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Abstract: In recent years, various qualitative investigations of the properties of differential equations
with different types of generalizations of Riemann–Liouville fractional derivatives were studied
and stability properties were investigated, usually using Lyapunov functions. In the application of
Lyapunov functions, we need appropriate inequalities for the fractional derivatives of these functions.
In this paper, we consider several Riemann–Liouville types of fractional derivatives and prove
inequalities for derivatives of convex Lyapunov functions. In particular, we consider the classical
Riemann–Liouville fractional derivative, the Riemann–Liouville fractional derivative with respect
to a function, the tempered Riemann–Liouville fractional derivative, and the tempered Riemann–
Liouville fractional derivative with respect to a function. We discuss their relations and their basic
properties, as well as the connection between them. We prove inequalities for Lyapunov functions
from a special class, and this special class of functions is similar to the class of convex functions of
many variables. Note that, in the literature, the most common Lyapunov functions are the quadratic
ones and the absolute value ones, which are included in the studied class. As a result, special
cases of our inequalities include Lyapunov functions given by absolute values, quadratic ones, and
exponential ones with the above given four types of fractional derivatives. These results are useful in
studying types of stability of the solutions of differential equations with the above-mentioned types
of fractional derivatives. To illustrate the application of our inequalities, we define Mittag–Leffler
stability in time on an interval excluding the initial time point. Several stability criteria are obtained.

Keywords: Riemann–Liouville-type fractional derivative; tempered fractional derivative; fractional
derivative with respect to another function; Lyapunov functions; Mittag–Leffler stability in time

MSC: 34A34; 34A08; 34D20

1. Introduction

In this paper, we consider Riemann–Liouville-type fractional derivatives. These
types of derivatives have a singularity at the initial time point and give us a new tool for
modeling anomalies in the dynamics of processes. The study of linear systems of fractional
differential equations with Riemann–Liouville-type fractional derivatives was considered
in [1], nonlinear systems in [2], existence and Ulam stability was studied in [3], and for
basic concepts on stability for Riemann–Liouville fractional differential equations, we refer
the reader to [4]. A general fractional derivative of arbitrary order in the Riemann–Liouville
sense was defined and applied to Cauchy problems for single- and multi-term linear
fractional differential equations by Luchko in [5]. In addition, generalized proportional
fractional integrals and derivatives were defined, studied, and applied in [6,7]. These
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derivatives are similar to tempered fractional ones. The exponential tempering has many
merits, both in mathematical and practical terms, and we mention the applications in
finance [8,9], in geophysics [10,11], and in Brownian motion [12].

One of basic qualitative properties in differential equations is stability. There are
different approaches for studying stability properties of the solutions. Stability is applied
for theoretical study as well as for the practical investigation of various dynamical models
with different types of derivatives. One of these approaches is the application of Lyapunov
functions. Lyapunov functions are important in stability theory of dynamical systems
and control theory (see, for example, the epidemiological models [13,14], the fractional
models in biology [15], and the fractional SIR and SIRS models [16]). When Lyapunov
functions are applied to study stability, we need inequalities for these functions with
the applied derivatives. In the case when integer order derivatives are applied, these
inequalities are known and applied to many different problems. This is not the situation
with the application of fractional derivatives. In the case of the Riemann–Liouville type of
fractional derivative, the inequalities for the Lyapunov functions are not well studied and
so this restricted the study and the application of stability properties for the corresponding
differential equations. In connection with this, we first present the basic types of Riemann–
Liouville-type fractional derivatives defined and studied in the literature. We consider the
classical Riemann–Liouville fractional derivative (RLFD), the tempered Riemann–Liouville
fractional derivative (TRLFD), the Riemann–Liouville fractional derivative with respect to
a function (RLFDF) (also called the ψ—fractional derivative), and the tempered Riemann–
Liouville fractional derivative with respect to a function (TRLFDF). We provide some of
their basic properties as well as the connection between them. Then, we prove inequalities
for Lyapunov functions from a special class with these types of fractional derivatives. This
special class of functions is similar to the class of convex functions of many variables and
includes the quadratic ones and the absolute value ones. This allows us to obtain as a
special case of our inequalities some results for the well-known Lyapunov functions defined
by absolute values, quadratic ones, and exponential ones.

Lyapunov functions are one of the most powerful tools for studying stability properties
of fractional physical and biological systems, such as the Duffing oscillator [17], neural
networks [18,19], and predator–prey models [20]. Note that, recently, the Lyapunov method
has been applied to analyze Mittag–Leffler stability of different fractional systems (see, for
example, [21–23]). In [23] the authors studied Mittag–Leffler stability of tempered fractional
dynamical systems. Unfortunately, the inequality applied for Lyapunov functions defined
by absolute values is not correctly proved (inequality (12) does not follow from (15)).
Motivated by this, it is necessary and meaningful to prove inequalities for convex Lyapunov
functions with various types of fractional derivatives. In this way, a tool for investigating
stability properties is built. In addition, in this paper, to illustrate an application of our
inequalities for Lyapunov functions, we define generalized Mittag–Leffler stability in
time for the above mentioned Riemann-Liouvile-type fractional derivatives and apply our
inequalities to obtain sufficient conditions for this type of stability. The Mittag–Leffler
stability is studied by Lyapunov functions and applied to some models, such as some
epidemiological models with Caputo fractional derivative in [24], and tempered fractional
neural networks in [25].

The main contributions in the paper are summarized by the following:

- An overview of the literature on Riemann–Liouville-type fractional derivatives and
integrals, which are generalizations of the classical one as well as the relation between
them are given;

- Some inequalities for convex Lyapunov-type functions with the defined Riemann–
Liouville-type fractional derivatives are proven.

- Inequalities for Lyapunov functions defined by absolute values and quadratic Lya-
punov functions with the defined fractional derivatives are obtained.

- The generalized Mittag–Leffler stability in time for differential equations with the
given fractional derivatives is defined.
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- Sufficient conditions for the generalized Mittag–Leffler stability in time are obtained
in the cases of all types of the considered fractional derivatives.

The basic definitions are given in Section 2, and some additional results necessary
to the proofs of the main results are provided in Section 2.2. The main inequalities for
convex Lyapunov functions are proven in Section 3. Special case results for Lyapynov
function defined by absolute values and quadratic Lyapunov function are obtained. These
inequalities are applied in Section 4 to study the defined generalized Mittag–Leffler stability
in time. Some concluding comments are stated in the last section.

2. Basic Definitions for Riemann–Liouville-Type Fractional Integrals and Derivatives

We will provide an overview of the literature on basic generalizations of the classical
Riemann–Liouville fractional integrals and derivatives. We will assume that all functions
in the defined below integrals and derivatives are “smooth” enough such that all integrals
exit. Later, we will define the appropriate set of functions.

Let t0 ≥ 0 be a given number, t0 < b ≤ ∞ (in the case b = ∞ we consider the open
interval (t0, ∞) instead of (t0, b]).

2.1. Riemann–Liouville Fractional Integrals and Derivatives

Definition 1 ([26,27]). The Riemann–Liouville fractional integral (RLFI) of order γ > 0 of a given
function υ : [t0, b]→ R is defined by

t0 Iγυ(t) =
1

Γ(γ)

∫ t

t0

(t− s)γ−1υ(s) ds, t ∈ (t0, b],

and the Riemann–Liouville fractional derivative (RLFD) of order γ ∈ (0, 1) of a given function
υ : [t0, b]→ R is defined by

RL
t0

Dγ
t υ(t) =

1
Γ(1− γ)

d
dt

∫ t

t0

(t− s)−γυ(s) ds, t ∈ (t0, b].

Consider the set

CRL
γ ([t0, b]) = {ν : [t0, b]→ R : ∀t ∈ (t0, b] ∃ RL

t0
Dγ

t ν(t)}.

