
Citation: Jo, S.-H.; Lee, D.; Youn, B.D.

Defect-Band Splitting of a One-

Dimensional Phononic Crystal with

Double Defects for Bending-Wave

Excitation. Mathematics 2023, 11, 3852.

https://doi.org/10.3390/

math11183852

Academic Editors: Qicheng Zhang,

Pingchao Yu and Jie Yuan

Received: 18 August 2023

Revised: 4 September 2023

Accepted: 7 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Defect-Band Splitting of a One-Dimensional Phononic Crystal
with Double Defects for Bending-Wave Excitation
Soo-Ho Jo 1,* , Donghyu Lee 2 and Byeng D. Youn 2,3

1 Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
2 Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea;

ddgorae123@snu.ac.kr (D.L.); bdyoun@snu.ac.kr (B.D.Y.)
3 Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
* Correspondence: soohojo@dgu.ac.kr; Tel.: +82-2260-3207

Abstract: Extensive prior research has delved into the localization of elastic wave energy through de-
fect modes within phononic crystals (PnCs). The amalgamation of defective PnCs with piezoelectric
materials has opened new avenues for conceptual innovations catering to energy harvesters, wave fil-
ters, and ultrasonic receivers. A recent departure from this conventional paradigm involves designing
an ultrasonic actuator that excites elastic waves. However, previous efforts have mostly focused on
single-defect scenarios for bending-wave excitation. To push the boundaries, this research takes a step
forward by extending PnC design to include double piezoelectric defects. This advancement allows
ultrasonic actuators to effectively operate across multiple frequencies. An analytical model originally
developed for a single-defect situation via Euler–Bernoulli beam theory is adapted to fit within
the framework of a double-defect set-up, predicting wave-excitation performance. Furthermore, a
comprehensive study is executed to analyze how changes in input voltage configurations impact
the output responses. The ultimate goal is to create ultrasonic transducers that could have practical
applications in nondestructive testing for monitoring structural health and in ultrasonic imaging for
medical purposes.

Keywords: phononic crystal; double defects; bending-wave excitation; analytical approach;
Euler–Bernoulli beam theory

MSC: 34A25; 81U15; 82C21

1. Introduction

Phononic crystals (PnCs) have captured substantial interest in contemporary re-
search [1,2]. They consist of specifically designed unit cells arranged in a periodic fashion,
enabling researchers to push the limits of technology in controlling the flow (e.g., propagating
direction and energy density) of elastic waves. A fascinating area of exploration focuses on
localizing and amplifying wave energy in specific regions by intentionally introducing one or
more defects in PnCs [3,4]. The ordered arrangement of unit cells in defect-free PnCs plays a
crucial role in creating band gaps through Bragg scattering, which occurs when propagating
waves interact with periodic structures [5,6]. It is essential to clarify that when we mention
‘a single defect’, we refer to an engineered situation where one unit cell’s geometric values
and/or material are altered. This introduction of a single defect leads to the formation of
passbands inside the band gaps. These bands are called as ‘defect bands’, which are character-
ized by nearly flat slopes [7,8]. Consequently, the respective defect bands manifest resonating
motions of the defect, called ‘defect-mode shapes’. Such a fascinating nature opens the door
for a high level of localization of elastic waves within the unwanted areas.

Recent explorations have been dedicated to understanding the consequences of ‘dou-
ble defects’ in elastic domains [9,10]. Double defects involve the introduction of an addi-
tional defect with the same configuration as the initial defect but positioned differently
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within the PnC. Within this context, researchers have discovered two remarkable phenom-
ena. First, each defect band, which materializes when a single defect is present, undergoes
a captivating split, resulting in the formation of two distinct bands. Second, both defects
showcase the occurrence of energy concentration at their respective split defect bands.
Here, one intriguing point is that they demonstrate differing symmetric behaviors (line
symmetry versus point symmetry) in their respective displacement/velocity/stress/strain
fields. These remarkable traits have been corroborated through theoretical simulations
and experimental demonstrations [11,12]. These characteristics empower a PnC integrated
with double defects to function as a potent amplifier of mechanical energy across several
frequencies, surpassing the capabilities of the previous single-defect method.

Furthermore, integrating piezoelectric materials, renowned for their intelligent prop-
erties [13,14], into the design step of defective PnCs starts devising various engineering
prototypes that harness the potential of defect-mode-induced wave localization [15–18].
These piezoelectric materials can serve as useful defects themselves or be strategically
attached to defect sites. Throughout this paper, a defect containing a piezoelectric mate-
rial is termed a ‘piezoelectric defect’. Within this domain, two primary research themes
have emerged. The first one involves amplifying electrical outputs generated through
direct piezoelectric effects. Researchers aim to enhance the efficiency and sensitivity of
energy conversion [19,20]. The second one centers on environmentally controlling the
properties of defect bands, which represent narrowband regions with high values in the
frequency–response curve of the transmittance of mechanical power [21,22]. Engineers
can achieve environment-adaptive wave propagation and power transmission through
defective PnCs. These research areas primarily revolve around scenarios in which incident
elastic waves interact with defective PnCs. Notably, considerable regard has been directed
toward devising energy harvesters, ultrasonic receivers, and bandpass filters.

A groundbreaking shift has recently emerged in a novel area of research, focused
on exciting and amplifying elastic waves through converse piezoelectric effects [23,24].
In contrast to the aforementioned themes, this topic explores scenarios where piezoelec-
tric materials are exposed to external input voltage sources, with the goal of advancing
ultrasonic actuators. However, this area shows promising potential with only a handful of
studies conducted so far. To demonstrate the significant impact of defective PnCs on the
excitation of longitudinal waves, two analytical approaches rooted in the Rayleigh–Love
theory have been presented [25,26]. These approaches account for single or double defects.
Additionally, an initial analytical approach based on the fundamental Euler–Bernoulli
beam theory has been introduced to showcase the bending-wave-excitation phenomenon
and to improve its output performance compared to cases without defective PnCs [27].
In simulations, the velocity amplitude of generated bending waves is amplified nearly
ten times. However, the investigation of bending-wave excitation has been limited to
scenarios involving a single defect. Addressing this research gap becomes the driving force
behind the present study, aiming to expand the understanding of bending-wave-excitation
behaviors within PnCs with double defects.

Hence, the primary objective of this endeavor is to devise an advanced ultrasonic
actuator concept, which harnesses the double-defect modes inherent in a one-dimensional
PnC for the explicit purpose of exciting bending waves. The overarching goal here is to
facilitate efficient operation at not just one, but two or potentially multiple frequencies by
skillfully capitalizing on the distinct characteristics of defect-band splitting. This research
is centered on two pivotal aspects: (i) developing an analytical approach to predict the
wave-excitation performance of a PnC containing double piezoelectric defects via the Euler–
Bernoulli beam theory [27] and (ii) confirming the enhancement of the output performance
compared to scenarios in which the PnC is not present. The analytical approach under
consideration is based on the transfer-matrix and scattering parameter methods, which are
well-known mathematical techniques in circuit theory and waveguide modeling [28,29].
These approaches require the derivation of governing equations (e.g., wave equation and
electrical circuit equation) and their explicit solutions. To corroborate the proposed analyti-
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cal approach’s validity and efficacy, a comparative study is conducted, pitting its outcomes
against results obtained via the finite element method [30,31]. The salient advantage of
this analytical approach lies in its ability to considerably reduce computation time while
retaining exceptional predictive capabilities, well within the bounds of acceptable ranges
defined by underlying modeling assumptions.

