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Abstract: This study investigates the use of a novel market graph model for equity markets. Our
graph model is built on distance correlation instead of the traditional Pearson correlation. We apply
it to the study of S&P500 stocks from January 2015 to December 2022. We also compare our market
graphs to the traditional market graphs in the literature, those built using Pearson correlation. To
further the comparison, we also build graphs using Spearman rank correlation. Our comparisons
reveal that non-linear relationships in stock returns are not captured by either Pearson correlation or
Spearman rank correlation. We observe that distance correlation is a robust measure for detecting
complex relationships in S&P500 stock returns. Networks built on distance correlation networks,
are shown to be more responsive to market conditions during turbulent periods such as the COVID
crash period.

Keywords: distance correlation; complex networks; market graph; stock market network; non-linearity;
investment science
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1. Introduction

The goal of this work is to test a relatively novel correlation measure, distance correla-
tion, in market graph modeling applications. Traditionally, market graph models are built
using the Pearson correlation coefficient [1]. Our graph models are built using the more
flexible and more robust distance correlation [2]. We use the constituents of the S&P500 in-
dex to illustrate our model. Our empirical findings suggest that distance correlation more
effectively captures non-linear relationships and interconnectedness between asset returns
compared to traditional correlation measures.

Correlations between asset returns are vital in portfolio optimization, risk assessment
and hedging strategies [3]. Typically, stock correlations are measured using the Pear-
son correlation coefficient, which estimates the linear relationship between two random
variables [4]. Unfortunately, Pearson correlation, while popular, has several limitations [5,6].
First, it only measures linear relationships. Second, it is sensitive to outliers, which can
result in misleading conclusions [7]. Third, a Pearson correlation coefficient of zero does
not imply independence between the variables. It only indicates the absence of a linear
relationship, which does not rule out the presence of non-linear relationships [8]. However,
it has been increasingly recognized that the relationships between financial assets are not
always linear and can often be influenced by market conditions [9], investor behavior [10],
company-specific factors [11] or economic factors [12]. To overcome these limitations, we
use distance correlation, a non-parametric approach to correlation analysis [2]. Distance
correlation captures both linear and non-linear relationships. Additionally, a distance
correlation of zero implies complete independence between variables.

In parallel, complex network analysis has emerged as a tool for studying large systems
comprising numerous interconnected elements [13]. Hence, complex network analysis
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is often used to study stock markets. Networks (graphs) are ideally suited to capture
interactions in large systems with interacting components [14]. In a market graph, each node
represents an asset (typically a stock) and the edges between nodes indicate the correlations
between their returns [3]. These networks have been instrumental in analyzing market
dynamics and predicting future prices [15]. Various algorithms such as the Minimum
Spanning Tree (MST), Planar Maximally Filtered Graph (PMFG) [16] and Correlation
Coefficient Threshold Method have been used to construct stock networks [17–20]. Most of
these networks are constructed using Pearson correlation, which, as described earlier, lacks
robustness and does not capture non-linear relationships. Our work seeks to address these
shortcomings, through the use of distance correlation [2].

While traditional methods often assume financial returns to be independent and identi-
cally distributed (i.i.d.) [21], we recognize the complexity of real-world financial data, where
returns may exhibit non-linear and interdependent relationships. By employing distance
correlation, we aim to capture these intricate dynamics, offering a more nuanced under-
standing of financial networks and asset correlations, even in non i.i.d. scenarios [2]. Using
distance correlation, we build our market graph, a network of stock index constituents.
We then analyze its topological properties, to gain insight into market dynamics. In this
article, our analysis is applied to the constituents of the Standard and Poor’s S&P500 index
for the period between January 2015 and December 2022. The remainder of this article
is organized as follows. Section 2 contains a review of the relevant literature. Section 3
introduces distance correlation and outlines the methodology for constructing our market
graph. Section 4 presents the results of our graph-based analysis to the S&P500 index. We
include an examination of the topological properties of the resulting networks. Section 5
concludes this article with a summary and discussion of the implications of our findings.

