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Abstract: Deep learning techniques play an important role in plant phenotype research, due to their
powerful data processing and modeling capabilities. Multi-task learning has been researched for
plant phenotype analysis, which can combine different plant traits and allow for a consideration of
correlations between multiple phenotypic features for more comprehensive analysis. In this paper,
an intelligent and optimized multi-task learning method for the phenotypic analysis of Arabidopsis
thaliana is proposed and studied. Based on the VGG16 network, hard parameter sharing and
task-dependent uncertainty are used to weight the loss function of each task, allowing parameters
associated with genotype classification, leaf number counting, and leaf area prediction tasks to be
learned jointly. The experiments were conducted on the Arabidopsis thaliana dataset, and the proposed
model achieved weighted classification accuracy, precision, and Fw scores of 96.88%, 97.50%, and
96.74%, respectively. Furthermore, the coefficient of determination R2 values in the leaf number and
leaf area regression tasks reached 0.7944 and 0.9787, respectively.

Keywords: plant phenotype; multi-task learning; VGG16; hard parameter sharing; Arabidopsis thaliana

MSC: 68T01

1. Introduction

Plant phenotypes are the physical, physiological, and biochemical characteristics
of plants that reflect their structure and composition. Traditional phenotype analysis is
performed manually, which introduces problems such as high labor and material costs,
and low efficiency [1,2]. Therefore, traditional methods are unable to meet the demands
of high-throughput plant phenotype research. Establishing a high-throughput phenotype
analysis platform could allow plant phenotype data to be objectively, accurately, and
quickly obtained, as well as facilitating the analysis of the associations between phenotypic
traits, which could provide data-driven decision support for breeding, cultivation, and
agricultural practices [3].

Deep learning techniques have became an important tool in plant phenotype research
due to their powerful data processing and modeling capabilities [4,5]. Deep learning
approaches have became the main technical tools in plant phenotype research and are
effective in plant classification, identification, and feature extraction [6–8].

Convolutional neural network (CNN) is a widely acknowledged representative deep
learning approach, that has achieved great success in many computer vision tasks. In recent
years, researchers have proposed a large number of CNN-based models, such as AlexNet [9],
VGG [10], GoogLeNet [11], and ResNet [12]. Additionally, these architectures have inspired
subsequent contributions, such as Res2Net [13], Condensenet v2 [14], EdgeNeXt [15], and
GhostNetV2 [16]. The above-mentioned CNNs have been widely used for plant phenotype
data analysis [17,18].

There are many research works focused on single-task learning, for plant classification,
leaf number prediction, and pest and disease detection. For example, Lee et al. [19] trained
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a fine-tuned AlexNet model to automatically extract leaf features. Dyrmann et al. [20]
constructed a convolutional neural network to classify seedlings of plants or families.
Barre et al. [21] proposed a method for the quantification of plant phenotypes associated
with the growth of Arabidopsis thaliana in a controlled environment and conducted categoriza-
tion by using a convolutional neural network structure for identification. Namin et al. [22]
used a CNN for automatic joint feature and classifier learning, and applied a long short-
term memory (LSTM) model to study the growth of plants and their dynamic behavior.
Roitsch et al. [23] first provided a detailed description of genomics-based methods for plant
phenotype feature extraction, followed by the idea of applying plant phenotype studies
in conjunction with methods related to deep learning. Kong et al. [24] employed the Mask
R-CNN algorithm to effectively identify and count full and wilted grains in rice spikes.

Single-task learning methods mainly focus on a specific phenotypic feature and char-
acteristic of a plant, without considering the diversity and correlations between phenotypic
features. On the other hand, multi-task learning mechanisms can bring related tasks to-
gether to learn the mutual generalization bias, allowing the use of priori knowledge [25–27]
to improve the learning ability. For instance, Pound et al. [28] used multi-task learning for
wheat spike phenotyping analysis. Wen et al. [29] proposed a multi-task learning network
based on Mask R-CNN, which could achieve the multi-task detection of citrus in complex
environments. La et al. [30] used a fully convolutional regression network-based multi-task
learning architecture to detect individual full-grown tree, tree seedlings, and tree gaps in
citrus orchards. Khaki et al. [31] utilized MobileNetV2 as a lightweight backbone feature
extractor with two parallel sub-networks to perform density-based counting and localiza-
tion tasks simultaneously, with a lower number of parameters, superior performance, and
higher effectiveness when compared to other methods. Chaudhury et al. [32] proposed
a multi-task deep learning framework to segment leaves and count the number of leaves
in digital plant images, which showed an improved segmentation mean intersection over
union score and difference. Keceli et al. [33] combined CNN features and transferred
features to construct a multi-input multi-task learning model to predict the disease in
plants. Wang et al. [34] proposed a dual-stream hierarchical bilinear pooling model and
optimized the weights of two tasks using homoscedastic uncertainty, which improved the
independent identification accuracy of plants and diseases.

