak graded ring that is a ring graded by the set G which
is defined with a binary operation ∗ and satisfying an algebraic structure with specific properties.
The first one is by choosing a subset S of G such that S is a group under the ∗ operation and putting
Rt = 0 for all t ∈ G and t /∈ S. The second way, which is the most important, is induced by combining
the operation ∗ defined on G and the coaction / of H on G. Many examples are provided.
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1. Introduction

Recall that, for a group X and a ring R, R is called X-graded if, for each element x in
the group X, there is an additive subgroup Rx of R, such that R =

⊕
x∈X Rx and, for all

x, y ∈ X, we have RxRy ⊆ Rxy. If the condition RxRy ⊆ Rxy is replaced by the stronger one
RxRy = Rxy for all x, y ∈ X, then R is called fully (or strongly) X-graded ring. The theory
of group graded ring is a rich area of mathematics with considerable connections to, for
example, Clifford’s theory, and the research area of operator algebras; see [1–4].

There have been many generalizations for group graded rings via replacing groups
by semigroups or monoids for grading; see for example [5–7]. Some mathematicians have
used different ways to generalize graded rings and modules as they consider the non-
commutative algebraic geometry for quantum algebras to obtain the semi-graded rings
and semi-graded modules (see [8]).

There have also been different ways to study their properties, such as categorical
methods. For instance, the study of separable functors introduced in [1,9] used this
way.Although the emphasis was on the finite case for grading, there have been some
works on the infinite case; see for example [10].

In ref. [11], Beggs constructs an algebraic structure consisting of a set G of left coset
representatives for the left action of a subgroup H on a group X and a binary operation ‘∗’
on G. This operation guarantees the left identity and the right division property on G. ‘∗’ is
not associative in the standard way, though the associativity could be satisfied by applying
a “cocycle” f : G×G −→ H. Based on this algebraic structure (G, ∗) and the cocycle f
together with the action . : G× H → H and the coaction / : G× H → G defined in [11],
many research articles on the non-trivially associated categories and the G-weak graded
rings and modules have been published (see [12–15]). The independence on the choice of
representatives was proven in [11].

In refs. [13–15], the concepts of the group graded rings and modules were generalized
by using the set G of left coset representatives, which was mentioned above with the binary
operation ‘∗’ defined on it. The new generalized concepts were named G-weak graded
rings and G-weak graded modules. It was found that many results could been carried out in
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the new setting. Moreover, some properties of these G-weak graded rings and modules
were investigated.

Recently, the researchers have defined analogues of important operator algebras with
rings that are equipped with a group grading. In particular, it has been noted that there
is a kind of the correspondence between rings graded by a finite group G and rings on
which G acts as automorphisms, which has been pointed out by many of the researchers,
see [2,16,17]. In fact, the two notions can be identical in specific cases.

In [17], Cohen and Montgomery took advantage of the fact that gradings and group
actions are dual concepts to introduce new results about graded rings. It can be noted that
an X-grading can be considered as a “coaction” of the finite group X. A certain algebra
A#k[X]∗ was formed, where A is a k-algebra graded by X. A#k[X]∗ can be looked at as
the graded rings, the skew group algebra A ∗ G can be looked at as the group actions,
and a Morita context can be constructed using them. It was found that many graded ring
problems can be solved by using the “Duality Theorem”.

It was noted that the grading by a set of left coset representatives with the binary
operation ‘∗’ is not always applicable; see [14,15]. In this article, we introduce two different
approaches to make it applicable for any ring R with unity. The first one is by choosing
a subset S of G such that S is a group under the ∗ operation and putting Rt = 0 for all
t ∈ G and t /∈ S. The second approach is induced by imposing specific conditions on G

and the operations defined on it. More specifically, we combine the binary operation with
the coaction in the definition of the grading. Many examples are provided throughout
the article.

The importance of this work comes from associating the grading with a factorization
of a given finite group which may lead to a quantization of the classical results of group
graded rings and modules. Moreover, this work may be used to generalize some results in
the literature; for example, the work of Cohen and Montgomery [17], which was mentioned
above. Throughout, unless otherwise stated, all groups are finite, rings are with unity, and
modules are unital.

2. Preliminaries

In this section, we include some definitions that are needed for the present work.

Definition 1 ([11]). Given a finite group X and a subgroup H, call G ⊂ X a set of left coset
representatives if for every x ∈ X there is a unique s ∈ G such that x = us ∈ Hs. Let s, t
be elements in G. Then, f (s, t) in H and s ∗ t in G are determined by st = f (s, t)(s ∗ t) in X.
Furthermore, the action . : G× H → H and the coaction / : G× H → G are determined by
su = (s . u)(s / u) where s, s / u ∈ G and u, s . u ∈ H. These factorizations are unique.