Section 2 introduces the target system of an advanced ultrasonic actuator concept,
employing a double-piezoelectric-defect arrangement. Sections 3 and 4 elaborate on the
enhanced analytical approach tailored for the double-defect case and provide correspond-
ing numerical validation results, respectively. In Section 5, the summary of this study is
presented, along with a listing of potential future avenues that can further advance the
field of ultrasonic actuators incorporating defective PnCs.

2. Target System Description

Figure 1 illustrates a one-dimensional system featuring a double-defect-introduced
PnC, where bimorph piezoelectric elements are externally placed at each defect site to excite
bending waves. These piezoelectric elements comprise piezoceramic materials (e.g., PZT
(lead zirconate titanate)), while metallic materials comprise the remaining beams. The unit
cell consists of two beams represented by light and dark gray colors, respectively, with all
beams, except for the piezoelectric elements, having a constant rectangular cross-section.
Arranging N unit cells along the 1-axis forms a defect-free PnC. To create double defects
within the PnC, the lengths of the dark beams in the D1-th and D2-th unit cells (where
D2 > D1) are modified in a same manner. Note that the physical quantities D1 and D2
present the order (integer number) of the unit cells in which each defect is introduced. Two
identical dark green piezoelectric elements, sharing the same configuration and specification,
are layered onto the upper and lower surfaces of each defect, covering the entire region.
Gold-colored electrodes are positioned on the top and bottom of each piezoelectric element.
In the engineering set-up, semi-infinite dark gray beams are attached at both ends of the PnC
with double piezoelectric defects, enabling bending waves to propagate outward without
reflections caused by finite conditions. This configuration facilitates the analysis of the unique
wave-excitation capabilities of the PnC with double piezoelectric defects. Previous research
has demonstrated that the occurrence of defect-mode-enabled wave localization and defect-
band splitting in defective PnCs is independent of whether finite or semi-infinite conditions
are considered, and this has been confirmed through numerical analysis and experiments [11].
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Figure 1. A schematic portrayal of an advanced ultrasonic actuator concept that leverages a PnC
with double piezoelectric defects for bending-wave excitation.

In this system, all piezoelectric elements undergo 3-axial electric polarization, brought
to life by independent external input voltage sources, vPD1(t) and vPD2(t). Each voltage
source is linked between the uppermost and lowermost surfaces of each piezoelectric
defect using electric cables, electrically connecting the two elements in series while the
elements are mechanically positioned in parallel [32]. The intrigue lies in the opposite
signs of their respective piezoelectric coupling coefficients. Consequently, each element
in the piezoelectric defect experiences contrasting mechanical deformations. This is the
piezoelectric elements’ basic principle of 31-mode-based bending-wave excitation [33,34].
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Notations bearing the subscripts ‘DU’, ‘LU’, ‘D’, ‘P’, ‘LS’, and ‘RS’ indicate the physical
attributes of the dark and light gray beams within the unit cell, the defect, the piezoelectric
element, and the left and right semi-infinite structures, respectively. Here, one defect and
the enclosed bimorph piezoelectric elements behave as one equivalent beam, thanks to the
assumption of perfect bonding. Then, the notations bearing the subscript ‘PD’ pertain to
their equivalent characteristics. In detail, the subscripts ‘PD1′ and ‘PD2′ correspond to the
piezoelectric defects positioned at D1-th and D2-th unit cells, respectively. The notation
‘l’ denotes the length. The unit-cell size ‘lUC’ is lDU + lLU. The overall length ‘lPnC’ of the
PnC is computed as NlUnit + 2(lPD − lDU). Apart from four piezoelectric elements, the
height of each beam is represented by ‘hPnC’. The notation ‘wPnC’ designates the overall
width. It is noteworthy that the slenderness ratio ‘l/h’ should be the same as or exceeds ten
in compliance with assumptions of the Euler–Bernoulli beam theory [35]. The notations
‘S’ and ‘I’ stand for the cross-sectional area and the second moment of area, respectively.
The notations ‘ρ’ and ‘Y’ signify the mass density and Young’s modulus of the metals,
respectively. The notations ‘cE

11’, and ‘e31’ for the piezoelectric elements denote the 1-axial
elastic modulus and the piezoelectric coupling coefficient, respectively.

The physical quantities under analysis can be classified into two categories. The first
involves quantifying defect bands and examining their defect-mode shapes through
dispersion analysis without input voltage sources. This analysis will be presented in
Sections 3.1 and 4.2. The second category focuses on quantifying the velocity amplitude
of waves computed at the semi-infinite beams during wave-excitation analysis with input
voltage sources. Sections 3.2 and 4.3 elaborate on this analysis.

3. Transfer-Matrix- and S-Parameter-Based Analytical Approaches
3.1. Transfer-Matrix-Method-Based Prediction in Dispersion Analysis

Throughout this paper, the Cartesian coordinate system is considered. In both space
and time, the transverse displacement along the 3-axis is described as ‘u(x, t)’. Keeping in
mind the Euler–Bernoulli beam theory, we embark upon the mathematical derivation of
the angular rotation (spatial slope), internal bending moment, and shear force, symbolized
by ‘θ(x, t)’, ‘m(x, t)’, and ‘q(x, t)’, respectively [36]. These quantities come from the first,
second, and third spatial derivatives of the transverse displacement u(x, t), respectively.
It is important to note that this paper follows a specific sign convection. The internal shear
force q(x, t) is the negative of the third derivative of the transverse displacement u(x, t),
while all other field quantities have a positive sign. For a simple beam in the absence of an
input voltage, this aspect can be summarized as [37]:

θ(x, t) =
∂u(x, t)

∂x
, m(x, t) = YI

∂2u(x, t)
∂x2 , q(x, t) = −YI

∂3u(x, t)
∂x3 . (1)

A detailed description of the modeling assumptions and setting is provided in Appendix A.
This appendix covers the derivation of governing equations for bending waves and their
transverse displacement solutions in the presence and absence of the piezoelectric effects.