2.2. Tempered Riemann–Liouville Fractional Integrals and Derivatives

The tempered fractional integral and derivative of Riemann–Liouville type are defined
as follows:

Definition 2 ([28,29]). Let λ > 0. The tempered Riemann–Liouville fractional integral (TRLFI)
of order γ > 0 of a given function υ : [t0, b]→ R is defined by

T
t0
Iγ,λ

t υ(t) =
1

Γ(γ)

∫ t

t0

(t− s)γ−1e−λ(t−s)υ(s) ds, t ∈ (t0, b].

and the tempered Riemann–Liouville fractional derivative (TRLFD) of order γ ∈ (0, 1) of a given
function υ : [t0, b]→ R is defined by

T RL
t0
Dγ,λ

t υ(t) =
(

λ +
d
dt

)
T
t0
I1−γ,λ

t υ(t)

=
λ

Γ(1− γ)

∫ t

t0

(t− s)−γe−λ(t−s)υ(s) ds

+
1

Γ(1− γ)

d
dt

∫ t

t0

(t− s)−γe−λ(t−s)υ(s) ds, t ∈ (t0, b].
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Consider the set

CT RLγ,λ ([t0, b]) = {ν : [t0, b]→ R : ∀t ∈ (t0, b] ∃ T RLt0
Dγ,λ

t ν(t)}.

2.3. Riemann–Liouville Fractional Integral and Derivative with Respect to a Function

Definition 3 ([26,27]). Let the function ψ ∈ C1([t0, b],R), b ≤ ∞ be a given strictly increasing
function with ψ(s) > 0, s ∈ [t0, b]. The Riemann–Liouville fractional integral with respect to ψ(t)
(RLFIF) of order γ > 0 of a given function υ : [t0, b]→ R is defined by

t0I
γ
ψ(t)υ(t) =

1
Γ(γ)

∫ t

t0

(ψ(t)− ψ(s)γ−1ψ′(s)υ(s) ds, t ∈ (t0, b].

and the Riemann–Liouville fractional derivative with respect to ψ(t) (RLFDF) of order γ ∈ (0, 1)
of a given function υ : [t0, b]→ R is defined by

RL
t0
Dγ

ψ(t)υ(t) =
( 1

ψ′(t)
d
dt

)
t0I

1−γ
ψ(t) υ(t)

=
1

ψ′(t)Γ(1− γ)

d
dt

∫ t

t0

(ψ(t)− ψ(s)−γψ′(s)υ(s) ds, t ∈ (t0, b].

Consider the set

CRL
γ,ψ([t0, b]) = {ν : [t0, b]→ R : ∀t ∈ (t0, b] ∃ RL

t0
Dγ

ψ(t)ν(t)}.

Remark 1. Note in Definition 3, RLFIF and RLFDF are also called the ψ-fractional integral and
the ψ-Riemann–Liouville fractional derivative, respectively.

2.4. Tempered Riemann–Liouville Fractional Integral and Derivative with Respect to a Function

Definition 4 ([30]). Let the function ψ ∈ C1([t0, b],R), b ≤ ∞ be a given strictly increasing
function with ψ(s) > 0, s ∈ [t0, b] and λ > 0. The tempered Riemann–Liouville fractional integral
with respect to ψ(t) (TRLFIF) of order γ > 0 of a given function υ : [t0, b]→ R is defined by

T F
t0
Iγ,λ

ψ(t)υ(t) =
1

Γ(γ)

∫ t

t0

(ψ(t)− ψ(s)γ−1ψ′(s)e−λ(ψ(t)−ψ(s))υ(s) ds, t ∈ (t0, b].

and the tempered Riemann–Liouville fractional derivative with respect to ψ(t) (TRLFDF) of order
γ ∈ (0, 1) of a given function υ : [t0, b]→ R is defined by

T RLF
t0

Dγ,λ
ψ(t)υ(t) =

(
λ +

1
ψ′(t)

d
dt

)
t0I

1−γ
ψ(t) υ(t)

=
1

Γ(1− γ)

(
λ
∫ t

t0

(ψ(t)− ψ(s)−γψ′(s)e−λ(ψ(t)−ψ(s))υ(s) ds

+
1

ψ′(t)
d
dt

∫ t

t0

(ψ(t)− ψ(s)−γψ′(s)e−λ(ψ(t)−ψ(s))υ(s) ds
)

, t ∈ (t0, b].

Consider the set

CT RLFγ,λ,ψ ([t0, b]) = {ν : [t0, b]→ R : ∀t ∈ (t0, b] ∃ T RLFt0
Dγ,λ

ψ(t)ν(t)}.

Remark 2. Note that all above definitions for fractional integrals and derivative could be generalized
to vector function pointwise.
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2.5. Relations between the Riemann–Liouville-Type Fractional Integrals and Derivatives

Note the following relations

TRLFIF (Definition 4) λ=1−−→ RLFIF (Definition 3)
ψ≡1−−→ RLFI (Definition 1);

TRLFIF (Definition 4)
ψ≡1−−→ TRLFI (Definition 2) λ=1−−→ RLFI (Definition 1),

(1)

and

TRLFDF (Definition 4) λ=1−−→ RLFDF (Definition 3)
ψ≡1−−→ RLFD (Definition 1);

TRLFDF (Definition 4)
ψ≡1−−→ TRLFD (Definition 2) λ=1−−→ RLFD (Definition 1).

(2)

are valid.

Remark 3. From (1) and (2), it follows that the TRLFDF and TRLFIF are the most general. In
connection with the above, we will prove an inequality for convex Lyapunov-type functions with
TRLFDF.

2.6. Some Preliminary Results for Fractional Derivatives

Lemma 1. (Conjugation relations) (Equations (2.3)–(2.5) [31])

T
t0
Iγ,λ

t y(t) = e−λt
t0 Iγ(eλty(t)),

T RL
t0
Dγ,λ

t y(t) = e−λt RL
t0

Dγ
t (e

λt)y(t)),
T F
t0
Iγ,λ

ψ y(t) = e−λψ(t)
t0I

γ
ψ(e

λψ(t)y(t)),

T RLF
t0

Dγ,λ
ψ y(t) = e−λψ(t) RLF

t0
Dγ

ψ(e
λψ(t)y(t)).

(3)

Lemma 2 (Theorem 4.1 [32]). Let γ ∈ (0, 1), C, y0 ∈ R and f ∈ C[0, b] → R, where b ≤ ∞.
Then the solution of the fractional differential equation with RLFDF

RLF
0 Dγ

ψ(t)y(t)− Cy(t) = f (t), t ∈ (0, b] (4)

with initial condition
RLF
0 I1−γ,λ

ψ(t)

(
y(t)

)∣∣∣
t=0

= y0 (5)

is given by

y(t) = y0(ψ(t))γ−1Eγ,γ(C(ψ(t))γ)

+
∫ t

0
(ψ(t)− ψ(s)γ−1Eγ,γ(C(ψ(t)− ψ(s))γ) f (s)ψ′(s)ds, t ∈ (0, b].

(6)

Corollary 1. Let γ ∈ (0, 1), C, y0, λ ∈ R and f ∈ C([0, b]). Then the solution of the fractional
differential equation with TRLFDF

T RLF
0 Dγ,λ

ψ(t)y(t)− Cy(t) = f (t), t ∈ (0, b] (7)

with the initial condition
T F
0 I1−γ,λ

ψ(t) y(t)
∣∣∣
t=0

= y0 (8)

is given by

y(t) = y0e−λψ(t)(ψ(t))γ−1Eγ,γ(C(ψ(t))γ)

+
∫ t

0
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))γ−1Eγ,γ(C(ψ(t)− ψ(s))γ) f (s)ψ′(s)ds, t ∈ (t0, b].