2. Literature Review

Graphs have been used in the study of financial markets in the past. Indeed, graphs,
mathematical models of networks, have been shown to be useful tools to model complex
relationships between assets. Early work by Mantegna, R. N. (1999); Onnela et al. (2003);
Boginski et al. (2004, 2006); Tse et al. (2010) [1,22–25] pioneered the use of graph models
in finance. Mantegna, R. N. (1999)’s [1] work on the hierarchical structure in financial
markets using the Minimum Spanning Tree (MST) is considered seminal. Further works
by Shirokikh et al. (2013); Faizliev et al. (2019); Semenov et al. (2023) [26–28] analyze
stock markets using graphs built using Pearson, Spearman rank and Kendall correlation,
respectively. Millington and Niranjan’s (2021) [29] work compares networks built using
these different correlations. In doing so, they highlight the sensitivity of Pearson correlation.
More recently, research has focused on the uncertainty surrounding various network
structures, such as maximum cliques, maximum independent sets, maximum spanning
trees and planar maximally filtered graphs [30]. Authors in the field have also introduced a
novel measure of similarity based on the probability of the coincidence of signs of stock
returns, a distribution-free statistical procedure for threshold graph identification and
offered an analysis of the evolution of market graph structures over time [31–33].

As described earlier, financial networks were typically constructed using Pearson
correlation. However, Guo et al. (2018) [12] critically evaluated Pearson correlation in the
specific context of financial returns. They highlighted its inability to capture non-linear
relationships, especially during turbulent market conditions. To address this limitation,
these authors proposed using mutual information coefficients for stock correlation networks.
While networks built using mutual information address the limitations of Pearson correlation
and capture non-linear relationships between stocks, the method is constrained by the necessity
of modeling the probability distributions of the variables, a challenging task [34].

In addition to these developments, the literature has seen a growing interest in understand-
ing the interconnectedness and systemic risk within financial institutions. Wang et al. (2017) [35]
proposed an extreme risk spillover network using the CAViaR technique and Granger
causality risk test, identifying the real estate and bank sectors as net senders of extreme risk
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spillovers. Diebold and Yılmaz (2014) [36] introduced connectedness measures derived
from variance decomposition, offering a more nuanced understanding of connectedness in
the financial context. Corsi et al. (2018) [37] further contributed to the understanding of
financial distress propagation through Granger-causality tail risk networks, focusing on
systemically important banks and sovereign bonds. This approach allowed for the iden-
tification of flight-to-quality dynamics and the propagation of financial distress through
interconnected financial institutions. Billio et al. (2012) [38] emphasized the increased
interrelation among hedge funds, banks, broker/dealers, and insurance companies over
the past decade, proposing econometric measures of connectedness based on principal
components analysis and Granger-causality networks. These measures were found to be
useful out-of-sample indicators of systemic risk, highlighting the multi factorial nature of
systemic risk and the importance of understanding the connections and interactions among
financial institutions. Guowei Song et al. (2023) [15] introduced the Multi-relational Graph
Attention Ranking (MGAR) network, which dynamically captures stock relationships to
predict return rankings. While our work emphasizes distance correlation to detect complex
relationships in equity markets, the MGAR network offers a distinct approach by focusing
on stock ranking prediction through adaptive learning mechanisms.

Distance correlation is an alternative correlation measure that does not require prior
knowledge or assumptions of probability distributions. It also captures linear and non-
linear relationships [39]. A study by Hou et al. (2022) [8] demonstrated the superiority of
distance correlation over Pearson and Spearman rank correlations in measuring complex
relationships between gene profiles. In a similar application, Liu et al. (2021) [40] employed
distance correlation in constructing gene co-expression networks. These authors successfully
captured the complex relationships without any assumptions regarding distributions.

Distance correlation has also been applied to the study of the stock market. For
example, ref. [41] used this measure to analyze the dependencies in stock returns. Their
study showed that distance correlation effectively detected serial dependence without
requiring data transformations. The superiority of distance correlation in the context of
financial markets has been highlighted again in the very recent literature [42]. This article
seeks to fill the literature gap by exploring the application of distance correlation to financial
networks and its potential to provide deeper insight into the complex interactions between
assets in the stock market.

3. Methodology

Using a dataset comprising the adjusted daily closing prices of the S&P500 index
constituents from January 2015 to December 2022, we study the inter-dependencies between
stocks. We use distance correlation, a statistical measure of dependence that overcomes the
limitations of traditional correlation measures and captures non-linear relationships. The
methodology outlined in this section describes distance matrix construction and distance
covariance estimation.