The binary operation ‘∗’ ensures the right division property, i.e., there is a unique
solution p ∈ G satisfying the equation p ∗ s = t for all s, t ∈ G and the left identity for each
s ∈ G which is denoted by ‘sL’. In the case that e ∈ G, then eG = e. Theses are required to
prove that the following identities are satisfied for all s, t, p ∈ G and all u, vs. ∈ H [11]:

s . (t . u) = f (s, t)
(
(s ∗ t

)
. u) f

(
s / (t . u), t / u

)−1 , (s ∗ t) / u =
(
s / (t . u)

)
∗ (t / u) , (1)

s . uv = (s . u)
(
(s / u) . v

)
, s / uv = (s / u) / v ,

f (p, s) f (p ∗ s, t) =
(

p . f (s, t)
)

f
(

p / f (s, t), s ∗ t
)

,(
p / f (s, t)

)
∗ (s ∗ t) = (p ∗ s) ∗ t ,

eG / v = eG, eG . v = eGve−1
G , t . e = e, t / e = t, (2)

f (eG, t) = eG, t . e−1
G = f

(
t / e−1

G , eG
)−1 and

(
t / e−1

G

)
∗ eG = t.

These identities have been used to prove our results and to construct our examples.
For more details and properties of the binary operation ‘∗’, the cocycle f , the action .
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and the coaction /, the reader is refered to [11]. In what follows, whenever G and H are
mentioned, we mean the set and the subgroup defined above.

Definition 2 ([13]). Let X be a group, H be a subgroup of X, and G be a fixed set of left coset
representatives associated with a binary operation ∗. Then, a ring R is said to be a G-weak graded
ring if

R =
⊕
s∈G

Rs (3)

and
RsRt ⊆ Rs∗t for all s, t ∈ G, (4)

where the component Rs is an additive subgroup for each s ∈ G. If we have

RsRt = Rs∗t for all s, t ∈ G, (5)

instead of (4), then R is said to be a fully (or strongly) G-weak graded ring.

Definition 3 ([15]). Let R be a G-weak graded ring. Then, a G-weak graded left R-module M is a
left R-module, which satisfies:

M =
⊕
s∈G

Ms (as abelian groups) (6)

and
Rs Mt ⊆ Ms∗t ∀ s, t ∈ G. (7)

If the relation (7) is replaced by

Rs Mt = Ms∗t ∀ s, t ∈ G, (8)

then M is termed a fully (or a strongly) G-weak graded left R-module.

Theorem 1 ([14]). Let R be a G-weak graded ring with unity and x be an element in U(R).
If x ∈ Rs, for some s ∈ G, then x−1 ∈ RsL .

3. Combining the Operation ∗ and the Coaction / to Have G-Weak Graded Rings

It is known, by definition, that in general R =
⊕

s∈G Rs is not necessarily a non-trivial
G-weak graded ring; see for example [3,13]. However, in this section we define a relation
between the operation ∗ and the coaction / that makes the ring R into a G-weak graded ring.

Theorem 2. Let X = HG be a finite group that factorizes into a subgroup H and a set of left
coset representatives G. Then, for any ring R =

⊕
s∈G Rs—as additive subgroups—such that

RsRt ⊆ Rp for some p ∈ G, we have RsRt ⊆ R(s/u)∗t for all s, t ∈ G and for some u ∈ H.

Proof. Let RsRt ⊆ Rp for some p ∈ G. Hence, to show that p = (s / u) ∗ t, we consider the
following cases:

1. p = s
If p = s, then 1R ∈ Rt which means t = eG. This leads to the following two sub-cases:

i - If s ∗ eG = s, then (s / e) ∗ eG = s.
ii - If s ∗ eG 6= s, then as eG ∈ H ∩G, we have e−1

G ∈ H. Hence, (s / e−1
G ) ∗ eG = s.

2. p = t
If p = t, then we have 1R ∈ Rs, which means s = eG. Since eG ∗ t = t, hence
(eG / e) ∗ t = eG ∗ t = t.

3. p = eG
If p = eG, then we have two sub-cases:

i - If s ∗ t = eG, then it is performed as (s / e) ∗ t = eG.
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ii - If s ∗ t 6= eG, then by the right division property there is tL ∈ G such that
tL ∗ t = eG. Furthermore, since (G, ∗) is not a group, there is vs. ∈ H such that
s / vs. 6= s. If s / vs. = tL it is performed. If s / vs. 6= tL suppose that s / vs. = t′,
then again there is w ∈ H such that t′ / w = t′′ with t′′ = tL, as G is finite.
Hence, (s / v) / w = s / vw and since H is a subgroup, we have vw = u ∈ H.
Thus, (s / u) ∗ t = eG.