A transfer matrix, labeled as ‘TM’, is a powerful mathematical entity that elucidates
the explicit correlation between designated field quantities computed at the opposing termi-
nations of a given, one-dimensional structure [35,38–40]. The governing equation defined in
Equation (A4) for bending waves stands as a fourth-order partial (or ordinary) differential
equation, resulting in the development of a 4 × 4 transfer matrix. In this paper, we direct
our attention towards four crucial physical parameters, namely transverse displacement
u(x, t), angular rotation θ(x, t), internal bending moment m(x, t), and internal shear force
q(x, t). Additionally, the spotlight shines solely on a unit cell or a double-defect-introduced
PnC, driven by the desire to discern their innate characteristics through the investigation of
their dispersion relations. Consequently, the presence of semi-infinite structures and input
voltage source is deliberately disregarded. Therefore, only the homogenous solution in the
transverse displacement is taken into account. Note that the superscript ‘DA’ succinctly
abbreviates the realm of dispersion analysis.
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The transfer-matrix approach presented here is a versatile method applicable to all
beams, even when considering the presence of piezoelectric defects without input voltage
sources. To simplify notation, the subscripts are omitted. The first step involves establishing
a 4 × 4 matrix ‘FMDA(x, ω)’ that builds a connection between the vector encompassing
these four field quantities and another vector comprising four transverse displacement
coefficients at an arbitrary space x. By utilizing this FMDA(x, ω), we derive a specialized
4 × 4 transfer matrix TMDA(ω), specifically designed to describe bending waves in each
beam, as follows:

TMDA(ω) =
(

FMDA(x = l−, ω
))(

FMDA(x = 0+, ω
))−1

, (2)

where the matrix FMDA(x, ω) can be readily derived with the help of Equation (1) as:

FMDA(x, ω) = DMDA(ω)CMDA(x, ω), (3)

DMDA(ω) =


1 0 0 0
0 1 0 0
0 0 YI 0
0 0 0 −YI

, (4)

CMDA(x, ω) =


exp(−kx) exp(kx) exp(jkx) exp(−jkx)
−kexp(−kx) kexp(kx) jkexp(jkx) −jkexp(−jkx)
k2exp(−kx) k2exp(kx) −k2exp(jkx) −k2exp(−jkx)
−k3exp(−kx) k3exp(kx) −jk3exp(jkx) jk3exp(−jkx)

. (5)

Of significant importance is the critical assumption regarding the continuous nature
of the four field quantities along the periodic beams. This assumption plays a vital role
in ensuring smooth continuity at each interface where different beam materials intersect,
resulting in a simplified calculation process for transfer matrices at both the unit cell and
PnC with double piezoelectric defects. To be precise, we refer to these transfer matrices
as ‘TMDA

DPnC(ωDPnC)’ and ‘TMDA
DPnC(ωDPnC)’, as they serve to establish the definitive cor-

relation between the four field quantities located at the extreme left and right of the unit
cell (with the subscript ‘UC’) and defective PnC (with the subscript ‘DPnC’), respectively,
as follows:

TMDA
UC(ωUC) = TMDA

DU(ωUC)TMDA
LU (ωUC), (6)

TMDA
DPnC(ωDPnC) =

(
TMDA

UC(ωDPnC)
)N−D2TMDA

PD2(ωDPnC)TMDA
LU (ωDPnC)

×
(
TMDA

UC(ωDPnC)
)D2−D1−1TMDA

PD1(ωDPnC)TMDA
LU (ωDPnC)

×
(
TMDA

UC(ωDPnC)
)D1−1.

(7)

To successfully utilize the supercell technique, leveraging the Floquet–Bloch theorem
becomes imperative [3]. This involves formulating two distinct eigenvalue problems, as
illustrated below:[

TMDA
UC(ωUC)− exp

(
jkDA

UC lUC

)
I4×4

]
fqDA

UC
(
xUC = 0+, ωUC

)
= 04×1, (8)

[
TMDA

DPnC(ωDPnC)− exp
(

jkDA
DPnClDPnC

)
I4×4

]
fqDA

DPnC
(
xDPnC = 0+, ωDPnC

)
= 04×1, (9)

where the 4 × 4 identity matrix represented by ‘I4×4’ and the 4 × 1 zero vector denoted
as ‘04×1’ hold significant importance. The 4 × 1 vector ‘fq’ conveniently holds the values
of four distinct field quantities at an arbitrary spatial position. Additionally, ‘xUC = 0+’
and ‘xDPnC = 0+’ explicitly indicates each left end. The normalized Bloch wavenumbers,
‘kDA

UC ’ and ‘kDA
DPnC’, are constrained to the interval between zero to π. To find the dispersion
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curves for both the unit cell and the PnC with double piezoelectric defects, a numerical
solution of the characteristic equation (Equations (8) and (9)) yields normalized Bloch
wavenumbers linked to eigenvalues at each frequency. This computational approach
facilitates the visualization of the respective dispersion curves. Notably, Equation (8) serves
to identify band gaps, which correspond to frequency ranges that deviate from real-valued
Bloch wavenumbers. Conversely, Equation (9) effectively pinpoints defect bands, where
real-valued Bloch wavenumbers are present, but exclusively within the confines of the band
gaps. Additionally, upon solving the eigenvalue problem at the PnC level, an eigenvector
emerges, each associated with different defect-band frequencies. The initial beam is the
starting point, wherein the transverse displacement coefficients are determined and the
displacement field is specified by multiplying the eigenvector with the inverse of the matrix
FMDA

LU (xDA
LU = 0+, ωDPnC). Subsequently, the resulting eigenvector is further multiplied by

the transfer matrix TMDA
LU (ωDPnC) of the initial beam, yielding field quantities at the left end

of the next beam. By repeatedly applying this process for each beam, the overall transverse
displacement field, commonly referred to as the defect-mode shape, can be obtained.

3.2. Prediction in Wave-Excitation Analysis

This study centers on the examination under the influence of input voltage sources.
While the preceding section employs the transfer-matrix method, we now introduce the
S-parameter method. This method represents an enhanced version of the transfer-matrix
technique, meticulously tailored to situations that encompass external inputs (e.g., forces).
The S-parameter method elucidates distinct attributes that distinguish it from the previous
section [41–44]. First, it crucially incorporates the nonhomogeneous solution, accounting
for piezoelectric coupling effects, denoted in Equation (A6). Second, notable adjustments
are applied to the vectors or matrices of fqDA, FMDA, and TMDA, with specific adap-
tations to accommodate input voltage sources. Last, a perceptive consideration arises,
addressing the impact of semi-infinite host beams on the landscape of wave excitation
and propagation. As a side note, the superscript ‘WA’ succinctly abbreviates the realm of
wave-excitation analysis.