In this paper, we propose an optimized multi-task learning model for phenotypic
analysis of Arabidopsis thaliana with a hard parameter sharing approach and uncertainty
weighting strategy. Based on the hard parameter sharing framework, the loss function of
each task is weighed according to the uncertainty of task dependence. We tested three
tasks related to Arabidopsis thaliana plant phenotypic analysis: (1) classifying the genotype,
(2) counting the total number of leaves, and (3) estimating the leaf area. Different multi-task
learning models are constructed and compared for the above three tasks.

2. Multi-Task Learning Architecture for Arabidopsis thaliana Phenotypic Analysis

The architecture of the multi-task model used for Arabidopsis thaliana phenotype
analysis in this paper is shown in Figure 1. The hard parameter sharing framework was
used as the underlying network, and each task had its own task-specific layer in order to
extract different features related to the task. During the joint training of the multiple tasks,
task-dependent uncertainty was used to weigh the loss function for each task layer, thus
balancing the impact of regression and classification tasks. For this paper, we adopted the
hard parameter sharing framework of [27], which describes a multi-task learning model
with a sharing network based on ResNet for Arabidopsis thaliana phenotyping. The symbols
appearing in the paper and their details are summarized in Table 1.
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Table 1. Important mathematical symbols and their descriptions.

Symbol Description

η Learning rate
σ Weighting relationship factors

Pw Weighted precision of the classification task
Rw Weighted recall of the classification task
A Accuracy of the classification task
Fw Weighted comprehensive performance of precision and recall
R2 Coefficient of determination

MAPE Mean absolute percentage error in the regression task
MAE Mean absolute error in the regression task
MSE Mean square error in the regression task

Figure 1. The overall multi-task model framework of hard parameter sharing for Arabidopsis thaliana
phenotype analysis.

2.1. Modified Hard Parameter Sharing in VGG16 Network

VGG16 [10] is a CNN model, which uses stacked small convolutional kernels with a
low number of parameters and more non-linear variations, making the extracted features
more adaptable to complex patterns. Thus, VGG16 can be easily modified to achieve better
classification performance [10]. For the above reasons, the VGG16 was chosen as the
backbone network for the multi-task learning model proposed in this paper.

We added a specific task layer to the VGG16 network. The modified model structure is
shown in Figure 2, where the dashed box indicates the specific task layer added to complete
the genotype classification, leaf number counting, and leaf area estimation tasks.

As shown in Figure 2, the last maximum pooling layer of VGG16 was removed and
replaced with fully connected layers. Then, fully connected layers were also applied to
each of the three task-specific layers. The fully connected layers were used for extracting
features associated with each of the tasks.

The three tasks were designed as follows: (1) the genotype classification task passes
through fully connected layers, and the classification results are finally output through a
softmax layer; (2) the leaf number counting task passes through fully connected layers,
then outputs the regression prediction results; (3) and the construction of the leaf area
estimation-specific task layer is the same as the leaf number counting task. The details
of the model parameters for each task with the original VGG16 network are detailed in
Table 2.
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Figure 2. The hard parameter sharing model based on VGG16.

Table 2. Network parameters for each task in the modified VGG16 model.

No. Genotype
Classification

Leaf Number
Counting Regression

Leaf Area
Regression

1 input (224 × 224 RGB image)

2 conv3-64

3 conv3-64

4 maxpool

5 conv3-128

6 conv3-128

7 maxpool

8 conv3-256

9 conv3-256

10 conv3-256

11 maxpool

12 conv3-512

13 conv3-512

14 conv3-512

15 FC-1536

16 FC-512 FC-512 FC-512

17 FC-256 FC-1 FC-1

18 softmax - -

After the plant phenotype images are input to the network model, the corresponding
feature vectors are extracted through the underlying shared network (i.e., VGG16) and the
respective task-specific fully connected layers for each task. The genotype classification
task involves multiple classifications of the feature vectors through the softmax layer to
obtain the probabilities for each category.