4. p ∈ G and p 6= s 6= t 6= eG.
We have two sub-cases:

i - If s ∗ t = p, then it is performed by choosing u = e, i.e., (s / e) ∗ t = p.
ii - If s ∗ t 6= p, then using the same technique as that applied in 3− (ii) yields

the result.

Note that if RsRt = 0R, then 0R ∈ Rp = R(s/u)∗t for all s, t, p ∈ G and for all u ∈ H
since Rp is an additive subgroup of the ring R for all p ∈ G as required.

Corollary 1. If the ring R is a G-weak graded ring, then RsRt ⊆ R(s/u)∗t for all s, t ∈ G and for
some u ∈ H.

Proof. It follows directly by choosing u = e and using the identities in (2).

Definition 4 ([14]). Let R be a G-weak graded ring. Then, a non-zero element rs ∈ R is said to be
a weak graded or G-homogeneous element of grade s if there exists an s-component Rs of R such
that rs ∈ Rs.

We recall that a subring K of a G-weak graded ring R is a G-weak graded subring if K
itself is a G-weak graded ring [14]. In the next theorem, we discuss when a subring K of a
G-weak graded ring R is a G-weak graded subring respecting the inclusion property of R
that was mentioned in Theorem 2.

Theorem 3. Let X = HG be a finite group that factorizes into a subgroup H and a set of left coset
representatives G and let R be a G-weak graded ring such that RsRt ⊆ R(s/u)∗t for all s, t ∈ G

and for some u ∈ H. Then, a subring K of R is a G-weak graded subring respecting the inclusion
property above if K contains all the G-homogeneous components for each k ∈ K.

Proof. Definition 2 yields every element r ∈ R has a unique decomposition, written as
r = ∑s∈G rs with rs ∈ Rs for all s ∈ G and the sum is finite. As K is a subring of R, we
can assume that for each k = ∑s∈G ks, we have ks ∈ K for all s ∈ G. So we can write
K = ∑s∈G Ks as additive subgroups. Again, since K is a subring of R and R =

⊕
s∈G Rs,

we have Ks = K ∩ Rs for all s ∈ G. Furthermore, as R is a G-weak graded ring, the concept
of the direct sum condition yields

Ks ∩ ( ∑
t∈G

Kt) = (K ∩ Rs) ∩ ( ∑
t∈G

K ∩ Rt) = K ∩ (Rs ∩ ∑
t∈G

Rt) = K ∩ {0} = {0},

for all s ∈ G with s 6= t. Consequently, K =
⊕

s∈G Ks, as required.
Next, to prove that K(s/u)Kt ⊆ K(s/u)∗t. Let K(s/u) = K ∩ R(s/u) and Kt = K ∩ Rt for

some s, t in G, and some u ∈ H. Hence,

K(s/u)Kt = (K ∩ R(s/u))(K ∩ Rt) = K ∩ (R(s/u)Rt) ⊆ K ∩ (R(s/u)∗t) = K(s/u)∗t,

as required.

Example 1. Consider the Morita ring T =

[
R M
N S

]
mentioned in [13] Example 1. Let the

group X = S3 = {e, (12), (13), (23), (123), (132)}, the subgroup H = {e, (12)}, and the set of
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left coset representatives G = {(12), (13), (23)}. Then, the ∗ operation and the cocycle f as well as
the action . and the coaction / are given by the following tables (Tables 1 and 2):

Table 1. The operation ∗ and the cocycle f .

∗ (12) (13) (23)

(12) (12) (13) (23)
(13) (23) (12) (13)
(23) (13) (23) (12)

f (12) (13) (23)

(12) (12) (12) (12)
(13) (12) (12) (12)
(23) (12) (12) (12)

Table 2. The action s . u and the coaction s / u.

s . u e (12)

(12) e (12)
(13) e (12)
(23) e (12)

s / u e (12)

(12) (12) (12)
(13) (13) (23)
(23) (23) (13)

Then, T = T(12) ⊕ T(13) ⊕ T(23), where

T(12) =

[
R 0
0 S

]
=

{[
r 0
0 s

]
: r ∈ R, and s ∈ S

}
,

T(13) =

[
0 M
0 0

]
=

{[
0 m
0 0

]
: m ∈ M

}
and

T(23) =

[
0 0
N 0

]
=

{[
0 0
n 0

]
: n ∈ N

}
.