Within this context, a newly established 6 × 1 vector, denoted as fqWA(x, ω), comes
into prominence. Its exact formulation is delineated as fqWA(x, ω)= [uWA (x, ω); θWA (x, ω);
mWA(x, t); qWA(x, ω); vPD1(ω); v PD2(ω)]. It is of paramount significance to underscore
that the input voltages vPD1(ω) and vPD2(ω) retain their status as user-defined scalar
quantities. In contrast, the remaining constituents, entailing evaluative computation,
encapsulate the field variables contingent upon the spatial coordinate x and the frequency
ω. The introduction of these input voltages necessitates adjustments to the field properties
characterized by the angular rotation θWA(x, ω), internal bending moment mWA(x, ω), and
internal shear force qWA(x, ω), as elaborated upon subsequently:

θWA
a = duWA

a
dxa

, mWA
a = (YI)PD

d2uWA
a

dx2
a
− κPva, qWA

a = −(YI)PD
d3uWA

a
dx3

a
,

θWA
b =

duWA
b

dxb
, mWA

b = Yb IPnC
d2uWA

b
dx3

b
, qWA

b = −Yb IPnC
d3uWA

b
dx3

b
.

(10)

It is pertinent to recall that the transverse displacement fields, denoted as uWA
PD1(xPD1, ω)

and uWA
PD2(xPD2, ω), are inherently underpinned by a nonhomogeneous solution. In contrast

to the procedure in dispersion analysis, it is noteworthy that Equation (10) presents sup-
plementary terms, represented as κPvPD1(ω) and κPv PD2(ω), within the context of internal
bending moments. This distinctive characteristic imparts discernible alterations to the
matrices of significance.

The transfer matrix, denoted as TMWA(ω) takes on the structure of a 6 × 6 matrix.
This matrix serves a pivotal role as it establishes a link between two 6 × 1 vectors, namely
fqWA(x = 0+, ω) assessed at the left end of a beam, and fqWA(x = l−, ω) computed at its
right end. In a parallel manner to the discussion in Section 3.2, a redefined form of the 6× 6
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matrix FMWA(x, ω), is tailored to seamlessly integrate with the current context. This refined
matrix configuration gives rise to the modified transfer matrix TMWA(ω), encompassing:

TMWA(ω) =
(

FMWA(x = l−, ω
))(

FMWA(x = 0+, ω
))−1

, (11)

where FMWA(ω) can be readily derived with the assistance of Equation (10) leading to:

FMWA(x, ω) = DMWA(ω)CMWA(x, ω), (12)

DMWA
a (ω) =

[
DMDA

a (ω) PDMWA
a

02×4 I2×2

]
, DMWA

b (ω) =

[
DMDA

b (ω) 04×2
02×4 I2×2

]
, (13)

CMWA
a (xa, ω) =

[
CMDA

a (xa, ω) PCMWA
a (xa, ω)

02×4 I2×2

]
, CMWA

b (xb, ω) =

[
CMDA

b (xb, ω) 04×2
02×4 I2×2

]
, (14)

where the 4 × 2 matrices PDMWA
PD1, PDMWA

PD2, PCMWA
PD1(xPD1, ω), and PCMWA

PD2(xPD2, ω) are
expressed as:

PDMWA
PD1 =


0 0
0 0
−κP 0

0 0

, PCMWA
PD1(xPD1, ω) =



uWA
PD1,NH(xPD1, ω) 0
duWA

PD1,NH(xPD1,ω)

dxPD1
0

d2uWA
PD1,NH(xPD1,ω)

dx2
PD1

0
d3uWA

PD1,NH(xPD1,ω)

dx3
PD1

0

, (15)

PDMWA
PD2 =


0 0
0 0
0 −κP
0 0

, PCMWA
PD2(xPD2, ω) =



0 uWA
PD2,NH(xPD1, ω)

0
duWA

PD2,NH(xPD2,ω)

dxPD2

0
d2uWA

PD2,NH(xPD2,ω)

dx2
PD2

0
d3uWA

PD2,NH(xPD2,ω)

dx3
PD2

. (16)

Reverting to the transfer matrix TMWA(ω), it serves as the intermediary connecting
six distinct physical entities. These encompass four attributes pertaining to the field,
alongside two input voltages, strategically positioned at each extremity of the PnC with
double piezoelectric defects. By adhering to the principle of continuity, these very same
six variables can also be ascertained at the distant rightmost point of the semi-infinite host
beam on the left side, and similarly at the remote leftmost juncture of the semi-infinite
host beam on the right side. Consequently, the waves that become excited within these
semi-infinite host beams unveil the expressions denoting the transverse displacement field,
as presented herewith:

uWA
c (xc, ω) = PWA

c,HY(ω)exp(−kc(ω)xc) + QWA
c,HY(ω)exp(kc(ω)xc)

+PWA
c,TR(ω)exp(jkc(ω)xc) + QWA

c,TR(ω)exp(−jkc(ω)xc),
(17)

where the subscript ‘c’ belongs to the set {LS, RS}. Next, we engage a scattering matrix
denoted as SMWA(ω). This scattering matrix adopts the structure of a 6× 6 array, operating
as a conduit connecting two distinct 6× 1 vectors. The first vector comprises the coefficients
that signify the transverse displacement, along with the input voltage, localized at the first
(or second) piezoelectric defect. The second vector encompasses the four coefficients for
transverse displacement and the input voltage associated with each respective semi-infinite
host beam. By leveraging the principle of continuity and employing advanced mathematical
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methodologies, a sequence of matrices, denoted as SMWA(ω), can be systematically derived
as follows:

SMWA
LS (ω) =

(
FMWA

LS (xLS = 0+, ω)
)−1(TMWA

UC (ω)
)1−D1

×
(
TMWA

LU (ω)
)−1(FMWA

PD1(xPD1 = 0+, ω)
)
,

(18)

SMWA
RS (ω) =

(
FMWA

RS
(

xRS = 0+, ω
))−1(TMWA

UC (ω)
)N−D2

×TMWA
PD2(ω)TMWA

LU (ω)
(
TMWA

UC (ω)
)D2−D1−1(FMWA

PD1
(

xPD1 = l−PD, ω
))

.
(19)

It should be mentioned that Equations (18) and (19) aim to establish a connection
between the first piezoelectric defect and semi-infinite host beams. The modification of
the formulations in Equations (18) and (19) to consider the second piezoelectric defect,
in lieu of the preceding one, is also allowable. As we progress, it becomes imperative to
accommodate the distinctive attributes of the semi-infinite host beams. It is evident that the
leftward host beam should exclusively accommodate propagating waves and evanescent
waves directed towards the left. Similarly, our focus shifts to the rightward host beam,
where the consideration revolves around propagating waves that travel along the right
direction and evanescent waves whose amplitude exponentially decays along the right
direction. This implies that the values of the displacement coefficients PLS,HY(ω), PLS,TR(ω),
QRS,HY(ω), and QRS,TR(ω), as outlined in Equation (17), should all be rendered null. These
coefficients are associated with reflective waves and hold no significance within this context.
By harnessing this understanding and substituting it into Equations (18) and (19), a distinct
set of four equations is derived. Consequently, we establish a pathway to ascertain the
transverse displacement coefficients for the first piezoelectric defect. These coefficients are
expressed through the following equations:

PWA
PD1,HY(ω)

QWA
PD1,HY(ω)

PWA
PD1,TR(ω)

QWA
PD1,TR(ω)

 = −


SMWA

LS (ω)(1, 1) · · · SMWA
LS (ω)(1, 4)

SMWA
LS (ω)(3, 1) · · · SMWA

LS (ω)(3, 4)
SMWA

RS (ω)(2, 1) · · · SMWA
RS (ω)(2, 4)

SMWA
RS (ω)(4, 1) · · · SMWA

RS (ω)(4, 4)


−1

×


SMWA

LS (ω)(1, 5) SMWA
LS (ω)(1, 6)

SMWA
LS (ω)(3, 5) SMWA

LS (ω)(3, 6)
SMWA

RS (ω)(2, 5) SMWA
RS (ω)(2, 6)

SMWA
RS (ω)(4, 5) SMWA

RS (ω)(4, 6)

[ vPD1(ω)
vPD2(ω)

]
.