The softmax layer applies the So f tmax activation function, which transforms the
inputs of multiple neurons into a value between 0 and 1, where the sum of the mapped
elements in the vector is equal to 1. The softmax value is calculated using Equation (1):

So f tmax(x) =
exi

∑j exj
, (1)
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where i and j are category labels in the multi-categorization problem, xi denotes the x value
for the input category i and maps the value to an exponential function, and ∑j exj denotes
the exponential sum of all category values.

The leaf number regression task and the leaf area regression task apply the ReLU
activation function in the task-specific fully connected layer to obtain the final prediction
results. The ReLU function can overcome the problem of gradient disappearance, and is
calculated using Equation (2).

Relu(x) = max(0, x), (2)

where x is the input value.

2.2. Loss Functions for Different Tasks

The loss functions used in this paper include the mean absolute error, mean square
error, and cross-entropy loss function. The mean absolute error (MAE) loss function is
applied to solve the problem of prediction of specific values. Its formula is shown in
Equation (3):

LMAE =
1
n

n

∑
i=1
|yi − ŷi|. (3)

The MAE measures the average of the sum of the absolute differences between the
actual values yi and the predicted values ŷi, where n is the total number of actual values.

The mean squared error (MSE) loss function is applied to regression problems, and is
shown in Equation (4). The MSE measures the mean value of the square of the difference
between the predicted values ŷi and the actual observed values yi.

LMSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (4)

The cross-entropy measures the distance between the actual output probability and
the expected output probability.The smaller the cross-entropy value, the closer the two
probability distributions will be. The cross-entropy loss function is often used in solving
the classification problems, and is calculated using Equation (5):

LCrossEntropy = − 1
n ∑

i

M

∑
c=1

yic log(pic), (5)

where M is the number of categories, yic is a symbolic function that takes 1 if the true
category of sample i is equal to c and 0 otherwise, and pic is the predicted probability that
observation sample i belongs to category c.

2.3. Loss Balance for Each Task

In this paper, each task-specific layer loss function is weighted training to balance the
task-dependent uncertainty [35]. Thus, a joint loss is used during model training, which
balances the impact of each task and can mitigate the impact of negative migration on
weakly correlated tasks. In Figure 2, the circles represent the joint loss values. In the last
task-specific layers for the three tasks, the task-dependent uncertainty is used to balance
the loss function for each task, and the joint loss values are used to guide the next training
round of the model. Finally, the final joint multi-task loss is evaluated by maximizing the
maximum Gaussian likelihood.
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2.3.1. Likelihood Function for the Regression Task

For the regression task, the probability is defined in terms of the Gaussian likelihood
for output [35], as shown in Equation (6):

p(y| f W(x)) = N( f W(x), σ2), (6)

where x is the input, y is the real label, W is the parameter matrix, f W(x) is the output, and
σ is the observed noise parameter of the model.

Based on this Gaussian likelihood, the log-likelihood of the regression task in joint
multi-task learning [35] can be obtained, as shown in Equation (7):

log p(y| f W(x)) ∝ − 1
2σ2 ‖ y− f W(x) ‖2 − log σ. (7)

2.3.2. Likelihood Function for Classification Task

In the classification task, the Gaussian likelihood for the probability [35] is shown in
Equation (8):

p(y| f W(x)) = So f tmax( f W(x)). (8)

The scaling factor σ2 is added to Equation (8), which is related to the uncertainty of the
distribution and determines the flatness of the discrete distribution. The final log-likelihood
of the classification task [35] is obtained as shown in Equation (9):

log p(y = c| f W(x), σ) =
1
σ2 fc

W(x)− log(∑
c′

e
1

σ2 f
c′

W (x)
). (9)

2.3.3. Multi-Task Joint Loss

The multi-task model in this paper consists of a classification task and two regression
tasks. The joint loss was constructed, referring to the literature [35], to maximize the
log-likelihood (i.e., minimize the negative log-likelihood) as shown in Equation (10):

Luncertainty = − log p(y1, y2, y3 = c| f W(x))

=
1

2σ1
2 ‖ y1 − f W(x) ‖2

+ log σ1 +
1

2σ22 ‖ y2 − f W(x) ‖2
+ log σ2 − log p(y3 = c| f W(x), σ3)