In this case, regardless of the trivial case, T is not a G-weak graded ring, as, for example, for all[
0 m
0 0

]
∈ T(13) and

[
r 0
0 s

]
∈ T(12), we have

[
0 m
0 0

][
r 0
0 s

]
=

[
0 ms
0 0

]
∈

T(13) 6= T(23) = T(13)∗(12).
If we replace the relation s ∗ t by the relation (s / u) ∗ t, then we obtain TsTt ⊆ T(s/u)∗t for

all s, t ∈ G and for some u ∈ H. Hence, T is going to be a G-weak graded ring as follows, where the
first table (Table 3) shows our choice of the element u for each time we apply the relation (s / u) ∗ t
in the second table (Table 4):

Table 3. The choice of the element u.

s / u u u u

(12) (12) / e (12) / e (12) / e
(13) (13) / (12) (13) / e (13) / (12)
(23) (23) / (12) (23) / (12) (23) / e
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Table 4. The relation (s / u) ∗ t.

(s / u) ∗ t (12) (13) (23)

(12) / u (12) (13) (23)
(13) / u (13) (12) (12)
(23) / u (23) (12) (12)

It is easy to prove that the inclusion property is satisfied by showing that: T(12)T(12) ⊆
T((12)/e)∗(12) = T(12), T(12)T(13) ⊆ T((12)/e)∗(13) = T(13), T(12)T(23) ⊆ T((12)/e)∗(23) = T(23),
T(13)T(12) ⊆ T((13)/(12))∗(12) = T(13), T(13)T(13) ⊆ T((13)/e)∗(13) = T(12), T(13)T(23) ⊆
T((13)/(12))∗(23) = T(12), T(23)T(12) ⊆ T((23)/(12))∗(12) = T(23), T(23)T(13) ⊆ T((23)/(12))∗(13) =
T(12) and T(23)T(23) ⊆ T((23)/e)∗(23) = T(12).

Thus, T is a G-weak graded ring but not fully. For instance, T(23)T(23) ⊆ T(12), but the
converse is not true. It can be noted that the relation (s / u) ∗ t can be satisfied by different choices
of u; for example, the following tables also make T into a G-weak graded ring (Tables 5 and 6):

Table 5. The choice of the element u.

s / u u u u

(12) (12) / e (12) / e (12) / e
(13) (13) / (12) (13) / (12) (13) / (12)
(23) (23) / (12) (23) / (12) (23) / (12)

Table 6. The relation (s / u) ∗ t.

(s / u) ∗ t (12) (13) (23)

(12) / u (12) (13) (23)
(13) / u (13) (23) (12)
(23) / u (23) (12) (13)

Remark 1. If we replace the relation RsRt ⊆ R(s/u)∗t for all s, t ∈ G and for some u ∈ H
in Theorem 2 by the more general one RsRt ⊆ R(s/(t.u))∗(t/u) for all s, t ∈ G and for some
u ∈ H, then the theorem is not going to work. Indeed, if we apply it on Example 1 we obtain
T(13)T(23) ⊆ T(12) but (13) ∗ (23) = (13) and there is no u ∈ H satisfying (13) / u = (12). Note
that R(s/(t.u))∗(t/u) = R(s∗t)/u by the identities in (1).

Example 2. Consider the ring of all 2× 2 matrices over the ring Z, i.e.,

R = M2(Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z

}
.

Let X = S3 = {e, (12), (13), (23), (123), (132)} and the non-normal subgroup H = {e, (23)}.
Choose the set of left coset representatives to be G = {e, (12), (13)}. Then, the ∗ operation and the
cocycle f as well as the action . and the coaction / are given by the following tables (Tables 7 and 8):

Table 7. The operation ∗ and the cocycle f .

∗ e (12) (13)

e e (12) (13)
(12) (12) e (12)
(13) (13) (13) e

f e (12) (13)

e e e e
(12) e e (23)
(13) e (23) e
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Table 8. The action s . u and the coaction s / u.

s . u e (23)

e e (23)
(12) e (23)
(13) e (23)

s / u e (23)

e e e
(12) (12) (13)
(13) (13) (12)

Then, R can be written as R = Re ⊕ R(12) ⊕ R(13), where

Re =

{[
a 0
0 d

]
: a, d ∈ Z

}
, R(12) =

{[
0 b
0 0

]
: c ∈ Z

}
and

R(13) =

{[
0 0
c 0

]
: b ∈ Z

}
.

However, regardless of the trivial case, R is not a G-weak graded ring as, for example,

for all
[

0 b
0 0

]
∈ R(12) and

[
0 0
c 0

]
∈ R(13), we have

[
0 b
0 0

][
0 0
c 0

]
=

[
bc 0
0 0

]
∈ Re 6= R(12) = R(12)∗(13).