We construct a fully connected weighted graph to represent the relationships between
stocks, utilizing the distance correlation coefficient of stock pairs. This graph illustrates
how stocks are interconnected based on their similarities. To identify the most significant
connections while minimizing dissimilarity, we apply Prim’s algorithm [43] to obtain
the Minimum Spanning Tree (MST) of the graph. This process reveals the hierarchical
organization of the stock market, highlighting the influence of individual stocks within the
broader market context. All experiments were carried out using Python 3.7.13, leveraging
its extensive libraries and tools for data analysis. The dataset employed in this analysis is
widely recognized and reflective of broad market trends, offering a robust foundation for
future exploration of stock market dynamics.

3.1. Data

We compiled the adjusted daily closing prices of the S&P500 index constituents for the
period between January 2015 and December 2022. Adjusted market prices are stock prices
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modified to account for corporate actions such as stock splits or dividend payments. These
data were obtained from Bloomberg. They consist of 500 assets and 2015 observations. We
then compute log returns on the adjusted market prices of each stock. Our analysis is based
on this returns series of 2014 observations. The log return rt of a stock for a given day t is
calculated as

rt = ln
(

Pt

Pt−1

)
,

where Pt is the adjusted market price on day t and Pt−1 is the adjusted market price on the
previous day.

Missing Values. The dataset was scrutinized for missing values, which are common in
financial time-series data. To maintain data integrity and continuity, stocks with missing
values were removed from our sample. About 12% of stocks in our dataset had instances
of missing values, a phenomenon that can be attributed to several factors inherent to the
dynamic nature of financial markets. Among these factors, changes in index composition
and delisting play significant roles, which is why we only use 466/500 constituents of the
S&P500 index constituents. As highlighted in Table 1, the aggregate descriptive statistics
underscore a mean return close to zero, with slight negative skewness, indicating potential
downside outliers and a high kurtosis suggesting the presence of heavy tails or extreme
values. The removal of stocks with missing values was essential to maintain data integrity
and continuity, ensuring that the analysis was conducted on a complete and consistent
dataset. This decision helped avoid potential biases and inaccuracies that could arise from
filling in missing values, preserving the true dynamics of the stock market in our analysis.

Table 1. Aggregate descriptive statistics of data.

Statistic Value

Mean 0.000369
Median 0.000770
Standard Deviation 0.019838
Skewness −0.546825
Kurtosis 14.922314
Minimum −0.190508
Maximum 0.156763
Q1 −0.008492
Q3 0.009884

3.2. Distance Correlation

Distance correlation, introduced by Sźekely et al. (2007) [2], is a non-parametric
measure of dependence that captures non-linear relationships between variables. The first
step in obtaining the distance correlation between two stocks is to compute the (returns)
distance matrices A and B. Each matrix A and B has dimensions n× n, where n represents
the number of observations (time points) in the log return data (one matrix per stock). The
elements Ak` and Bk` are the Euclidean distances between the log returns at time points k
and `:

Ak` = ‖Xk − X`‖, Bk` = ‖Yk −Y`‖, ∀k, ` ∈ {1, . . . , n}, (1)

where Xk and Yk represent the log returns of stock X and stock Y at time k, respectively.

3.2.1. Calculation of Distance Covariance

The distance covariance measures the dependence between two stocks with (returns)
distance matrices A and B. To obtain the distance covariance, we center the distance
matrices A and B to obtain matrices C and D, respectively. The elements Ck` and Dk` of
matrices C and D are computed as follows:

Ck` = Ak` − Ak − A` + A, Dk` = Bk` − Bk − B` + B . (2)
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Here, Ak, Bk, A`, B` are the row means for rows k and `, respectively. Meanwhile, A,
and B are the overall means of the elements in matrices A and B.

With the centered distance matrices C and D, we compute the distance covariance
V2

n (X, Y) as

V2
n (X, Y) =

1
n2

n

∑
k=1

n

∑
`=1

Ck`Dk` . (3)

3.2.2. Calculation of Distance Variance and Distance Correlation

The distance variance V2
n (X, X) captures the self-dependence of the stock with distance

matrix A. It is computed as follows:

V2
n (X, X) =

1
n2

n

∑
k,`=1

C2
k` (4)

The distance correlation Rn(X, Y) between the two stocks is the square root of the
following equation: (i.e., Rn(X, Y) =

√
R2

n(X, Y))

R2
n(X, Y) =

V2
n (X, Y)√

V2
n (X, X)×V2

n (Y, Y)
, (5)

V2
n (X, X) = 0 if every observation in a stock is identical. The distance correlation

method outlined above, including the computation of distance variance and distance corre-
lation, is implemented using the distance_correlation function in Python’s statsmodels
package [44].