(9)
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Proof. Let u(t) = eλψ(t)y(t), t ∈ [0, b]. According to Lemma 1 and the conjugation
relations (3), we obtain

T RLF
0 Dγ,λ

ψ y(t) = e−λψ(t) RLF
0 Dγ

ψu(t)

and
T F
0 I1−γ,λ

ψ y(t) = e−λψ(t)
0I1−γ

ψ (eλψ(t)y(t)).

Then the initial value problem (7), (8) can be written in the form

RLF
0 Dγ,λ

ψ(t)u(t)− Cu(t) = eλψ(t) f (t), t ∈ (0, b]

0I1−γ,λ
ψ(t) u(t)

∣∣∣
t=0

= eλψ(0)y0.
(10)

According to Lemma 2 with y(t) ≡ u(t), the solution of (10) is given by

u(t) = eλψ(0)y0(ψ(t))γ−1Eγ,γ(C(ψ(t))γ)

+
∫ t

0
(ψ(t)− ψ(s)γ−1Eγ,γ(C(ψ(t)− ψ(s))γ)eλψ(s) f (s)ψ′(s)ds.

(11)

Lemma 3. Let γ ∈ (0, 1), λ ∈ R and ξ > −1. Then

T RLF
t0

Iγ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

γ−1
)
=

Γ(γ)
Γ(2γ)

e−λψ(t)(ψ(t)− ψ(t0))
2γ−1, (12)

T RLF
t0

Iγ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

−γ
)
= Γ(1− γ)e−λψ(t) (13)

T RLF
t0

I1−γ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

γ−1
)
= Γ(γ)e−λψ(t) (14)

and

T RLF
t0

Dγ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

γ−1
)
= Γ(γ)e−λψ(t)(ψ(t)− ψ(t0))

−1 (15)

T RLF
t0

Dγ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

γ
)
= Γ(γ + 1)e−λψ(t) (16)

Lemma 4 ( Proposition 3.13 [30]). If γ > 0, λ > 0, ξ > −1 then

T RLF
t0

Iγ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

ξ
)
=

Γ(ξ + 1)
Γ(ξ + γ + 1)

e−λψ(t)(ψ(t)− ψ(t0))
ξ+γ,

T RLF
t0

Iγ,λ
ψ(t)(1) = e−λ(ψ(t)−ψ(t0))(ψ(t)− ψ(t0))

γE1,1+γ

(
λ(ψ(t)− ψ(t0)

)
.

Corollary 2. For γ > 0, λ > 0 we have

T RLF
t0

I1−γ,λ
ψ(t)

(
e−λψ(t)(ψ(t)− ψ(t0))

γ−1
)
= Γ(γ)e−λψ(t).

Lemma 5. For any T > t0 the equality

Γ(1− γ)T RLFt0
Dγ,λ

ψ(t)(1)|t=T = λΨ(T, t0) + (ψ(T)− ψ(t0))
−γe−λ(ψ(T)−ψ(t0)) (17)



Mathematics 2023, 11, 3859 7 of 23

holds, here

1F1(a, b, z) =
∞

∑
k=0

Γ(a + k)Γ(b)
Γ(b + k)Γ(a)

zk

k!

and (the Krummer function)

Ψ(T, σ) =
Γ(1− γ)

Γ(2− γ)
(ψ(T)− ψ(σ))1−γ

1F1(1− γ, 2− γ,−λ(ψ(T)− ψ(σ))), σ ∈ [t0, T]. (18)

Proof. From Definition 4 we have

T RLF
t0

Dγ,λ
ψ(t)1 =

1
Γ(1− γ)

(
λ
∫ t

t0

(ψ(t)− ψ(s)−γψ′(s)e−λ(ψ(t)−ψ(s)) ds

+
1

ψ′(t)
d
dt

∫ t

t0

(ψ(t)− ψ(s)−γψ′(s)e−λ(ψ(t)−ψ(s)) ds
)

.
(19)

For any T > t0 and σ ∈ [t0, T], we have∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds

=
∞

∑
k=0

(−λ(ψ(T)− ψ(s))k

k!

∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)ds

=
∞

∑
k=0

(−λ)k

k!
1

−1− k + γ

∫ T

σ

d
ds

(ψ(T)− ψ(s))1+k−γds

= (ψ(T)− ψ(σ))1−γ
∞

∑
k=0

(−λ(ψ(T)− ψ(σ)))k

k!
1

1 + k− γ

=
Γ(1− γ)

Γ(2− γ)
(ψ(T)− ψ(σ))1−γ

∞

∑
k=0

(−λ(ψ(T)− ψ(σ))k

k!
Γ(1 + k− γ)Γ(2− γ)

Γ(1− γ)Γ(2 + k− γ)

=
Γ(1− γ)

Γ(2− γ)
(ψ(T)− ψ(σ))1−γ

1F1(1− γ, 2− γ,−λ(ψ(T)− ψ(σ)))

= Ψ(T, σ), σ ∈ [t0, T],

(20)

note 1F1(1− γ, 2− γ,−λ(ψ(T)− ψ(σ))) ≥ 0 for γ ∈ (0, 1) and σ ∈ [t0, T].
For any T > t0 and σ ∈ [t0, T], we get

d
dT

∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds

=
d

dT

∞

∑
k=0

(−λ(ψ(T)− ψ(s))k

k!

∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)ds

=
d

dT

∞

∑
k=0

(−λ)k

k!
1

−1− k + γ

∫ T

σ

d
ds

(ψ(T)− ψ(s))1+k−γds

=
d

dT

∞

∑
k=0

(−λ)k

k!
1

1 + k− γ
(ψ(T)− ψ(σ))1+k−γ

=
∞

∑
k=0

(−λ)k

k!
(ψ(T)− ψ(σ))k−γψ′(T)

= (ψ(T)− ψ(σ))−γψ′(T)
∞

∑
k=0

(−λ(ψ(T)− ψ(σ))k

k!

= (ψ(T)− ψ(σ))−γψ′(T)e−λ(ψ(T)−ψ(σ)).

(21)

From equalities (20) and (21) with T = t and σ = t0 and Equation (19), we obtain (17).
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3. Inequalities for Riemann–Liouville-Type Fractional Derivatives of
Convex Functions

We will use the following class of functions:

Ω ={V ∈ C2(Rn,R) : V(0) = 0,

V(λx + (1− λ)y) ≤ λV(x) + (1− λ)V(y) for λ ∈ [0, 1], x, y ∈ Rn}.

Remark 4. The function V ∈ Ω iff V ∈ C2(Rn,R) and V(y) ≥ V(x) + ∑n
i=1

∂V(x)
∂xi

(yi − xi)

for all x, y ∈ Rn, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Remark 5. We will study Lyapunov functions from the class Ω, which is similar to the set of
convex functions. The proofs of all inequalities for Lyapunov functions is deeply connected with the
restriction that these functions are from the set Ω. At the same time, most of the practically applied
Lyapunov functions in the literature, such as the quadratic Lyapunov functions, the Lyapunov
functions defined by absolute values are in the set Ω. The Lyapunov functions suggested in [13] for
the study stability of epidemiological models are also from the set Ω.

For functions of the set Ω, we will prove some inequalities, applying different types of
fractional derivatives.

3.1. Tempered Riemann–Liouville Fractional Derivative with Respect to a Function

Theorem 1 (TRLFDF). Suppose the functions V ∈ Ω : V(.) ≥ 0, xk ∈ Cq,ξ([t0, b]), k =
1, 2 . . . , n, x = (x1, x2, . . . , xn), and V(x(.)) ∈ Cq,ξ([t0, b]). Then, the inequality

(
T RLF
t0

Dγ,λ
ψ(t)V(x(t)

)
≤

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

) ∂V(x(t))
∂xk

, t ∈ (t0, b] (22)

holds.