If we replace the relation s ∗ t by the relation (s / u) ∗ t, then we obtain RsRt ⊆ R(s/u)∗t for
all s, t ∈ G and for some u ∈ H. Hence, R is going to be a G-weak graded ring as follows, where the
first table (Table 9) shows our choice of the element u for each time we apply the relation (s / u) ∗ t
in the second table (Table 10):

Table 9. The choice of the element u.

s / u u u u

e e / e e / e e / e
(12) (12) / e (12) / (23) (12) / (23)
(13) (13) / e (13) / (23) (13) / e

Table 10. The relation (s / u) ∗ t.

(s / u) ∗ t e (12) (13)

e / u e (12) (13)
(12) / u (12) (13) e
(13) / u (13) e e

Now, to show that R is a G-weak graded ring, we prove that the inclusion property is satisfied,
which can be performed easily by showing that: ReRe ⊆ R(e/e)∗e = Re, ReR(12) ⊆ R(e/e)∗(12) =
R(12), ReR(13) ⊆ R(e/e)∗(13) = R(13), R(12)Re ⊆ R((12)/e)∗e = R(12), R(12)R(12) ⊆
R(

(12)/(23)
)
∗(12)

= R(13), R(12)R(13) ⊆ R(
(12)/(23)

)
∗(13)

= Re, R(13)Re ⊆ R((13)/e)∗e = R(13),

R(13)R(12) ⊆ R(
(13)/(23)

)
∗(12)

= Re, and R(13)R(13) ⊆ R((13)/e)∗(13) = Re .

Thus, R is a G-weak graded ring but not fully.For instance, R(13)R(13) ⊆ R((13)/e)∗(13) = Re

but Re = R((13)/e)∗(13) * R(13)R(13).
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Example 3. Consider the ring of real quaternions (H,+, .). Let X = S4 and let H = {e, (123),
(132), (12), (13), (23)} be a subgroup of X. Take G = {e, (14)(23), (243), (34)} to be the set of
left coset representative. Then, the ∗ operation and the cocycle f as well as the action . and the
coaction / are given by the following tables (Tables 11–14):

Table 11. The ∗ operation.

∗ e (14)(23) (243) (34)

e e (14)(23) (243) (34)
(14)(23) (14)(23) e (14)(23) (14)(23)
(243) (243) (34) (34) (243)
(34) (34) (243) e e

Table 12. The cocycle f .

f e (14)(23) (243) (34)

e e e e e
(14)(23) e e (123) (12)
(243) e (13) (23) (23)
(34) e (13) (23) e

Table 13. The action s . u.

s . u e (123) (132) (12) (13) (23)

e e (123) (132) (12) (13) (23)
(14)(23) e (13) (123) (13) (123) (23)
(243) e (132) (12) (13) (12) e
(34) e (12) (13) (12) (132) e

Table 14. The coaction s / u.

s / u e (123) (132) (12) (13) (23)

e e e e e e e
(14)(23) (14)(23) (34) (243) (243) (34) (14)(23)
(243) (243) (14)(23) (34) (14)(23) (243) (34)
(34) (34) (243) (14)(23) (34) (14)(23) (243)

Then, H = Re ⊕ R(14)(23) ⊕ R(243) ⊕ R(34), where

Re = R , R(14)(23) = Ri , R(243) = Rj and R(34) = Rk.

But, regardless of the trivial case, the ring H is not a G-weak graded ring. For instance, R(14)(23)R(243)
* R(14)(23)∗(243) = R(14)(23) as for all ai ∈ R(14)(23), bj ∈ R(243), we have

(ai)(bj) = (ab)k ∈ R(34) 6= R(14)(23) = R(14)(23)∗(243).

If we replace the relation s ∗ t by the relation (s / u) ∗ t, we obtain RsRt ⊆ R(s/u)∗t for all
s, t ∈ G and for some u ∈ H. Hence, H can be a G-weak graded ring as follows, where the first
table (Table 15) shows our choice of the element u for each time we apply the relation (s / u) ∗ t in
the second table (Table 16):
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Table 15. The choice of the element u.

s / u u u u u

e e / e e / e e / e e / e
(14)(23) (14)(23) / e (14)(23) / e (14)(23) / (132) (14)(23) / (132)
(243) (243) / e (243) / e (243) / (132) (243) / (123)
(34) (34) / e (34) / e (34) / (132) (34) / e

Table 16. The relation (s / u) ∗ t.