3.3. Market Graph Construction Using Correlations

In constructing the market graph, we begin with a complete weighted undirected
graph. Our set of assets is represented by a graph G = (V, E), where V = {v1, . . . , vn} is
the set of vertices and E = {ei,j, . . . , en−1,n} is the set of edges. Each stock is represented
by a vertex. Edge weights are the dissimilarity measure based on the correlation between
stocks i and j.

One of the stated objectives of this work is to provide the reader with a comparison of
graph models based on distance and Pearson correlations. For this comparison, we build
two market graph models of our universe of stocks (S&P500 2015–2022) described earlier.
One is built using Pearson correlation, the other with distance correlation.

3.3.1. Pearson Correlation Dissimilarity

The Pearson correlation coefficient for two random variables x and y, denoted as ρxy,
measures the linear relationship between them. To obtain the corresponding dissimilarity
measure D(x, y), we apply the following transformation:

D(x, y) =
√

2(1− ρxy). (6)

The resulting D(x, y) ranges from 0 to 2, where 0 indicates a perfect positive linear
relationship, and 2 indicates a perfect negative linear relationship.

Edge weights in our Pearson correlation graph correspond to this quantity. Here,
each stock is a random variable represented by a vertex. Edge weights correspond to the
dissimilarity between each vertex pair.

3.3.2. Distance Correlation Dissimilarity

As described earlier, distance correlation, denoted as Rn(x, y), is a non-parametric mea-
sure of dependence that captures both linear and non-linear relationships between variables.
To obtain the dissimilarity measure D(x, y), we apply the following transformation:

D(x, y) = 1− Rn(x, y). (7)



Mathematics 2023, 11, 3832 6 of 13

The resulting D(x, y) ranges from 0 to 1, where 0 indicates a perfect association be-
tween variables, and 1 indicates complete dissimilarity. This transformation is an extension
of the Pearson dissimilarity metric [1] above to distance correlation.

Here again, we build a (complete weighted) graph where each stock is a random
variable represented by a vertex. Edge weights correspond to the dissimilarity between
each vertex pair.

3.3.3. Minimum Spanning Tree (MST) Construction

Once the dissimilarity measure D(vx, vy) is obtained for all stock pairs, we use Prim’s
algorithm [43] to obtain the MST, which connects all nodes in the network with the mini-
mum sum of edge weights. The resulting MST captures the hierarchical organization of the
stock market and provides valuable insight into the relationships between stocks.

Prim’s algorithm starts with an arbitrary node and iteratively adds the edge with
the shortest distance (smallest dissimilarity measure) connecting the current node to an
unreached node. The process is repeated until all nodes are included in the MST.

The market graph, obtained by constructing the MST based on either Pearson cor-
relation or distance correlation, can be visualized using Python’s NetworkX library. By
comparing the MSTs constructed using these two correlation methods, we gain insight
into the limitations of linearity constraints in studies of the stock market. Full details are
presented in the next section.

3.4. Market Graph Comparisons and Centrality Measures

In our analysis, we compare the MSTs constructed from distance correlation graphs to
those obtained from Pearson correlation graphs. This comparison is focused on two (global)
key graph characteristics, average node-node distance and longest node–node distance. At
a more microscopic level, our comparisons also consider stock-level features. We use node
degree to measure the significance of individual nodes (stocks) within each network.

Finally, we compare sector centrality, as Millington and Niranjan (2021) [29] did in
their recent work. Like these authors, we evaluate betweenness and degree centrality at
the sector level. Here, we use the Morgan Stanley Capital International-Standard & Poors
Global Industry Classification Standard (GICS). GICS is a widely used classification of
companies into economic sectors, based on their primary business activities.

In summary, our comparison of distance and Pearson correlation MSTs provides an
assessment of their ability to accurately model markets. These comparisons offer valuable
insight into each model’s ability to capture market cohesion, interconnection, and the
significance of individual sectors. It also offers perspective into the influence of nonlinear
relationships and hidden dependencies on market dynamics.