(20)

The pivotal displacement coefficients that define the attributes of the semi-infinite host
beams can be systematically determined using the following equation:

QWA
LS,HY(ω)

QWA
LS,TR(ω)

PWA
RS,HY(ω)

PWA
RS,TR(ω)

 =


SMWA

LS (ω)(2, 1) · · · SMWA
LS (ω)(2, 4)

SMWA
LS (ω)(4, 1) · · · SMWA

LS (ω)(4, 4)
SMWA

RS (ω)(1, 1) · · · SMWA
RS (ω)(1, 4)

SMWA
RS (ω)(3, 1) · · · SMWA

RS (ω)(3, 4)




PWA
PD1,HY(ω)

QWA
PD1,HY(ω)

PWA
PD1,TR(ω)

QWA
PD1,TR(ω)


+


SMWA

LS (ω)(2, 5) SMWA
LS (ω)(2, 6)

SMWA
LS (ω)(4, 5) SMWA

LS (ω)(4, 6)
SMWA

RS (ω)(1, 5) SMWA
RS (ω)(1, 6)

SMWA
RS (ω)(3, 5) SMWA

RS (ω)(3, 6)

[ vPD1(ω)
vPD2(ω)

]
.

(21)

Notwithstanding their displacement amplitudes, evanescent waves are devoid of
the ability to transmit wave energy. Aligning with the solution derived in Equation (21),
this study introduces the notion of the wave-excitation performance as the magnitude of
transverse velocity observed within propagating waves. This definition holds pertinence
when the point of observation is situated at a considerable distance from the PnC with
double piezoelectric defects. This concept is quantified through the expressions QWA

LS,TR(ω)
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and PWA
RS,TR(ω), serving as reference points for gauging the efficacy of ultrasonic actuators

integrated with defective PnCs.

4. Finite-Element-Method-Based Validation
4.1. Evaluation Setting

In terms of dimensions, both dark and light gray beams are 10 mm in length. Addi-
tionally, the piezoelectric defect is 30 mm in length. One piezoelectric element is 0.25 mm
in height, while the remaining beams have a height of 1 mm. Aligning with the Euler–
Bernoulli beam theory from a structural perspective, each piezoelectric defect maintains
a slenderness ratio of 20, whereas the remaining beams uphold a slenderness ratio of 10.
Regardless of their type, all beams share a uniform width of 5 mm.

The beams come in two distinct shades: dark gray beams, crafted from magnesium,
and light gray beams, composed of lead. The bimorph piezoelectric patches employ PZT-5H
as their primary material, a widely favored choice for sensing and actuating systems. Here
are the specific details regarding their mechanical and electrical properties: for magnesium,
the values are (density, Young’s modulus) = (1770 kg/m3, 45 GPa); for lead, they are (density,
Young’s modulus) = (11,340 kg/m3, 16 GPa); and for PZT-5H, the values are (density, elastic
constant, piezoelectric coupling coefficient) = (7500 kg/m3, 60.60 GPa,−16.60 C/m2). These
values are extracted from the data repository within Comsol Multiphysics 6.1. Note that
the simulation setting in Comsol is provided in Appendix B.

The following sections elaborate on the iterative assembly of nine unit cells, leading
to the formation of a defect-free PnC. Throughout this process, the lengths of the dark
gray beams within the fourth and fifth unit cells are extended, with full-length bimorph
piezoelectric elements being affixed. Of importance is the emphasis on the maintenance
of structural symmetry within the wave generation system, even when confronted with
the presence of double defects. This symmetrical arrangement becomes evident as the
double defects are introduced at specific coordinates: (i) D1 = (N + 1)/2 − 1 − K and
(N + 2)/2 + K for cases of odd N, where K represents a non-negative integer. This firmly
established symmetrical configuration serves a dual purpose. It effectively safeguards
against structural influences while simultaneously providing clear insight into the intricate
interplay between applied input voltages on individual piezoelectric defects and the result-
ing velocity amplitude of excited bending waves as they propagate outward. Furthermore,
the previous study that investigates the efficacy of the PnC with double piezoelectric de-
fects demonstrates that this specific symmetry configuration exhibits the most favorable
performance in exciting longitudinal waves [25,27]. Note that in this scenario of defect
introduction, an even number of N always results in a non-symmetric configuration.

It is important to highlight that we have delineated two distinct comparison groups for
evaluation. The first group centers on the scenario where the defective PnC is absent. This
comparison will be explored in Section 4.3, serving as the foundation for understanding
the amplified wave-excitation capabilities conferred by the defective PnC. Conversely,
the second comparison group pertains to the single-defect scenario, a configuration of
nine unit cells with one defect introduced in the fourth unit cell. Given the inherent non-
symmetrical arrangement, noticeable disparities are anticipated in the output responses
of the left and right semi-infinite host beams. This particular comparison group will
be scrutinized in Sections 4.2 and 4.3, providing empirical support for the efficacy of
defect-band splitting in both dispersion and wave-excitation analyses. As a supplementary
observation, it is noteworthy to mention that in the absence of piezoelectric elements,
the velocity amplitude remains perpetually at zero due to the non-excitation of waves.
This outcome is inherently self-evident and, thus, does not constitute a component of the
aforementioned comparison groups.

4.2. Validation Results in Dispersion Analysis

In Figure 2, we observe dispersion curves illustrating three distinct engineering sce-
narios: the unit cell represented by solid black lines (analytical approach) and black circles
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(numerical approach), the single-defect case depicted with solid blue lines and blue squares
(numerical approach), and the double-defect case shown via solid red lines and blue trian-
gles (numerical approach). Clearly, a distinct band gap emerges, highlighted in gray. When
considering the single-defect case, one defect band takes place, which subsequently divides
into two distinct defect bands as we transition into the double-defect scenario. The presence
of intermediary beams between these double defects gives rise to a mechanical interaction
akin to coupling, leading to the intriguing phenomenon of defect-band splitting. This
transition from single defect to double defect can be likened to an expansion in the degrees
of freedom, akin to observations in vibration engineering when progressing from one to
two within the context of a discrete mass–spring system. Figure 3 vividly portrays the
defect-mode shapes, showcasing the single- and double-defect scenarios. The outcomes
presented through the analytical approach (solid red line in the single-defect scenario
and solid blue lines in the double-defect scenario) closely align with those obtained from
finite-element-method analysis (dashed black lines), underscoring the analytical method’s
meaningfulness. Furthermore, the analytical approach demonstrates impressive computa-
tional efficiency, requiring a computation time less of than a second per system. In contrast,
the numerical model demands considerably more time, taking 1 min and 4 min for band-
gap and defect-band analyses, respectively. This emphasizes the significant advantage of
the analytical approach in terms of computational speed for dispersion analysis, while
maintaining a high level of predictive accuracy.
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Figure 2. Results in dispersion curves, involving one band gap at the unit-cell level, one defect band at
the single-defect-introduced PnC level, and two defect bands at the double-defect-introduced PnC level.