Proof. Fix an arbitrary point T ∈ (t0, b]. The inequality (22) is equivalent to

T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

≤ 0. (23)

From Definition 4, we obtain

Γ(1− γ)
(
T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

)
= λ

∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))V(x(s)) ds

+
1

ψ′(T)
d

dT

∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))V(x(s) ds

−
n

∑
k=1

∂V(x(T))
∂xk

[
λ
∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))xk(s) ds

+
1

ψ′(T)
d

dT

∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))xk(s) ds
]

= λ
∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))
(

V(x(s))−
n

∑
k=1

∂V(x(T))
∂xk

xk(s)
)

ds

+
1

ψ′(T)
d

dT

∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))V(x(s)) ds

−
n

∑
k=1

∂V(x(T))
∂xk

1
ψ′(T)

d
dT

∫ T

t0

ψ(T)− ψ(s)−γψ′(s)e−λ(ψ(T)−ψ(s))xk(s) ds.

(24)
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We have
xk(s) = xk(t0) +

∫ s

t0

d
dσ

xk(σ)dσ, k = 1, 2, . . . , n, s ∈ [t0, T], (25)

and

V(x(s)) = V(x(t0)) +
n

∑
i=1

∫ s

t0

∂V(x(σ))
∂xi

x′i(σ)dσ, s ∈ [t0, T]. (26)

Apply (25) and (26) to (24) and obtain

Γ(1− γ)
(
T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

)
= λ

∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))
{(

V(x(t0))−
n

∑
k=1

∂V(x(T)
∂xk

xk(t0)
)

+
∫ s

t0

( n

∑
k=1

∂V(x(σ))
∂xk

x′k(σ)−
n

∑
k=1

∂V(x(T))
∂xk

x′k(σ)
)

dσ

}
ds

+
1

ψ′(T)
d

dT

∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))
(

V(x(t0)) +
∫ s

t0

n

∑
k=1

∂V(x(σ))
∂xk

x′k(σ)dσ

)
ds

− 1
ψ′(T)

n

∑
k=1

∂V(x(T))
∂xk

d
dT

∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))
(

xk(t0) +
∫ s

t0

x′k(σ)dσ
)

ds

=
(

V(x(t0))−
n

∑
k=1

∂V(x(T))
∂xk

xk(t0)
){

λ
∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds

+
1

ψ′(T)
d

dT

∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds
}

+ λ
∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))
∫ s

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

]
dσ ds

+
1

ψ′(T)
d

dT

∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))
∫ s

t0

n

∑
k=1

∂V(x(σ))
∂xk

x′k(σ)dσ ds

− 1
ψ′(T)

n

∑
k=1

∂V(x(T))
∂xk

d
dT

∫ T

t0

(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))
∫ s

t0

x′k(σ)dσds.

(27)

Use the equality ∫ T

t0

∫ s

t0

f (s, σ)dσds =
∫ T

t0

∫ T

σ
f (s, σ)dsdσ

for f (s, σ) = (ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s)) ∂V(x(σ))
∂xk

x′k(σ)

or f (s, σ) = (ψ(T) − ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))x′k(σ), Lemma 5 with t = T and
Definition 4 and we obtain, from (27), the equality

Γ(1− γ)
(
T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

)
=
(

V(x(t0))−
n

∑
k=1

∂V(x(T))
∂xk

xk(t0)
)

Ξ(T)

+ λ
∫ T

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

] ∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ

+
1

ψ′(T)
d

dT

∫ T

t0

n

∑
k=1

∂V(x(σ))
∂xk

x′k(σ)
∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ

− 1
ψ′(T)

n

∑
k=1

∂V(x(T))
∂xk

d
dT

∫ T

t0

x′k(σ)
∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))dsdσ,

(28)
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where Ξ(T) = λΨ(T, t0) + (ψ(T)− ψ(t0))
−γe−λ(ψ(T)−ψ(t0)) and Ψ(t, σ) is defined by (18).

Note we have the equalities

d
dT

∫ T

t0

∂V(x(σ))
∂xk

x′k(σ)
∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ

=
∫ T

t0

∂V(x(σ))
∂xk

x′k(σ)
d

dT

∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ

(29)

and

d
dT

∫ T

t0

x′k(σ)
∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ

=
∫ T

t0

x′k(σ)
d

dT

∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ.

(30)

Apply equalities (20) with t = T, (29) and (30) to (28) and we get

Γ(1− γ)
(
T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

)
=
(

V(x(t0))−
n

∑
k=1

∂V(x(T))
∂xk

xk(t0)
)

Ξ(T)

+ λ
∫ T

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

]
Ψ(T, σ)dσ

+
1

ψ′(T)

∫ T

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

]
× d

dT

∫ T

σ
(ψ(T)− ψ(s))−γψ′(s)e−λ(ψ(T)−ψ(s))ds dσ.

(31)

Apply the equality (21) to (31) and we get

Γ(1− γ)
(
T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

)
=
(

V(x(t0))−
n

∑
k=1

∂V(x(T))
∂xk

xk(t0)
)

Ξ(T)

+ λ
∫ T

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

]
Ψ(T, σ)dσ

+
∫ T

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

]
(ψ(T)− ψ(σ))−γe−λ(ψ(T)−ψ(σ))dσ.

(32)

Define the function P(s) = V(x(s)) − V(x(T)) − ∑n
k=1

∂V(x(T))
∂xk

)[xk(s) − xk(T)] for s ∈
[t0, T]. From V ∈ Ω, it follows that P(s) ≥ 0 for all s ∈ [t0, T], P(T) = 0 and dP(s)

ds =

∑n
k=1

(
∂V(x(s))

∂xk
− ∂V(x(T))

∂xk

)
x′k(s).

Integrate by parts, use

lim
s→T−

P(s)
(ψ(T)− ψ(s))γ

= lim
s→T−

P′′(s)
−γ(1− γ)(ψ′(s))2 − γ(ψ(T)− ψ(s))ψ′′(s)

(ψ(T)− ψ(s))2−γ = 0
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and

d
ds

(
(ψ(T)− ψ(s))−γe−λ(ψ(T)−ψ(s))

)
= e−λ(ψ(T)−ψ(s))ψ′(s)(ψ(T)− ψ(s))−γ

(
γ(ψ(T)− ψ(s))−1 + λ

)
≥ e−λ(ψ(T)−ψ(s))ψ′(s)(ψ(T)− ψ(s))−γλ.

(33)

From equality (18) we have

d
dσ

Ψ(T, σ) =
Γ(1− γ)

Γ(2− γ)

∞

∑
k=0

(−λ)k d
dσ (ψ(T)− ψ(σ))1−γ+k

k!
Γ(1 + k− γ)Γ(2− γ)

Γ(1− γ)Γ(2 + k− γ)

= −ψ′(σ)(ψ(T)− ψ(σ))−γ
∞

∑
k=0

(−λ)k(ψ(T)− ψ(σ))k

k!

= −ψ′(σ)(ψ(T)− ψ(σ))−γe−λ(ψ(T)−ψ(σ)), σ ∈ [t0, T].