3.4.1. Average Distance (AD) and Longest Distance (LD)

The AD of the MST, the mean distance separating vertices on the tree, provides crucial
insight into the market’s overall cohesion [45]. Indeed, in our market graph model, edge
weights represent return dissimilarity. Therefore, a larger AD indicates weaker correlations
between stocks, on average [22,45]. It indicates a more scattered and diversified market. In
such a scenario, individual stock movements are less influenced by overall market trends than
by idiosyncratic factors. Overarching market trends are not as obvious. Conversely, a smaller
AD signals a more interconnected and cohesive market, with higher average correlations
between stocks. In this case, overall market movements have a more pronounced effect on
individual stock behavior. Market trends are also easier to infer in such cases.

The LD represents the maximum distance between any two stocks (vertices) on
the MST. It measures the maximum possible dissimilarity between a pair of assets. A
larger LD value suggests a market with greater dispersion and heterogeneity among its
constituents. It means idiosyncratic factors affect returns more strongly than in instances
with a shorter LD. This dispersion may also indicate the presence of subsets of stocks that
are weakly correlated to the broader population (index in this case) Birch et al. (2016)’s
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article [46]. Identifying these subsets is useful for portfolio diversification. On the contrary, a
smaller LD in the MST indicates a more interconnected and cohesive market, where the distance
between individual stocks is relatively limited. Such a tightly knit market structure implies
that the majority of stocks are influenced by similar market forces and tend to move in tandem
with overall market trends. This cohesion can make it easier to identify overarching market
trends and predict the behavior of individual stocks based on broader market movements.

3.4.2. Centrality Measures: Betweenness Centrality (BC) and Degree Centrality (DC)

As mentioned earlier, our analysis also extends to market sectors. We calculate two central-
ity measures for each market sector, Betweenness Centrality (BC) and Degree Centrality (DC).
To obtain these quantities, we begin by aggregating stocks into their respective GICS sectors.
We then compute our aggregate centrality measures for each sector, as follows.

Betweenness Centrality (BC): Betweenness Centrality of a node (stock) measures the
number of shortest paths between all pairs of nodes that pass through that node [47]. For
a sector, the aggregate BC of its constituent nodes quantifies its importance. A high BC
indicates that a sector is highly connected to other sectors and critical to maintaining con-
nections between sectors in the market [45]. It signals that the sector acts as a bridge between
other sectors and has a significant influence on broader market dynamics and information flow.
Betweenness Centrality (BC) for a sector in the MST is computed as follows:

BC(sector) =
sum of shortest paths passing through the sector

total number of shortest paths on the tree− 1
.

Degree Centrality (DC): Degree Centrality of a node (stock) represents the number
of edges (connections) that a node has in the network [29]. For sectors, it measures the
aggregate number of connections a sector has with other sectors. A high degree centrality
for a sector implies that it is strongly connected to other sectors and plays a critical role in
shaping market relationships. Degree Centrality (DC) for a sector is computed as follows:

DC(sector) = sum of degree centrality of nodes in the sector .

4. Results

We begin our empirical comparisons with an examination of three correlation mea-
sures: Pearson correlation, Spearman rank correlation, and distance correlation, using
synthetic data. We generate a uniform random variable X on the interval (0, 4). We then
generate Y, another random variable that is a non-linear transformation of X. The objective
of this initial comparison is to illustrate the ability (or inability) of each correlation coeffi-
cient to capture non-linear relationships between random variables. Results are reported in
Table 2. They show that distance correlation outperforms Pearson and Spearman correlations in
capturing non-linear associations. Notably, the correlation coefficients obtained using distance
correlation were consistently higher for all non-linear scenarios. For instance, in the case of
Y = X2, distance correlation yielded a correlation coefficient of 0.54, while Pearson and Spear-
man correlations produced much lower values of 0.11 and 0.03, respectively. Similarly, for
Y = sin(X) and Y = cos(X), distance correlation achieved significantly higher coefficients
than the other correlation measures.

Figure 1a,b further highlight distance correlation’s superiority in cases of non-linear
relationships between variables. Even in the presence of noise, as in the example shown in
Figure 1a, distance correlation (DCor) clearly outperforms the other correlations. Mean-
while, Figure 1b shows a very noisy real-world example of a non-linear relationship between
stock returns. It displays the relationship between the returns of Autodesk and Dollar Tree,
for the period of January 2020–June 2020. We observe that Pearson and Spearman rank
correlation coefficients are close to zero, indicating the absence of a relationship. In contrast,
distance correlation is significant.
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Table 2. Correlation coefficients ρXY for random variables X and Y (sample size n = 1000).