Upon examining Figure 2, the proposed analytical approach unveils the appearance
of a band gap, spanning from 1.54 kHz to 3.33 kHz. The defect band is precisely identified
at 2.45 kHz in the single-defect scenario. Upon the introduction of a double defect, this
defect band undergoes a notable split, resulting in two discrete bands: 1.98 kHz and
2.84 kHz. Meanwhile, by employing the finite element method, the calculated values are as
follows: 1.54–3.30 kHz for the band gap, 2.44 kHz for a single-defect band, and 1.97 kHz
and 2.81 kHz for the split double-defect bands. Remarkably, these outcomes demonstrate
negligible relative errors, each very near the 1% margin.

Delving into Figure 3a, a captivating picture unfolds, representing the piezoelectric de-
fect’s capacity to amplify its transverse displacement significantly within the PnC. Notably,
this transverse displacement field closely resembles the characteristics of energy-localized
behaviors, specifically those characterized by line symmetry. This observation inherently
signifies the emergence of energy localization attributed to the single-defect mode. Transi-
tioning to remaining figures, the analogous transverse displacement fields are shown in
each piezoelectric defect, mirroring what is depicted in Figure 3a. However, the context of
double defects introduces a perspective to focus on, where transverse displacement fields
adopt either point- (Figure 3b) or line-symmetric (Figure 3c) patterns with respect to their
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center situated between the defects. This observation leads to two compelling insights.
First, Figure 3b depicts that the double defects operate in perfect synchronization, with both
defects concurrently generating maximum or minimum transverse displacements, each in
opposing directions, while Figure 3c presents that each defect independently displays both
maximum and minimum transverse displacements simultaneously. Second, the maximum
transverse displacement occurs at 85 mm in Figure 3a, precisely at the center of the single
defect. Conversely, in Figure 3b, the maximum value is located at 89.7 mm, and in Figure 3c,
it is situated at 81.8 mm within the first piezoelectric defect. The intricate interaction
between the double defects introduces a subtle location difference of approximately 4 mm.
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Figure 3. Results in defect-mode shapes: (a) the single-defect modes at 2.45 kHz (analytical approach)
and 2.44 kHz (numerical approach), (b) the point-symmetric double-defect modes at 1.98 kHz
(analytical approach) and 1.97 kHz (numerical approach), and (c) the line-symmetric double-defect
modes at 2.84 kHz (analytical approach) and 2.81 kHz (numerical approach). The gray-shaded area
presents the domain of the piezoelectric defects.

4.3. Validation Results in Wave-Excitation Analysis

In this section, our focus turns to exploring four distinct input voltage configura-
tions: (vPD1(ω), vPD2(ω)) = (1 V, 0 V), (1 V, 1 V), and (1 V, −1 V). Visual representations in
Figure 4a–c offer a glimpse into the frequency response functions (FRFs), displaying trans-
verse velocity amplitudes of propagating waves outside the PnC with double piezoelectric
defects for each setting. In addition, the velocity–amplitude FRFs of two comparison groups



Mathematics 2023, 11, 3852 12 of 19

are plotted in Figure 4d. The outcomes of our study firmly establish that the results ema-
nating from our analytical approach align well with those extracted through the numerical
approach. Moreover, the analytical approach delivers each figure in under 2 s, whereas the
finite element method necessitates a significant time investment of 18 min. Both models
share an identical frequency spacing of 10 Hz from 1.5 kHz to 3.5 kHz, yet to ensure a
lucid comparative assessment, we opt to present fewer dotted plots. This underscores the
remarkable prowess of the highly predictive analytical approach, significantly truncating
the computational time in wave-excitation analysis.
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Figure 4. Results in velocity–amplitude FRFs in the case of (a) (vPD1(ω), vPD2(ω)) = (1 V, 0 V),
(b) (vPD1(ω), vPD2(ω)) = (1 V, 1 V), (c) (vPD1(ω), vPD2(ω)) = (1 V, −1 V), and (d) a PnC with a single
piezoelectric defect and infinite beam with bimorph piezoelectric elements in the absence of the
defective PnC. (a–c) Present the results in the case of double defects; the terms ‘Left’ and ‘Right’ refer
to the left-sided and right-sided semi-infinite structures. (d) Shows the results in the case of a single
defect and in the absence of the PnC.

An important query may arise as to why the outcome for the scenario where (vPD1(ω),
vPD2(ω)) = (0 V, 1 V) is omitted. In comparison to the findings depicted in Figure 4a encom-
passing the situation of (vPD1(ω), vPD2(ω)) = (1 V, 0 V), any modifications will be confined
solely to the color representation. The plots illustrating the FRFs for transverse velocity
amplitude will remain invariant. This intriguing observation comes from the fact that the
perspective of observing the defective PnC from the front (rear) for the configuration of
(vPD1(ω), vPD2(ω)) = (0 V, 1 V) aligns precisely with its rear (front) view for the configura-
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tion of (vPD1(ω), vPD2(ω)) = (1 V, 0 V). Certainly, these aforementioned characteristics have
already been corroborated in a prior reference [25], which comprehensively explores the
excitation of longitudinal waves through a PnC featuring double piezoelectric defects.

Examination of Figure 4a reveals some noteworthy observations. First, a discernable
occurrence emerges in the form of two prominent peak frequencies, specifically 1.98 kHz
and 2.84 kHz for the analytical approach and 1.97 kHz and 2.81 kHz for the numerical ap-
proach. Strikingly, these peak frequencies align seamlessly with the defect-band frequencies
outlined in Figures 2 and 3. Such alignment provides an unequivocal underpinning of the
pivotal role played by the defect modes in elevating the wave-excitation efficacy. Second, a
comparative assessment against the scenario devoid of the PnC, as depicted in Figure 4d,
imparts a remarkable amplification factor—10.7-fold at 1.98 kHz and 7.2-fold at 2.84 kHz.
Additionally, deviating from the single-defect scenario, the utilization of double defects
affords a distinct advantage: it functions as an ultrasonic actuator across two frequencies.
Third, it is imperative to underscore that despite the symmetrical structural arrangement,
discernible distinctions manifest in the overall velocity-amplitude FRFs exhibited by the left
and right semi-infinite beams. This discrepancy arises due to the asymmetry in the input
voltage settings corresponding to the external mechanical load. Last, a point of intrigue
arises from the synchronization observed in the velocity amplitudes at each of the peak
frequencies. This coherence serves as evidence of the double-defect modes visualized in
Figure 3b,c. A parallel analogy can be drawn to vibration engineering. In this context, the
resonance frequency, under forced vibrations, reflects the oscillating motions inherent in a
normal mode operating at a natural frequency under free vibrations.