=
1

2σ1
2 L1(W) +

1
2σ22 L2(W) +

1
σ32 L3(W) + log σ1 + log σ2 + log

∑c′ e
1

σ3
2 f

c′
W (x)

(∑c′ e f
c′

W (x)
)

1
σ3

2

≈ 1
2σ1

2 L1(W) +
1

2σ22 L2(W) +
1

σ32 L3(W) + log σ1 + log σ2 + log σ3,

(10)

where y1 is the true label of the leaf area regression task, σ1 is the noise parameter of the
leaf area regression task, y2 is the true label of the leaf number regression task, σ2 is the
noise parameter of the leaf number regression task, y3 is the true label of the genotype
classification task, and σ3 is the noise parameter of the classification task. Furthermore, σ1,
σ2, and σ3 are equivalent to data-based adaptive weights, which are used for weighting the
loss function of each task factor.

The term L1(W) = ‖ y1 − f W(x) ‖2 denotes the Euclidean distance between the out-
put of the leaf area regression task and the true label y1, L2(W) denotes the Euclidean
distance between the output of the leaf number regression task and the true label y2, and
L3(W) = − log(So f tmax( f W(x))) is the cross-entropy loss for the classification task. Over-
all, the process of model training is the process of learning the weight relationship factor
for each task.
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2.3.4. Multi-Tasking Learning Processing

During training, the weight-related parameters are combined together, according to
Equation (10), as a joint loss. Then, each weight-related parameter is updated gradually.
Finally, a combination of a weight parameter matrix and multiple task weight relationship
factors are learned, such that the multi-loss function for the multiple tasks reaches a
minimum value and the influence of each task will be well-balanced.

During the model training process, the model optimizer automatically updates the
parameters of the network, including the weight value for each task, according to the
gradient information in order to reduce the value of the loss function. The update process
for the weight-related parameters is shown in Figure 3.

Figure 3. Procedure of weight correlation factor updating for phenotypic multi-tasking learning.

In Figure 3, if the joint loss value of the model is calculated after the previous iteration
and the proportion of the leaf area loss in the total loss is larger (i.e., the value of 1

2σ1
2 L1(W)

in Equation (10) is larger), then the optimizer will train the model in favor of the leaf area
regression task in the next iteration, then increase the weight correlation factor of the leaf
area regression task defined in Equation (10) for σ1, in order to reduce the weight of this
task. The adjustment procedure for σ2 and σ3 weighting each task’s loss in the total joint
loss is calculated in a similar way.

3. Experimental Results
3.1. Experimental Environment

The experiment was conducted on a Windows 11 computer with an Intel i9-12900K
CPU, 48 GB RAM, and a GeForce RTX 3060 Ti GPU with 8 GB RAM. The algorithms were
implemented using Tensorflow 2.4.0, Python 3.7, Pytorch 1.3.1, and CUDA 10.0.

3.2. Dataset

The experiments were carried out on the Arabidopsis thaliana dataset from Ara2013-
Canon [36]. The dataset contains 5 genotypes of Arabidopsis thaliana (col-0, ein2, ctr, adh1,
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and pgm) and has 165 images in total. Each image has been labeled with information
regarding genotype, leaf number, and corresponding annotated color leaf segmentation
images, as shown in Table 3.

Table 3. Sample Arabidopsis thaliana images from the Ara2013-Canon dataset [36].

Genotype Col-0 ein2 pgm ctr adh1

Original image

Leaf segmentation image

Leaf numbers 7 8 5 6 7
Total number of samples 35 39 35 32 24
Percentage of categories 21.21% 23.64% 21.21% 19.39% 14.55%

3.3. Evaluation Metrics
3.3.1. Classification Metrics

For classification tasks, the accuracy, weighted precision, weighted recall, and weighted
Fw values are typically used for evaluation of the results.

The accuracy is the ratio of the number of correct samples predicted to the total number
of samples, as defined in Equation (11):

A =
TP + TN

TP + TN + FP + FN
. (11)

The weighted precision is the ratio of the total number of truly positive cases to the
total number of all samples predicted to be positive, as defined in Equation (12):

Pw =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FPi
. (12)

The weighted recall is the ratio of the number of correctly predicted positive samples
to the actual number of positive samples, as defined in Equation (13):

Rw =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FNi
. (13)

The Fw value is a comprehensive performance index based on precision and recall, as
defined in Equation (14):

Fw = 2× Pw × Rw

Pw + Rw
. (14)

The concepts of TP, TN, FP, and FN used in the above equations are summarized in
Table 4.