Relationship Pearson Spearman Distance

Y = X2 0.1106 0.0256 0.5450
Y = sin(X) 0.9083 0.9755 0.9679
Y = cos(X) −0.0947 −0.0257 0.5537

Y = eX 0.7442 1 0.9170

(a) Generated example Y = sin(x) + noise (b) Real World Example Autodesk vs. DollarTree

Figure 1. Scatter plots of non-linear relationships.

4.1. Correlation Matrix Analysis

This analysis consists of a comparison of correlation matrices containing Pearson and
distance correlations. These coefficients are computed using the log returns of S&P500 index
constituents for the period between January 2015 and December 2022. Figure 2a highlights
the divergence between Pearson correlation and distance correlation. While both the
coefficients are positively related, a substantial divergence is observed. The correlations
observed in the analysis are typically positive, providing a coherent basis for making a
meaningful comparison between distance and Pearson correlation methods.

Next, we analyze the maximum eigenvalue of correlation matrices using a sliding
window of six months. The maximum eigenvalue is a measure of the intensity of the
correlation. In matrices inferred from financial returns, the maximum eigenvalue tends to
be significantly larger than the second maximum [29]. We study the evolution over time
of the maximum eigenvalue of both matrices. Results are presented in Figure 2b. Both
correlations follow a similar trend, with the maximum eigenvalue peaking during times
of market downturn and dropping during times of low market volatility, which concurs
with the findings of Droźdź et al. (2000) [48]. For the given period 2015–2020, the maximum
eigenvalue has a lower range for distance correlation than Pearson correlation. During periods
of market crashes and volatility, returns data often exhibit a higher occurrence of outliers.
This increase in outlier presence could potentially account for the observed disparity in the
maximum eigenvalue. However, distance correlation demonstrates a more stable eigenvalue
range than Pearson correlation for all periods, as shown in Table 3.
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(a) Distance Correlation vs. Pearson Correlation (b) Maximum Eigenvalue per period

Figure 2. Correlation coefficient properties.

Table 3. Range of eigenvalues (Max–Min).

Year Pearson Correlation Distance Correlation

2015 34.82 23.42
2016 69.36 61.90
2017 69.18 48.68
2018 91.05 61.51
2019 41.80 36.98
2020 157.13 112.88
2021 65.47 47.30
2022 89.81 83.12

4.2. Market Graph Analysis

The characteristics of networks based on distance correlation (DCor) and Pearson
correlation (PCor) are presented in Table 4. Three categories of stocks were identified
based on their degrees, as described in Guo et al. (2018) [12]. Pivotal nodes with degrees
exceeding seven act as influential hubs, facilitating information, resource and influence
flow. Stocks with degrees ranging from three to seven serve as conduits for propagating
market information. Stocks with degrees of one to two have limited impact on network
dynamics and do not act as significant hubs. The majority of nodes in these MST networks
have a degree of one to two.

Table 4. Network topology properties.

Network
Degree Distribution Topology

1–2 3–7 ≥8 AD LD

PCor 1 (January 2015–December 2022) 79.81% 17.68% 2.51% 13 35
DCor 1 (January 2015–December 2022) 79.59% 18.31% 2.1% 14 38
PCor 2 (January 2020–June 2020) 75.51% 22.22% 2.27% 15 36
DCor 2 (January 2020–June 2020) 78% 19.71% 2.29% 10 22

Distance correlation networks exhibit distinct properties and dynamics. They differ
especially from Pearson correlation networks during periods of market turbulence, such
as the COVID crash in 2020. These networks capture non-linear dependencies. This
dependency detection translates into changes in network structure. For example, during
the period between January and June 2020, which corresponds to the COVID crash, the
distance correlation network displayed a more compact and efficient connectivity pattern
than the Pearson correlation network. Specifically, the AD and LD between nodes, shown in
Table 4, were lower for the DCor network. The AD for the DCor network is 10, while the AD
for the PCor network is 15. Similarly, the LD for the DCor network is 22, whereas the LD for
the PCor network is 36. These observations suggest that the distance correlation network
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captures interconnectedness and non-linearity between nodes, during the turbulence of the
COVID crash. These results are consistent with the findings of Onnela et al. (2003) [22]. These
authors described market graph shrinking during market crashes. These authors documented
shrinking average distance (AD) and longest distance (LD) during periods of turbulence.