In contrast, Figure 3b,c introduce two distinct features that deviate from the observa-
tions presented in Figure 3a. First, a significant insight pertains to the alignment of the
overall velocity-amplitude FRFs observed within each respective host beam. This align-
ment stems from the inherent point or line symmetry exhibited in both the structural and
electrical configurations. This symmetrical attribute, which governs both mechanical and
electrical aspects, serves as the foundational premise for the subsequent analysis. Second,
each FRF reveals the presence of one single peak—2.84 kHz in Figure 4b and 1.98 kHz
in Figure 4c. This observation is accentuated by a noteworthy finding: the velocity am-
plitude at each respective peak frequency undergoes a twofold amplification—21.4 times
in Figure 4b and 14.4 times in Figure 4c. This intriguing phenomenon can be elucidated
through an understanding of the sign characteristics exhibited by the piezoelectric-effect-
induced and defect-mode-induced strain fields. Notably, the frequencies of 1.98 kHz and
2.84 kHz, emblematic of the point- and line-symmetric behaviors engendered by the double
defects in Figure 3b,c, respectively, play a pivotal role in this context. The input setting
of (vPD1, vPD2) = (1 V, 1 V) establishes an equivalence in the strain fields exhibited by the
piezoelectric defects. However, a pivotal distinction arises in the context of the defect-mode
shape at 1.98 kHz (Figure 3b)—it manifests dissimilar strain fields within each defect,
characterized by opposing signs. This discrepancy in strain signs leads to the inability
of the defect mode to be excited at 1.98 kHz. A similar scenario unfolds regarding the
absence of generation of the line-symmetric defect-mode shape at 2.84 kHz (Figure 3c)
within the input setting of (vPD1, vPD2) = (1 V, −1 V). It is pertinent to dispel potential
confusion: the non-generation of defect modes does not result from the destructive inter-
ference of bending waves emanating from each piezoelectric defect. Instead, it emanates
from the inherent non-induction of the defect modes themselves. In summation, given
the pronounced engineering implications, PnCs with double piezoelectric defects manifest
the capability to discerningly determine a solitary peak frequency contingent on the input
voltage configuration, thereby diverging from the single-defect scenario. This characteristic
acquires enhanced prominence as the design framework of PnC-based ultrasonic actuators
expands to encompass multiple defects.

Please note that, as the frequency increases, the predictive capability of the ana-
lytical approach model becomes unstable. In simpler terms, the velocity amplitude
tends to fluctuate with different frequencies. According to the Euler–Bernoulli beam
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theory, there is a consistent increase in wavenumber as the frequency rises, as found in
Equations (A7) and (A9). The Euler–Bernoulli beam theory demonstrates a consistent rise
in wavenumber in reaction to increasing frequency. Additionally, the displacement field
solutions in Equations (A6) and (A8) always involve unchanged hyperbolic and trigono-
metric functions, regardless of frequency changes. The presence of these hyperbolic char-
acteristics, combined with significant wavenumbers, leads to unstable matrix operations.
As a result, the velocity-amplitude values become unreliable beyond a specific frequency
threshold. This is where the disadvantage of the analytical model based on Euler–Bernoulli
beam theory becomes evident. To tackle this issue, it is recommended to explore the
Timoshenko beam theory as an alternative approach and utilize additional mathematical
techniques for alleviating the instability.

5. Conclusions

This undertaking establishes a significant connection, bridging a phononic crystal
(PnC) with double defects and an ultrasonic actuator designed to excite bending waves.
We developed an analytical approach based on the Euler–Bernoulli beam theory to predict
various aspects like defect bands, defect-mode shapes, and velocity amplitudes of the
excited bending waves. In evaluating the foresight offered by our analytical approach, this
study confirmed that the outcomes projected by our model closely aligned with results
obtained through a finite-element-method analysis. The disparity between numerical and
analytical representations remained well below 1%. It is important to recognize, however,
that the unwavering accuracy of this analytical model is not universally guaranteed due
to its reliance on foundational modeling assumptions. Rather than aiming for absolute
precision, our objective is to provide an initial framework for approximate predictions
and guiding principles when designing ultrasonic actuators incorporating defective PnCs.
The analytical approach serves as a preliminary means to offer predictive insights and
guidelines, setting the stage for more intricate numerical techniques in the future. One no-
table advantage of our proposed method is its ability to significantly reduce computational
resources, making it an attractive choice for preliminary design considerations.

Further investigations are suggested to enhance and build upon the findings presented
in this study. The following directions for future exploration are put forward. First, a
primary focus should be on refining the designs of finite-sized ultrasonic actuators. This
involves a meticulous design optimization process aimed at maximizing the velocity
amplitude at specific frequencies. Second, another promising avenue for expansion is to
consider scenarios with multiple piezoelectric defects. This extended design approach has
the potential to capture multiple peak-frequency values or widen the available frequency
spectrum of ultrasonic actuators, akin to the principles applied in broadband energy
harvesting. Last, the utilization of defective PnCs with an elastic foundation offers the dual
benefits of reducing and environment-adaptively adjusting defect-band frequencies. These
unique attributes have the potential to significantly broaden the scope of applications for
ultrasonic actuators within various industries.
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Appendix A

Modeling Setting and Assumption

This appendix provides a basic understanding for Sections 3.1 and 3.2. Beginning with
one piezoelectric defect, its transverse motion is governed by Newton’s second law, and its
governing equation becomes:

wPnC(ρDhPnC+2ρPhP)
∂2ua(xa, t)

∂t2 =
∂2ma(xa, t)

∂x2
a

, (A1)

where the subscript ‘a’ belongs to the set {PD1, PD2} [32]. In the context of bending waves
and under the assumption of the small deformation theory, the internal bending moment
ma(xa, t) can be expressed using the linear constitutive equation and the displacement–
strain relationship for the metals and piezoelectric materials in terms of the transverse
displacement ua(xa, t) [45,46]:

ma(xa, t)= −wPnC



hPnC/2∫
−hPnC/2

−z2
DYD

∂2ua(xa ,t)
∂x2

a
dzD

+
−hPnC/2∫

−hPnC/2−hP

−z2
PcE

11
∂2ua(xa ,t)

∂x2
a

+sgn(zP)zPe31EP(xa, zP, t)dzP

+
hPnC/2+hP∫

hPnC/2
−z2

PcE
11

∂2ua(xa ,t)
∂x2

a
+sgn(zP)zPe31EP(xa, zP, t)dzP


. (A2)

Here, ‘sgn(z)’ stands for the sign of z. For sufficiently thin piezoelectric elements, it
is assumed that the electric field becomes uniform within its internal domain. Through a
series connection, the difference in electric potentials between the uppermost surface of
the top element and the lowermost surface of the bottom element is aligned with an input
voltage. Hence, the formulation of the electric field ‘EP(xPD, zP, t)’ is given by:

EP(xa, zP, t)= −v(t)
2hP

(H(xa)−H(xa − lPD)). (A3)

We denote the Heaviside step function as ‘H(x)’, and utilize it to define the spatial
region associated with each piezoelectric element, represented by ‘H(xa) − H(xa − lPD).’
Prior research on piezoelectric effects has widely adopted such mathematical approaches to
ensure the inclusion of piezoelectricity-related terms during spatial differential processes.
Indeed, some analytical models, particularly those addressing longitudinal waves and
transverse vibrations, have appealed remarkable agreement with finite-element-method
results [25,26,47,48].