(34)

From inequality (33) and equality (34) we obtain

∫ T

t0

[ n

∑
k=1

(∂V(x(s))
∂xk

− ∂V(x(T))
∂xk

)
x′k(s)

]
(ψ(T)− ψ(s))−γe−λ(ψ(T)−ψ(s)) ds

=
∫ T

t0

(ψ(T)− ψ(s))−γe−λ(ψ(T)−ψ(s))P′(s)ds

= e−λ(ψ(T)−ψ(s)) P(s)
(ψ(T)− ψ(s))γ

∣∣∣T
t0

−
∫ T

t0

( d
ds

(ψ(T)− ψ(s))−γe−λ(ψ(T)−ψ(s))
)

P(s)ds

≤ −e−λ(ψ(T)−ψ(t0))
P(t0)

(ψ(T)− ψ(t0))γ

− λ
∫ T

t0

e−λ(ψ(T)−ψ(s))ψ′(s)(ψ(T)− ψ(s))−γP(s)ds,

(35)

and ∫ T

t0

[ n

∑
k=1

(∂V(x(σ))
∂xk

− ∂V(x(T))
∂xk

)
x′k(σ)

]
Ψ(T, σ) dσ

=
∫ T

t0

P′(σ)Ψ(T, σ)dσ

= P(σ)Ψ(T, σ)
∣∣∣σ=T

σ=t0
−
∫ T

t0

P(σ)
d

dσ
Ψ(T, σ)dσ

= −P(t0)Ψ(T, t0) +
∫ T

t0

P(σ)(ψ(T)− ψ(σ))−γψ′(σ)e−λ(ψ(T)−ψ(σ))dσ.

(36)
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From V ∈ Ω and Remark 4 with y = 0, it follows that −V(x(T)) + ∑n
k=1

∂V(x(T))
∂xk

xk(T) ≥ 0
and thus from (32), (35), and (36) we get

Γ(1− γ)
(
T RLF
t0

Dγ,λ
ψ(t)V(x(t))

∣∣∣
t=T
−

n

∑
k=1

(
T RLF
t0

Dγ,λ
ψ(t)xk(t)

)∣∣∣
t=T

∂V(x(T))
∂xk

)
≤ P(t0)Ξ(T) +

(
V(x(T))−

n

∑
k=1

∂V(x(T))
∂xk

)xk(T)
)

Ξ(T)

− λP(t0)Ψ(T, t0) + λ
∫ T

t0

P(σ)(ψ(T)− ψ(σ))−γψ′(σ)e−λ(ψ(T)−ψ(σ))dσ

− e−λ(ψ(T)−ψ(t0))
P(t0)

(ψ(T)− ψ(t0))γ

− λ
∫ T

t0

e−λ(ψ(T)−ψ(s))ψ′(s)(ψ(T)− ψ(s))−γP(s)ds

≤ P(t0)(Ξ(T)− λΨ(T, t0)− e−λ(ψ(T)−ψ(t0))(ψ(T)− ψ(t0))
−γ) = 0.

(37)

Inequality (37) proves the claim.

As special cases of the result in Theorem 1, we obtain some results about particular
Lyapunov functions.

Consider the quadratic Lyapunov function given by V(x) = xTx, x ∈ Rn. The
function V ∈ Ω.

Lemma 6. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n,
and ν2

k ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n,. Then the inequality

n

∑
k=1

T RLF
t0

Dγ,λ
ψ(t)ν

2
k (t) ≤ 2

n

∑
k=1

νk(t)T RLFt0
Dγ,λ

ψ(t)νk(t), t ∈ (t0, b]

holds.

Similarly, for the Lyapunov function V(x) = xT Px, x ∈ Rn, with P ∈ Rn×n, a positive
semidefinite, symmetric, square, and constant matrix, the following result is true:

Lemma 7. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n,

and ν2
k ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n, and P ∈ Rn×n is a positive semidefinite, symmetric,

square, and constant matrix. Then the inequality

T RLF
t0

Dγ,λ
ψ(t)

(
νT(t)P ν(t)

)
≤ 2

(
νT(t)P T RLFt0

Dγ,λ
ψ(t)ν(t)

)
, t ∈ (t0, b]

holds.

Consider the quartic Lyapunov function given by V(x) = ∑n
i=1 x4

i , x ∈ Rn, x =
(x1, x2, . . . , xn).

Lemma 8. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n,
and ν4

k ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n,. Then the inequality

n

∑
i=1

T RLF
t0

Dγ,λ
ψ(t)ν

4
i (t) ≤ 4

n

∑
i=1

ν3
i (t)

T RLF
t0

Dγ,λ
ψ(t)νi(t), t ∈ (t0, b]

holds.
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The result is true for the exponential Lyapunov function V(x) = e∑n
i=1 xi , with x =

(x1, x2, . . . , xn).

Lemma 9. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n.
Then the inequality

T RLF
t0

Dγ,λ
ψ(t)e

∑n
i=1 νi(t) ≤

n

∑
i=1

eνi(t) T RLF
t0

Dγ,λ
ψ(t)νi(t), t ∈ (t0, b]

holds.

Consider the Lyapunov function defined by absolute values, i.e., V(x) = ∑n
i=1 |xi|,

x ∈ Rn, x = (x1, x2, . . . , xn). This function is not differentiable at 0, so Lemma 1 cannot be
applied directly.

Lemma 10. Let ν ∈ CT RLFγ,λ ([t0, b]). Then, for any t ∈ (t0, b] : ν(t) 6= 0 the inequality

T RLF
t0

Dγ,λ
ψ(t)|ν(t)| ≤ sign(ν(t)) T RLFt0

Dγ,λ
ψ(t)ν(t) (38)

holds.

Proof. The proof is similar to the one of Theorem 1 with the function V(y) = |y| and for
any fixed point T ∈ [t0, b] applying the function P(s) = |x(s)| − |x(T)| − sign(x(T))[x(s)−
x(T)] = |x(s)| − sign(x(T))x(s) ≥ 0 for all s ∈ [t0, T].

Corollary 3. Let ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLFγ,λ ([t0, b]), k = 1, 2, . . . , n. Then, for any
point t ∈ (t0, b] such that νi(t) 6= 0, i = 1, 2, . . . , n, the inequality

n

∑
i=1

T RLF
t0

Dγ,λ
ψ(t)|νi(t)| ≤

n

∑
i=1

sign(νi(t)) T RLFt0
Dγ,λ

ψ(t)νi(t) (39)

holds.

3.2. Riemann–Liouville Fractional Derivative with Respect to a Function

Theorem 2 (RLFDF). Suppose the functions V ∈ Ω : V(.) ≥ 0, xk ∈ CRL
γ,ψ([t0, b]), k =

1, 2 . . . , n, x = (x1, x2, . . . , xn), and V(x(.)) ∈ CRL
γ,ψ([t0, b]). Then the inequality

(
RL
t0
Dγ

ψ(t)V(x(t)
)
≤

n

∑
k=1

(
RL
t0
Dγ

ψ(t)xk(t)
) ∂V(x(t))

∂xk
, t ∈ (t0, b] (40)

holds.

The proof of Theorem 2 follows from Theorem 1, applying the results of Section 2.1
and Definition 3 instead of Definition 4.

As special cases of the result in Theorem 2, we obtain some results about particular
Lyapunov functions.

Consider the quadratic Lyapunov function given by V(x) = xTx, x ∈ Rn. The
function V ∈ Ω.

Lemma 11. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ,ψ([t0, b]), k = 1, 2, . . . , n, and

ν2
k ∈ CRL

γ,ψ([t0, b]), k = 1, 2, . . . , n,. Then the inequality

n

∑
k=1

RL
t0
Dγ

ψ(t)ν
2
k (t) ≤ 2

n

∑
k=1

νk(t)RLt0
Dγ

ψ(t)νk(t), t ∈ (t0, b]
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holds.