(s / u) ∗ t e (14)(23) (243) (34)

e / u e (14)(23) (243) (34)
(14)(23) / u (14)(23) e (34) (243)
(243) / u (243) (34) e (14)(23)
(34) / u (34) (243) (14)(23) e

Now, to show that H is a G-weak graded ring, we prove that the inclusion property is satisfied,
which can be performed easily by showing that:

ReRe ⊆ R(e/e)∗e = Re, ReR(14)(23) ⊆ R(e/e)∗(14)(23) = R(14)(23), ReR(243) ⊆ R(e/e)∗(243)
= R(243), ReR(34) ⊆ R(e/e)∗(34) = R(34), R(14)(23)Re ⊆ R((14)(23)/e)∗e = R(14)(23),
R(14)(23)R(14)(23) ⊆ R((14)(23)/e)∗(14)(23) = Re, R(14)(23)R(243) ⊆ R((14)(23)/(132))∗(243) = R(34),
R(14)(23)R(34) ⊆ R((14)(23)/(132))∗(34) = R(243), R(243)Re ⊆ R((243)/e)∗e = R(243),
R(243)R(14)(23) ⊆ R((243)/e)∗(14)(23) = R(34), R(243)R(243) ⊆ R((243)/(132))∗(243) = Re,
R(243)R(34) ⊆ R((243)/(123))∗(34) = R(14)(23), R(34)Re ⊆ R((34)/e)∗e = R(34) , R(34)R(14)(23) ⊆
R((34)/e)∗(14)(23) = R(243), R(34)R(243) ⊆ R((34)/(132))∗(243) = R(14)(23) and R(34)R(34) ⊆
R((34)/e)∗(34) = Re.

Corollary 2. Let X = HG be a finite group that factorizes into a subgroup H and a set of left coset
representatives G and let R be a G-weak graded ring. Then, for any left R-module M such that

M =
⊕
s∈G

Ms (as abelian groups) (9)

and Rs Mt ⊆ Mp for some p ∈ G, we have Rs Mt ⊆ M(s/u)∗t for all s, t ∈ G and for some u ∈ H.

Proof. It directly follows Definition 3 and Theorem 2.

Corollary 3. If M is a G-weak graded left R-module, then Rs Mt ⊆ M(s/u)∗t for all s, t ∈ G and
for some u ∈ H.

Proof. It follows by Theorem 2, Corollary 2, and by choosing u = e.

Example 4. Consider the ring of all 2× 2 matrices over the ring of integers Z, i.e.,

R = M2(Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z

}
.

Consider the group X = S3 = {e, (12), (13), (23), (123), (132)} and its non-normal subgroup
H = {e, (23)}. Choose the set of left coset representatives to be G = {e, (12), (13)}. Then, R is a
G-weak graded ring (see Example 2). Define

M = (Z2 ×Z2)
+ =

{ [
x
y

]
: x, y ∈ Z2

}
.

Then, we have
M = Me ⊕M(12) ⊕M(13) , where
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Me =

[
Z2
0

]
, M(12) =

[
0
Z2

]
and M(13) =

[
0
0

]
.

However, regardless of the trivial case, M is not a G-weak graded R-module as, for instance, for

all
[

0 0
c 0

]
∈ R(13) and

[
x
0

]
∈ Me, we have

[
0 0
c 0

][
x
0

]
=

[
0
cx

]
∈ M(12) 6= M(13) =

M(13)∗e.
If we replace the relation s ∗ t by (s / u) ∗ t, we obtain Rs Mt ⊆ M(s/u)∗t for all s, t ∈ G and

for some u ∈ H. Thus, M can be made into a G-weak graded R-module by proving the inclusion
property which can be easily performed by showing that: Re Me ⊆ M(e/e)∗e = Me, Re M(12) ⊆
M(e/e)∗(12) = M(12), Re M(13) ⊆ M(e/e)∗(13) = M(13), R(12)Me ⊆ M((12)/e)∗e = M(12),
R(12)M(12) ⊆ M((12)/e)∗(12) = Me, R(12)M(13) ⊆ M(

(12)/(23)
)
∗(13)

= Me,

R(13)Me ⊆ M(
(13)/(23)

)
∗e = M(12), R(13)M(12) ⊆ M(

(13)/(23)
)
∗(12)

= Me and R(13)M(13) ⊆
M((13)/e)∗(13) = Me.

Therefore, M is a G-weak graded R-module, which is not full. For instance, R(13)M(13) ⊆ Me

but Me * R(13)M(13).

4. G-Weak Graded Rings by a Subset S

In general, R =
⊕

s∈G Rs is not necessarily a non-trivial G-weak graded ring. However,
it can be put into a G-weak graded ring by choosing a subset S of G such that S is a group
under the ∗ operation and Rt = 0 for all t ∈ G and t /∈ S.

Definition 5. Let S be a subset of (G, ∗) such that S is a group under the ∗ operation, where G
is a fixed set of left coset representatives for the subgroup H of a finite group X. Then, a ring R is
called an S-weak graded ring if

R =
⊕
s∈S

Rs and RsRs′ ⊆ Rs∗s′ for all s, s′ ∈ S.