By substituting Equations (A2) and (A3) into Equation (A1), the governing equation is
thus reformulated as follows:

(ρS)PD
∂2ua(xa, t)

∂t2 + (YI)PD
∂4ua(xa, t)

∂x4
a

= κPv(t)
(

dδ(xa)

dxa
− dδ(xa − lPD)

dxa

)
, (A4)

where ‘δ(x)’ is the Dirac delta function. For one piezoelectric defect, the terms ‘(ρS)PD’ and
‘(YI)PD’ represent the homogenized mass per unit length and bending stiffness, respectively.
The term ‘κP’ quantifies the degree of electroelastic coupling of the series-connected bi-
morph piezoelectric elements. To summarize, these physical quantities can be described
as follows:

(ρS)PD = wPnC(ρDhPnC+2ρPhP),

(YI)PD = wPnC

{
YDh3

PnC
12 +

2cE
11

3

[(
hPnC+2hP

2

)3
−
(

hPnC
2

)3
]}

,

κP = wPnCe31(hPnC+hP)
2 .

(A5)
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When the wave-excitation system is subjected to time-harmonic motions such that
‘u(x, t) = u(x)exp(−jωt)’, the displacement solution to Equation (A4) can be divided into
two groups: homogeneous and nonhomogeneous solutions. A typical homogeneous
solution ‘ua,H(xa, ω)’ to Equation (A4) comprises a linear combination of the hyperbolic
and trigonometric functions. A nonhomogeneous solution ‘ua,NH(xa,ω)’ to Equation (A4)
can be expressed using Green’s function [49,50]. Equation (A4) represents the introduction
of two spatially concentrated bending moments in the opposite direction but with the
same magnitude as κPv(ω). Consequently, the total transverse displacement field ‘ua(xa,ω)’
within one piezoelectric defect can be expressed as:

ua(xa, ω) = ua,H(xa, ω) + va(ω)ua,NH(xa, ω)
ua,H(xa, ω) = Pa,HY(ω)exp(−kPD(ω)xa) + Qa,HY(ω)exp(kPD(ω)xa)

+Pa,TR(ω)exp(jkPD(ω)xa) + QPD,TR(ω)exp(−jkPD(ω)xa)

ua,NH(xa, ω) = κP
4(YI)PDk2

PD(ω)

[
(exp(−kPD(ω)xa)+exp(−kPD(ω)(−xa + lPD)))
−(exp(jkPD(ω)xa)+exp(jkPD(ω)(−xa + lPD)))

]
,

(A6)

where the wavenumber kPD(ω) used in the Euler–Bernoulli beam theory is [51]:

kPD(ω) = 4

√
(ρS)PDω2

(YI)PD
. (A7)

The subscripts ‘HY’ and ‘TR’ are indeed short forms for the hyperbolic function and
trigonometric function, respectively.

In order to determine the transverse displacement of remaining beams without the
piezoelectric elements, the simple removal of the terms associated with the piezoelectric
elements is performed. The mechanical domain effects are disregarded by setting the height
of the piezoelectric elements to zero. Moreover, the electrical domain effects are naturally
eliminated due to the zero value of the piezoelectric coupling coefficient. As a result, the
expression for the transverse displacement field of these beams takes the same form as the
homogenous solution in Equation (A6) as follows:

ub(xb, ω) = Pb,HY(ω)exp(−kb(ω)xb) + Qb,HY(ω)exp(kb(ω)xb)
+Pb,TR(ω)exp(jkb(ω)xb) + Qb,TR(ω)exp(−jkb(ω)xb),

(A8)

where the subscript ‘b’ belongs to the set {DU, LU, LS, RS}. The spatial positions are defined
as follows: xDU ∈ (0, lDU), xLU ∈ (0, lLU), xLS ∈ (−∞, 0), and xRS ∈ (0, ∞). The wavenumber
kb(ω) used in the Euler–Bernoulli beam theory is [51]:

kb(ω) = 4

√
ρbSPnCω2

Yb IPnC
. (A9)

To progress with the analysis, it becomes crucial to characterize the frequency-dependent
transverse displacement coefficients PHY(ω), QHY(ω), PTR(ω), and QTR(ω) in
Equations (A6) and (A8). Sections 3.1 and 3.2 concentrate on the dispersion and wave-
excitation analyses, respectively. Using the transfer-matrix and S-parameter methods, we
determine the four displacement coefficients for each beam and describe in detail how to
compute desired outputs.

Appendix B

Comsol Setting

In line with established practices within the domain of analytical and semi-analytical
models, a validation process is implemented to assess both the significance of the PnC
with piezoelectric double defects for ultrasonic actuators and the efficacy of the enhanced
model. To facilitate this investigation, the widely recognized software Comsol Multiphysics
6.1 is employed. Comsol Multiphysics is extensively utilized for predictive analysis in
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elastic wave propagation systems [52,53] and configurations incorporating intelligent
materials [54,55]. The key configuration parameters utilized within the software are as
follows: the analyses are conducted within a two-dimensional spatial domain under
the plane-stress condition. Dispersion analysis in Figure A1a is carried out using the
‘Eigenfrequency’ solver in the ‘Solid Mechanics’ physics, augmented by the ‘Periodic
Condition’ feature. Shifting to the ‘Frequency Domain’ solver, simultaneous operation of the
‘Solid Mechanics’ and ‘Electrostatics’ physics, along with the ‘Multiphysics (Piezoelectric
Effects)’, facilitates the analysis of wave excitation in Figure A1b. To emulate semi-infinite
conditions on both sides of the bending-wave-excitation system, a ‘Perfectly Matched
Layer’ setting is applied to the domains outside the defective PnC. Displacement fields and
electric potential are discretized using quadratic serendipity. The mesh size, established
through convergence testing, is set at one tenth of the lattice constant. For a comprehensive
grasp of the intricate Comsol settings, a valuable reference, available in Refs. [25–27], can
provide deeper insights and understanding.
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