Tables 5 and 6 show network characteristics for S&P500 sectors during the periods
from January 2020 to June 2020 and January 2015 to December 2022 using DCor and
PCor. Sector-specific dynamics within the networks are also evident. The Information
Technology sector ranks highly in distance correlation LD during the crisis, as shown
in Table 5, highlighting its heightened importance and influence during the pandemic.
Conversely, the Consumer Staples sector consistently maintains a high rank across both
periods, indicating the essential nature of its products and services. These sector-specific
patterns provide valuable insight into the interconnections and behavior of stocks.

Table 5. Network topology properties (longest distance) per sector analysis.

January 2020–June 2020 January 2015–December 2022

Sector DCor PCor DCor PCor

Information Technology 21 32 17 15
Materials 17 30 11 11
Utilities 9 11 7 10
Health Care 14 33 25 22
Industrials 18 30 31 22
Real Estate 15 28 11 22
Consumer Discretionary 19 26 29 29
Consumer Staples 18 32 32 30
Energy 14 14 10 12
Financials 16 31 26 22
Communication Services 18 22 27 26

Table 6. Network topology properties (average distance) per sector analysis.

January 2020–June 2020 January 2015–December 2022

Sector DCor PCor DCor PCor

Information Technology 9.91 10.14 6.14 5.66
Materials 7.22 11.5 4.46 5.29
Utilities 3.89 4.98 3.26 4.35
Health Care 7.26 12.51 10.27 10.47
Industrials 7.92 12.8 8.76 7.21
Real Estate 6.84 12.61 4.76 6.64
Consumer Discretionary 9.73 13.35 12.41 12.78
Consumer Staples 10.35 16.25 14.3 14.35
Energy 5.31 6.6 4.16 4.72
Financials 6.91 10 12.12 7.98
Communication Services 8.85 12.6 14.29 10.56

From 2015 to 2022, we conduct a comparative analysis of sector degree centrality using
Pearson correlation and distance correlation methods on a sliding window of six months.
Figure 3a,b shows Financial and Industrial sectors consistently exhibiting significance in
both methods throughout the entire dataset. Additionally, the analysis highlights a more
significant rise in the importance of the Technology sector for both networks from 2018 to
2022 . In early 2015, the influence of the Industrial and Consumer Discretionary sectors
appeared more pronounced in the distance correlation-based trees than in the Pearson
correlation-based trees. In the analysis of betweenness centrality from 2015 to 2020 shown
in Figure 4a,b, similar observations were made using both Pearson correlation and distance
correlation methods. The Financials and Industrials sectors consistently exhibited high
betweenness centrality, indicating their crucial role in connecting various sectors within the
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market. These sectors served as key “bridges”, facilitating information flow and influencing
market dynamics.

(a) Pearson Correlation (b) Distance Correlation

Figure 3. Degree centrality.

(a) Pearson Correlation (b) Distance Correlation

Figure 4. Betweeness centrality.

5. Conclusions

In summary, this paper focuses on the construction of market graphs using distance
correlation as the underlying measure of correlation. The study compares distance correla-
tion with traditional measures such as Pearson and Spearman rank correlation, using both
real-world data from the S&P500 index and synthetic data. These findings from the study
clearly indicate that distance correlation offers a more comprehensive understanding of
the non-linear relationships inherent in financial markets, as compared to traditional linear
correlation measures. This underscores the relevance and significance of accounting for
non-linearity in market graph construction and analysis. Constructing market graphs based
on distance correlation provides additional insight into the structure and dynamics of the
stock market. The analysis reveals higher degree distribution and shorter average distances
in distance correlation networks, suggesting an interconnected market structure during
specific periods, including market crashes. These findings are entirely consistent with the
broader literature, beyond market graphs. The utilization of distance correlation in market
graph construction underscores the necessity of refining our analytical methodologies to
more accurately capture non-linear relationships in financial markets, especially when
compared to traditional correlation measures, suggesting a direction for enhanced precision
in future financial analyses.

It is important to acknowledge the limitations of the study. This work was only applied
to the S&P500 index, which represents a subset of the overall stock market. Future research
should expand the analysis to include other market indices and time periods to validate
and extend the findings. Additionally, comparing distance correlation-based networks
with other non-linear dependency-based networks would contribute to a comprehensive
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understanding of network construction approaches in capturing complex relationships in
financial data.
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