It can be noted that any ring R can be considered an S-weak graded ring by putting
S = {eG} and Rt = 0 for all eG 6= t ∈ G in the same way that R can be put into a G-weak
graded ring. In this case, R is called the trivial G-weak graded ring.

Theorem 4. Let R be a G-weak graded ring and let S be a subset of G such that S is a group under
the ∗ operation. Then, RS =

⊕
s∈S Rs is an S-weak graded subring of R.

Proof. First, since R is a G-weak graded ring, we have

R =
⊕
s∈G

Rs and RsRt ⊆ Rs∗t for all s, t ∈ G.

So, we can rewrite R as

R =
⊕
t∈G
t/∈S

Rt ⊕ RS. (as additive subgroups )

Hence, as S ⊆ G, we have RS =
⊕

s∈S Rs and RsRs′ ⊆ Rs∗s′ for all s, s′ ∈ S.
Next, to show that RS is a subring of R, we use the fact that RS is an additive subgroup

of R and the assumption that S is a group under the binary operation ∗ to have

RsRs′ ⊆ Rs∗s′ where s ∗ s′ ∈ S,

which means that RS is closed under multiplications. Moreover, since (S, ∗) is a group, we
have eG ∈ S. Thus, 1R ∈ ReG ⊆ RS, as required.
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Definition 6 ([14]). For a G-weak graded ring R, a unit x ∈ U(R) is said to be a weak graded or
G-homogeneous element if x ∈ Rs for some s ∈ G, where U(R) is the group of all units in R.

Theorem 5. Let R be a G-weak graded ring with unity and let S be a subset of G such that S is a
group under the ∗ operation. Then, U(RS) = RS ∩U(R).

Proof. As R is a G-weak graded ring, we obtain

R =
⊕
t∈G

Rt and RsRt ⊆ Rs∗t for all s, t ∈ G.

In addition, since S is a subset of G,R can be rewritten as

R =
⊕
t∈G
t/∈S

Rt ⊕ RS. (as additive subgroups )

Moreover, RS can be written as RS =
⊕

s∈S Rs with RsRs′ ⊆ Rs∗s′ for all s, s′ ∈ S.
Now, let x ∈ RS ∩U(R), which means x ∈ RS and x ∈ U(R). Then, by Theorem 1,

there exists an element x−1 such that x−1 ∈ RSL .
Since (S, ∗) is a group, we have

x−1 ∈ RSL =
⊕
s∈S

RsL =
⊕
s∈S

Rs = RS.

Thus, x ∈ U(RS).
On the other hand, let x ∈ U(RS). Then, we have x ∈ RS. Since U(RS) ⊆ U(R), we

obtain x ∈ RS ∩U(R).
Therefore, U(RS) = RS ∩U(R) as required.

Example 5. Let X be the dihedral group D6 and H = {1, x5y} be a non-normal subgroup of
X. We choose G = {x5y, y, x2, x3, x4, x4y} to be the set of left coset representatives. Then, the ∗
operation and the cocycle f as well as the action . and the coaction / are given by the following
tables (Tables 17 and 18):

Table 17. The operation ∗ and the cocycle f .

∗ x5y y x2 x3 x4 x4y

x5y x5y y x2 x3 x4 x4y
y x4y x5y x4y x2 x3 x2

x2 x4 x3 x4 y x5y y
x3 x3 x2 y x5y x4y x4

x4 x2 x4y x5y x4y x2 x3

x4y y x4 x3 x4 y x5y

f x5y y x2 x3 x4 x4y

x5y x5y x5y x5y x5y x5y x5y
y x5y x5y 1 x5y x5y 1
x2 x5y x5y 1 x5y x5y 1
x3 x5y x5y x5y x5y x5y x5y
x4 x5y 1 x5y x5y 1 x5y
x4y x5y 1 x5y x5y 1 x5y



Mathematics 2023, 11, 3864 12 of 14

Table 18. The action s . u and the coaction s / u.

s . u 1 x5y

x5y 1 x5y
y 1 x5y
x2 1 x5y
x3 1 x5y
x4 1 x5y
x4y 1 x5y

s / u 1 x5y

x5y x5y x5y
y y x4y
x2 x2 x4

x3 x3 x3

x4 x4 x2

x4y x4y y

Take the ring R to be the matrix ring R = M3(T), where T is an arbitrary ring. Choose the
subset S of G to be S = {x5y, x3}, then R is an S-weak graded ring by putting:

Rx5y =

 T T 0
T T 0
0 0 T

 , Rx3 =

 0 0 T
0 0 T
T T 0


and Rt = 0 for all t ∈ G, t /∈ S. Obviously, R = Rx5y ⊕ Rx3 . The inclusion property RsRs′ ⊆
Rs∗s′ can be proved for all s, s′ ∈ S by showing that: Rx5yRx5y = Rx5y∗x5y = Rx5y, Rx5yRx3 =
Rx5y∗x3 = Rx3 , Rx3 Rx5y = Rx3∗x5y = Rx3 and Rx3 Rx3 = Rx3∗x3 = Rx5y.