Similarly, for the Lyapunov function V(x) = xT Px, x ∈ Rn, with P ∈ Rn×n, a positive
semidefinite, symmetric, square, and constant matrix, the following result is true:

Lemma 12. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ,ψ([t0, b]), k = 1, 2, . . . , n, and

ν2
k ∈ CRL

γ,ψ([t0, b]), k = 1, 2, . . . , n, and P ∈ Rn×n is a positive semidefinite, symmetric, square,
and constant matrix. Then the inequality

RL
t0
Dγ

ψ(t)

(
νT(t)P ν(t)

)
≤ 2

(
νT(t)P RLt0

Dγ
ψ(t)ν(t)

)
, t ∈ (t0, b]

holds.

Consider the quartic Lyapunov function given by V(x) = ∑n
i=1 x4

i , x ∈ Rn, x =
(x1, x2, . . . , xn).

Lemma 13. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ,ψ([t0, b]), k = 1, 2, . . . , n, and

ν4
k ∈ CRL

γ,ψ([t0, b]), k = 1, 2, . . . , n, . Then the inequality

n

∑
i=1

RL
t0
Dγ

ψ(t)ν
4
i (t) ≤ 4

n

∑
i=1

ν3
i (t)

RL
t0
Dγ

ψ(t)νi(t), t ∈ (t0, b]

holds.

The result is true for the exponential Lyapunov function V(x) = e∑n
i=1 xi , with x =

(x1, x2, . . . , xn).

Lemma 14. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ,ψ([t0, b]), k = 1, 2, . . . , n. Then

the inequality
RL
t0
Dγ

ψ(t)e
∑n

i=1 νi(t) ≤
n

∑
i=1

eνi(t) RL
t0
Dγ

ψ(t)νi(t), t ∈ (t0, b]

holds.

Consider the Lyapunov function defined by absolute values, i.e., V(x) = ∑n
i=1 |xi|,

x ∈ Rn, x = (x1, x2, . . . , xn). This function is not differentiable at 0, so Lemma 1 cannot be
applied directly.

Lemma 15. Let ν ∈ CRL
γ,ψ([t0, b]). Then, for any t ∈ (t0, b] : ν(t) 6= 0, the inequality

RL
t0
Dγ

ψ(t)|ν(t)| ≤ sign(ν(t)) RLt0
Dγ

ψ(t)ν(t) (41)

holds.

Corollary 4. Let ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ,ψ([t0, b]), k = 1, 2, . . . , n. Then, for any point

t ∈ (t0, b] such that νi(t) 6= 0, i = 1, 2, . . . , n, the inequality

n

∑
i=1

RL
t0
Dγ

ψ(t)|νi(t)| ≤
n

∑
i=1

sign(νi(t)) RLt0
Dγ

ψ(t)νi(t) (42)

holds.
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3.3. Tempered Riemann–Liouville Fractional Derivative

Theorem 3 (TRLFD). Suppose the functions V ∈ Ω : V(.) ≥ 0, xk ∈ CT RLγ,λ ([t0, b]), k =

1, 2 . . . , n, x = (x1, x2, . . . , xn), and V(x(.)) ∈ CT RLγ,λ ([t0, b]). Then the inequality

(
T RL
t0
Dγ,λ

t V(x(t)
)
≤

n

∑
k=1

(
T RL
t0
Dγ,λ

t xk(t)
) ∂V(x(t))

∂xk
, t ∈ (t0, b] (43)

holds.

The proof follows from Theorem 1 and the results of Section 2.1, with the application
of Definition 2 instead of Definition 4.

As special cases of the result in Theorem 3, we obtain some results about particular
Lyapunov functions.

Consider the quadratic Lyapunov function given by V(x) = xTx, x ∈ Rn. The
function V ∈ Ω.

Lemma 16. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n,
and ν2

k ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n,. Then the inequality

n

∑
k=1

T RL
t0
Dγ,λ

t ν2
k (t) ≤ 2

n

∑
k=1

νk(t)T RLt0
Dγ,λ

t νk(t), t ∈ (t0, b]

holds.

Similarly, for the Lyapunov function V(x) = xT Px, x ∈ Rn, with P ∈ Rn×n a positive
semidefinite, symmetric, square, and constant matrix, the following result is true:

Lemma 17. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n,

and ν2
k ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n, and P ∈ Rn×n is a positive semidefinite, symmetric,

square, and constant matrix. Then the inequality

T RL
t0
Dγ,λ

t

(
νT(t)P ν(t)

)
≤ 2

(
νT(t)P T RLt0

Dγ,λ
t ν(t)

)
, t ∈ (t0, b]

holds.

Consider the quartic Lyapunov function given by V(x) = ∑n
i=1 x4

i , x ∈ Rn, x =
(x1, x2, . . . , xn).

Lemma 18. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n,
and ν4

k ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n, . Then the inequality

n

∑
i=1

T RL
t0
Dγ,λ

t ν4
i (t) ≤ 4

n

∑
i=1

ν3
i (t)

T RL
t0
Dγ,λ

t νi(t), t ∈ (t0, b]

holds.

The result is true for the exponential Lyapunov function V(x) = e∑n
i=1 xi , with x =

(x1, x2, . . . , xn).

Lemma 19. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n.
Then the inequality

T RL
t0
Dγ,λ

t e∑n
i=1 νi(t) ≤

n

∑
i=1

eνi(t) T RL
t0
Dγ,λ

t νi(t), t ∈ (t0, b]
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holds.

Consider the Lyapunov function defined by absolute values, i.e., V(x) = ∑n
i=1 |xi|,

x ∈ Rn, x = (x1, x2, . . . , xn). This function is not differentiable at 0, so Theorem 3 cannot
be applied directly.

Lemma 20. Let ν ∈ CT RLγ,λ ([t0, b]). Then, for any t ∈ (t0, b] : ν(t) 6= 0 the inequality

T RL
t0
Dγ,λ

t |ν(t)| ≤ sign(ν(t)) T RLt0
Dγ,λ

t ν(t) (44)

holds.

Corollary 5. Let ν = (ν1, ν2, . . . , νn) : νk ∈ CT RLγ,λ ([t0, b]), k = 1, 2, . . . , n. Then, for any point
t ∈ (t0, b] such that νi(t) 6= 0, i = 1, 2, . . . , n, the inequality

n

∑
i=1

T RL
t0
Dγ,λ

t |νi(t)| ≤
n

∑
i=1

sign(νi(t)) T RLt0
Dγ,λ

t νi(t) (45)

holds.

3.4. Riemann–Liouville Fractional Derivative

Theorem 4 (RLFD). Suppose the functions V ∈ Ω : V(.) ≥ 0, xk ∈ CRL
γ ([t0, b]), k =

1, 2 . . . , n, x = (x1, x2, . . . , xn), and V(x(.)) ∈ CRL
γ ([t0, b]). Then the inequality

(
RL
t0

Dγ
t V(x(t)

)
≤

n

∑
k=1

(
RL
t0

Dγ
t xk(t)

) ∂V(x(t))
∂xk

, t ∈ (t0, b] (46)

holds.

The proof follows from Theorem 1 and the results of Section 2.1, with the application
of Definition 1 instead of Definition 4.

As special cases of the result in Theorem 4,we obtain some results about particular
Lyapunov functions.

Consider the quadratic Lyapunov function given by V(x) = xTx, x ∈ Rn. The
function V ∈ Ω.

Lemma 21. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ ([t0, b]), k = 1, 2, . . . , n, and

ν2
k ∈ CRL

γ ([t0, b]), k = 1, 2, . . . , n,. Then the inequality

n

∑
k=1

RL
t0

Dγ
t ν2

k (t) ≤ 2
n

∑
k=1

νk(t)RL
t0

Dγ
t νk(t), t ∈ (t0, b]

holds.