Thus, R is a fully S-weak graded ring.

Example 6. Take X to be the dihedral group D6, and H = {1, y} to be a non-normal subgroup of
X. We choose G = {1, x2, x4, xy, x5y, x3} to be the set of left coset representatives. Then, the ∗
operation and the cocycle f as well as the action . and the coaction / are given by the following tables
(Tables 19 and 20):

Table 19. The operation ∗ and the cocycle f .

∗ 1 x2 x3 x4 xy x5y

1 1 x2 x3 x4 xy x5y
x2 x2 x4 xy 1 x3 xy
x3 x3 xy 1 x5y x2 x4

x4 x4 1 x5y x2 x5y x3

xy xy x5y x2 x3 1 x2

x5y x5y x3 x4 xy x4 1

f 1 x2 x3 x4 xy x5y

1 1 1 1 1 1 1
x2 1 1 y 1 y 1
x3 1 y 1 y y y
x4 1 1 y 1 1 y
xy 1 1 y y 1 1
x5y 1 y y 1 1 1
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Table 20. The action s . u and the coaction s / u.

s . u 1 y

1 1 y
x2 1 y
x3 1 y
x4 1 y
xy 1 y
x5y 1 y

s / u 1 y

1 1 1
x2 x2 x4

x3 x3 x3

x4 x4 x2

xy xy x5y
x5y x5y xy

Take the ring R to be R = M2(R) =
{[

a b
c d

]
: a, b, c, d ∈ R

}
. Take the subset S of G

to be S = {1, x2, x4}, then R is an S-weak graded ring by putting:

R1 =

{[
a 0
0 d

]
: a, d ∈ R

}
, Rx2 =

{[
0 b
0 0

]
: b ∈ R

}
, Rx4 =

{[
0 0
c 0

]
: c ∈ R

}
and Rt = 0 for all t ∈ G, t /∈ S. Hence, R = R1 ⊕ Rx2 ⊕ Rx4 . In addition, the inclusion property
can be proved easily for all s, s′ ∈ S by showing that: R1R1 ⊆ R1∗1 = R1, R1Rx2 ⊆ R1∗x2 = Rx2 ,
R1Rx4 ⊆ R1∗x4 = Rx4 , Rx2 R1 ⊆ Rx2∗1 = Rx2 , Rx2 Rx2 ⊆ Rx2∗x2 = Rx4 , Rx2 Rx4 ⊆ Rx2∗x4 =
R1, Rx4 R1 ⊆ Rx4∗1 = Rx4 , Rx4 Rx2 ⊆ Rx4∗x2 = R1 and Rx4 Rx4 ⊆ Rx4∗x4 = Rx2 .

Thus, R is an S-weak graded ring which is not a fully. For instance, Rx4 Rx4 6= Rx4∗x4 as
Rx4∗x4 = Rx2 * Rx4 Rx4 .

Example 7. Let R be any ring and consider the polynomial ring R[X]. Then, R[X] is an S-weak
graded ring by choosing S = {eG, s}, where S is a subset of any set of left coset representatives G
such that S is a group under the ∗ operation, as well as

ReG =
{

r0 + r2x2 + . . . + r2kx2k : ri ∈ R, k ∈ N∪ {0}
}

Rs =
{

r1x + r3x3 + . . . + r2k+1x2k+1 : ri ∈ R, k ∈ N∪ {0}
}

and Rt = 0 for all t ∈ G with t 6= s 6= eG. Hence, R = ReG ⊕ Rs as we cannot add two non-zero
weak graded elements p ∈ ReG and q ∈ Rs to obtain zero. Moreover, the inclusion property is
satisfied as for any weak graded elements p ∈ ReG and q ∈ Rs, we have 〈pq〉 = 〈p〉 ∗ 〈q〉 = s =
〈q〉 ∗ 〈p〉 = 〈qp〉 and 〈pp〉 = 〈p〉 ∗ 〈p〉 = eG = 〈q〉 ∗ 〈q〉 = 〈qq〉, as required.

5. Conclusions

This work shows that the group graded rings and modules which are associated
with a factorization of a given finite group may lead to a quantization of the classical
results of group graded rings and modules. Moreover, some results in the literature can be
generalized by using the concept of the weak G-graded rings and modules. Grading by a
set with a binary operation satisfying specific properties and associated with a factorization
of a given finite group is a considerable generalization of the theory of graded rings and
modules. The interested reader can check how many results of the classical group-graded
rings and modules can carry on in the new setting.
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