Similarly, for the Lyapunov function V(x) = xT Px, x ∈ Rn, with P ∈ Rn×n a positive
semidefinite, symmetric, square, and constant matrix, the following result is true:

Lemma 22. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ ([t0, b]), k = 1, 2, . . . , n, and

ν2
k ∈ CRL

γ ([t0, b]), k = 1, 2, . . . , n, and P ∈ Rn×n is a positive semidefinite, symmetric, square,
and constant matrix. Then the inequality

RL
t0

Dγ
t

(
νT(t)P ν(t)

)
≤ 2

(
νT(t)P RL

t0
Dγ

t ν(t)
)

, t ∈ (t0, b] (47)

holds.
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Remark 6. Note that the Caputo version of the inequality (47) cannot be applied to study Riemann–
Liouville fractional differential equations (as is done, for example, in Lemma 2.2 [33], in Lemma 3 [34],
in Lemma 2.2 [35], and in Lemma 2 [36,37]).

Consider the quartic Lyapunov function given by V(x) = ∑n
i=1 x4

i , x ∈ Rn, x =
(x1, x2, . . . , xn).

Lemma 23. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ ([t0, b]), k = 1, 2, . . . , n, and

ν4
k ∈ CRL

γ ([t0, b]), k = 1, 2, . . . , n, . Then the inequality

n

∑
i=1

RL
t0

Dγ
t ν4

i (t) ≤ 4
n

∑
i=1

ν3
i (t)

RL
t0

Dγ
t νi(t), t ∈ (t0, b]

holds.

The result is true for the exponential Lyapunov function V(x) = e∑n
i=1 xi , with x =

(x1, x2, . . . , xn).

Lemma 24. Suppose the function ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ ([t0, b]), k = 1, 2, . . . , n. Then

the inequality
RL
t0

Dγ
t e∑n

i=1 νi(t) ≤
n

∑
i=1

eνi(t) RL
t0

Dγ
t νi(t), t ∈ (t0, b]

holds.

Consider the Lyapunov function defined by absolute values, i.e., V(x) = ∑n
i=1 |xi|,

x ∈ Rn, x = (x1, x2, . . . , xn). This function is not differentiable at 0, so Theorem 4 cannot
be applied directly.

Lemma 25. Let ν ∈ CRL
γ ([t0, b]). Then, for any t ∈ (t0, b] : ν(t) 6= 0 the inequality

RL
t0

Dγ
t |ν(t)| ≤ sign(ν(t)) RL

t0
Dγ

t ν(t) (48)

holds.

Corollary 6. Let ν = (ν1, ν2, . . . , νn) : νk ∈ CRL
γ ([t0, b]), k = 1, 2, . . . , n. Then, for any point

t ∈ (t0, b] such that νi(t) 6= 0, i = 1, 2, . . . , n, the inequality

n

∑
i=1

RL
t0

Dγ
t |νi(t)| ≤

n

∑
i=1

sign(νi(t)) RL
t0

Dγ
t νi(t) (49)

holds.

Remark 7. The inequalities for Lyapunov functions with various types of fractional derivatives
such as RLFD, TRLFD, RLFDF, and TRLFDF look similar, but their proofs are quite different and
they deeply depend on the definitions of the corresponding applied fractional derivative.

4. Mittag–Leffler Stability in Time for Differential Equations with
Riemann–Liouville-Type Fractional Derivatives

Consider the following system of nonlinear differential equations with the Riemann–
Liouville-type fractional derivative discussed above

0D y(t) = F(t, y(t)) for t > 0, (50)
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with initial conditions

0 I y(t)|t=0 = y0, (51)

where γ ∈ (0, 1), λ ∈ R, and F : R+ ×Rn → Rn, F = (F1, F2, . . . , Fn), and both the
fractional integral 0 I and the fractional derivative 0D are

- both are replaced by RLFI 0 I1−γ
t and RLFD RL

0 Dγ
t , respectively;

- both are replaced by TRLFI T0 I
1−γ,λ
t and TRLFD T RL0 Dγ,λ

t , respectively;
- both are replaced by RLFIF 0I1−γ

ψ(t) and RLFDF RL
0 D

γ
ψ(t), respectively;

- both are replaced by TRLFIF T F0 I1−γ,λ
ψ(t) and TRLFDF T RLF0 Dγ,λ

ψ(t), respectively.

We will assume that for any initial value y0, the problems (50) and (51) has a solution
y(t; y0) : y = (y1, y2, . . . , yn) defined for t > 0.

Note that any type of Riemann–Liouville fractional derivative defined above has a
singularity at the initial time point. For example, consider the classical Riemann–Liouville
fractional derivative and the simple scalar equation RL

0 Dγ
t y(t) = −y(t), with γ ∈ (0, 1). The

initial condition cannot be of the type y(y) = y0 as in the case of the ordinary derivative
or the Caputo derivative. The initial condition is 0 I1−γy(t)|t=0 = y0 and the solution
is y(t) = y0tγ−1Eγ,γ(−tγ), with Eγ,γ(.) being the Mittag–Leffler function. It is obvious
that, for any positive number ε, the inequality |y(t)| < ε cannot be satisfied for values
of t > 0 and close to 0. This requires, for the stability to be defined, the initial time
point 0 to be excluded, i.e., the special type of stability is deeply connected with the
applied type of Riemann–Liouville fractional derivative (see, for example, refs. [2,4,38]).
In some papers, for example, in [39], the authors do not exclude the initial time point
and this leads to misunderstandings (see, for example the main condition of Theorem 1,
tγ−1Eγ,γ(Atγ) ≤ Me−γt, which is not satisfied on the whole interval [0, ∞)).

Definition 5. We will say that the initial value problems (50) and (51) are generalized Mittag–
Leffler stable in time if there exists positive constants Tγ, C and nondecreasing functions P(.), Q(.) :
[0.∞) → [0, ∞), P(0) = 0, Q(0) = 0, such that for any solutions y(t; y0) and x(t; x0) of (50)
and (51)

- if both RLFI 0 I1−γ
t and RLFD RL

0 Dγ
t are applied, then the inequality

||y(t)− x(t)|| ≤ P
(

Q(||y0 − x0||Eγ,γ(−C(t)γ)
)

, t ≥ Tγ

holds;
- if both TRLFI T0 I

1−γ,λ
t and TRLFD T RL0 Dγ,λ

t are applied, then the inequality

||y(t)− x(t)|| ≤ P
(

Q(||y0 − x0||e−λtEγ,γ(−C tγ)
)

, t ≥ Tγ

holds;
- if both RLFIF 0I1−γ

ψ(t) and RLFDF RL
0 D

γ
ψ(t) are applied, then the inequality

||y(t)− x(t)|| ≤ P
(

Q(||y0 − x0||Eγ,γ(−C(ψ(t))γ)
)

, t ≥ Tγ

holds;
- if both TRLFIF T F0 I1−γ,λ

ψ(t) and TRLFDF T RLF0 Dγ,λ
ψ(t) are applied, then the inequality

||y(t)− x(t)|| ≤ P
(

Q(||y0 − x0||e−λψ(t)Eγ,γ(−C(ψ(t))γ)
)

, t ≥ Tγ

holds.

Theorem 5. Suppose there exists a function V ∈ Ω such that
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(i) there exist functions a, b ∈ K such that a(||x||) ≤ V(x) ≤ b(||x||) for x ∈ Rn;
(ii) For any solution y(t; y0) : y = (y1, y2, . . . , yn) such that

- if both RLFI 0 I1−γ
t and RLFD RL

0 Dγ
t are applied, then yk ∈ CRL

γ ([0, ∞)), k = 1, 2, . . . , n
and the fractional inequalities

0 I1−γ
t V(y(t))|t=0 ≤ V(y0),

RL
0 Dγ

t V(y(t)) ≤ −CV(y(t)), t > 0
(52)

hold where C > 0;
- if both TRLFI T0 I

1−γ,λ
t and TRLFD T RL0 Dγ,λ

t are applied, then yk ∈ CT RLγ,λ ([0, ∞)), k =
1, 2, . . . , n and the inequalities

T
0 I

1−γ,λ
t V(y(t))|t=0 ≤ V(y0),

T RL
0 Dγ,λ

t V(y(t)) ≤ −CV(y(t)), t > 0
(53)

hold where C > 0;
- if both RLFIF 0I1−γ

ψ(t) and RLFDF RL
0 D

γ
ψ(t) are applied, then yk ∈ CRL

γ,ψ([0, ∞)), k =

1, 2, . . . , n and the inequalities

0I1−γ
ψ(t) V(y(t))|t=0 ≤ V(y0),

RL
0 D

γ
ψ(t)V(y(t)) ≤ −CV(y(t)), t > 0

(54)

hold where C > 0;
- if both TRLFIF T F0 I1−γ,λ

ψ(t) and TRLFDF T RLF0 Dγ,λ
ψ(t) are applied, then the functions

yk ∈ CT RLFγ,λ,ψ ([0, ∞)), k = 1, 2, . . . , n and the inequalities

T F
0 I1−γ,λ

ψ(t) V(y(t))|t=0 ≤ V(y0),

T RLF
0 Dγ,λ

ψ(t)V(y(t)) ≤ −CV(y(t)), t > 0
(55)

hold where C > 0.

Then, the initial value problem (50) and (51) is generalized Mittag–Leffler stable in time.

Proof. We will prove the case when both TRLFIF T F0 I1−γ,λ
ψ(t) and TRLFDF T RLF0 Dγ,λ

ψ(t) are
applied. The proofs of the other fractional diffintegrals are similar.

Consider two solutions y(t) = y(t; y0) and x(t) = x(t; x0) of (50) and (51) with both
TRLFIF T F0 I1−γ,λ

ψ(t) and TRLFDF T RLF0 Dγ,λ
ψ(t), respectively, being applied and with the initial

values y0, x0 ∈ Rn. Define the function u(t) = y(t)− x(t), t ≥ 0. Note the function u(t) is
a solution of the fractional Equation (50) with initial condition

T F
0 I1−γ,λ

ψ(t) u(t)|t=0 = y0 − x0. (56)

Define the function v(t) = V(y(t)− x(t)), t ≥ 0. From inequalities (55) it follows there
exists a function m ∈ C[0, ∞) : m(t) ≤ 0 and a constant K ≥ 0, such that

T RLF
0 Dγ,λ

ψ(t)v(t) + Cv(t) = m(t), t > 0,

T F
0 I1−γ,λ

ψ(t) v(t)|t=0 = v0,
(57)

where v0 = V(y0 − x0)− K.
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According to Corollary 1, the solution of the initial value problem (57) is given by

V(u(t)) = v0e−λψ(t)(ψ(t))γ−1Eγ,γ(−C(ψ(t))γ)

+
∫ t

0
e−λ(ψ(t)−ψ(s))(ψ(t)− ψ(s))γ−1Eγ,γ(−C(ψ(t)− ψ(s))γ)m(s)ψ′(s)ds

≤ V(y0 − x0)e−λψ(t)(ψ(t))γ−1Eγ,γ(−C(ψ(t))γ).

(58)

The function ψ is a nondecreasing continuous function. Therefore, there exists a number
Tγ > 0, such that (ψ(t))γ−1 ≤ 1 for t ≥ Tγ. Then, from condition (i) and inequality (58), it
follows that

||y(t)− x(t)|| ≤ a−1
(

b(||y0 − x0||)e−λψ(t)Eγ,γ(−C(ψ(t))γ)
)

, t ≥ Tγ.

In the case of the Lyapunov function being a quadratic one, we obtain the following
result (we will consider only the case when both TRLFIF T F0 I1−γ,λ

ψ(t) and TRLFDF T RLF0 Dγ,λ
ψ(t)

are applied. The cases with the other Riemann–Liouville type of fractional derivatives
are similar).

Corollary 7. Suppose for any solution y(t; y0) : y = (y1, y2, . . . , yn), y0 = (y1,0, y2,0, . . . , yn,0),
of (50) and (51) is such that y2

k ∈ CT RLFγ,λ,ψ ([0, ∞), k = 1, 2, . . . , n, and

T F
0 I1−γ,λ

ψ (y2
k(t))|t=0 ≤ y2

k,0,

T RLF
0 Dγ,λ

ψ(t)y
2
k(t) ≤ −Cky2

k(t), t > 0, k = 1, 2, . . . , n,
(59)

hold where Ck > 0, k = 1, 2, . . . , n. Then, the initial value problem (50) and (51) is generalized
Mittag–Leffler stable in time, i.e., there exists a constant Tγ > 0 such that for any two solutions
y(t; y0), x(t; x0) of (50) and (51) the inequality

n

∑
k=1

(yk(t; y0)− xk(t; x0))
2 ≤

√
(yk,0 − xk,0)2e−λψ(t)Eγ,γ(−C(ψ)γ), t ≥ Tγ

holds.

The proof follows from Theorem 5 by taking the Lyapunov function V(x) = ∑n
i=1 x2

i
and using the norm || · ||2.

Remark 8. Note that the stability criteria in Corollary 7 is connected mainly with the assumptions
about the solutions of the studied system, i.e., they have to be squared fractional integrable.

5. Conclusions

The basic definitions of Riemann–Liouville types of fractional derivatives are given,
such as the classical Riemann-Liuoville fractional derivative, the generalizations of Riemann–
Liouville fractional derivative with respect to a function, as well as the tempered Riemann
Liouville fractional derivative and the one with respect to a function. The main aim of the
paper is to prove some inequalities for Lyapunov-type convex functions and the above
mentioned fractional derivatives. As special cases, several inequalities for the widely
applied Lyapunov functions defined by absolute values and the quadratic Lyapunov
functions are obtained. In the partial case, when the classical fractional derivatives are
applied, these inequalities provide results in the literature. The generalized Mittag-Lefller
stability in time is defined and studied with the help of some of our inequalities.

Our inequalities are a practical tool for the study of various types of stability properties
of Riemann–Liouville fractional differential equations by Lyapunov functions, such as
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stability, asymptotic stability, practical stability, exponential stability, and Mittag–Leffler
stability. Note in the case of the Riemann–Liouville type of fractional derivatives, the
initial time has to be excluded and modified types of stability have to be defined and
studied. In addition, these inequalities are very useful in investigating the stability of
equilibrium of real models such as the Hopsfield model of neural networks, the Cohen–
Grossberg model of neural networks, and many others in which the dynamics of the units
is modeled by a Riemann–Liouville-type fractional derivative. The inequalities give us
the opportunity to study the stability of fractional models, and their applications will
increase the interdisciplinary collaborations between the fields of mathematics, physics,
engineering, epidemiology, and other relevant disciplines. These inequalities are the basis
of the application of the Lyapunov method for fractional differential equations, and they
could be used for teaching advanced concepts on stability analysis of fractional differential
equations. Note, similar inequalities for the Lyapunov type of functions could be proven
for alternative fractional derivatives and applied to other types of fractional models.
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Abbreviations

In this paper, the following abbreviations are used:

- RLFI and RLFD—Riemann–Liouville fractional integral and Riemann–Liouville fractional
derivative, respectively;

- TRLFI and TRLFD—tempered Riemann–Liouville fractional integral and tempered Riemann–
Liouville fractional derivative, respectively;

- RLFIF and RLFDF—Riemann–Liouville fractional integral with respect to a function and
Riemann–Liouville fractional derivative with respect to a function, respectively;

- TRLFIF and TRLFDF—tempered Riemann–Liouville fractional integral with respect to a function
and tempered Riemann–Liouville fractional derivative with respect to a function, respectively.
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