Table 4. Descriptions of TP, TN, FP, and FN.

True Results Predicted Results
Positive Example Negative Example

Positive example True positive example (TP) False negative example (FN)
Negative example False positive example (FP) True negative example (TN)
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3.3.2. Regression Metrics

For regression tasks, the coefficient of determination (R2), mean absolute percentage
error (MAPE), mean absolute error (MAE), and mean square error (MSE) are commonly used
as evaluation metrics. The R2, MAPE, MAE, and MSE are defined in Equations (15)–(18),
respectively.

R2 =
∑n

i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2 . (15)

R2 is a numerical characteristic used to represent the relationship between a random
variable and multiple random variables, as defined in Equation (15). The larger the value,
the closer the regression value to the true value.

MAPE =
1
n

n

∑
i=1
|yi − ŷi

yi
|, (16)

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (17)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (18)

In the above equations, n denotes the number of samples, yi denotes the true value of
the sample, ŷi denotes the predicted value of the sample, and ȳ denotes the average of the
true values of all samples.

3.4. Experimental Results
3.4.1. Learning Rate Test

The learning rate is used to control the learning progress of a model by determining
how fast it converges to a local minimum. Equation (19) shows the relationship between
the current and previous model weight values for controlling the learning rate η.

ωnew = ωold − η · ∂L
∂ωold

, (19)

where ωold denotes the network weights before the update, ωnew denotes the updated
network weights, η is the learning rate. The smaller the value of η, the slower the loss
gradient decreases and the slower the network convergence process.

In this paper, the epochs was set to 300 and the batch size was 1. The weighted balance
was applied to the three loss functions to learn the multiple tasks model. The η was set to
the range of 1× 10−6 to 1× 10−4 to obtain the best learning rate for the optimal results.
The results with different learning rate η are shown in Figure 4.

Figure 4 showed that the weighted classification accuracy, precision, and Fw value
were similar under different η values, and the best classification results were obtained
when η = 1× 10−5. The results are detailed in Table 5.

Table 5. The optimal results for different evaluation metrics for genotype classification tasks.

Accuracy Rw Pw Fw

0.9688 0.9688 0.9750 0.9674

From Figure 4, we can see the best value of R2 was 0.8320 when η = 8.4× 10−5 in
the leaf number regression task, under which the value of R2 was 0.9241 for the leaf
area regression task. The best value of R2 was 0.9787 when η = 1× 10−5 in the leaf area
regression task, while the R2 value was 0.7944 for the leaf number regression task.
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Figure 4. Evaluation metric values under different η.

The R2 value for the leaf number regression task decreased when η increased from
1× 10−5 to 8.4× 10−5, while the R2 of the leaf area regression task increased. Thus, the
hard parameter sharing model with VGG16 was used as the base network and η was set to
1× 10−5. Results of each regression task are shown in Table 6.

Based on the above parameter settings, the confusion matrix for the genotype classifi-
cation task is shown in Figure 5.

Figure 5. Confusion matrix for genotype classification task.
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Table 6. Regression results when learning rate η = 1× 10−5.

Task R2 MSE MAE MAPE

Leaf Number Regression 0.7944 0.5892 0.5846 0.0691
Leaf Area Regression 0.9787 0.3029 0.4551 0.0328

3.4.2. Comparison with Different Networks

We adopted three different basic networks, i.e, VGG16, ResNet50 [12], and Xcep-
tion [37] for comparison with the proposed hard parameter sharing model. The number of
epochs, the batch size, and η were set to 300, 1, and 1× 10−5, respectively.

(1) Classification task

A comparison of the best classification metrics in the training process for the different
basic network models is shown in Figure 6. From Figure 6, it can be seen that our method
outperformed the other two basic network models, in terms of the achieved classification
evaluation metrics. The classification accuracy and recall of our method were 78.13% and
56.25% higher than those based on ResNet and Xception, respectively. For precision
of classification, our method achieved 45.71% and 31.15% higher values than the other
two models, respectively. The classification Fw value obtained by the VGG16-based network
model was 79.64% and 56.75% higher than those of ResNet and Xception, respectively.

Figure 6. Comparison of classification evaluation metrics for different basic networks.

(2) Regression tasks

Figure 7 shows a comparison of the R2 values obtained using the different basic
networks in regression tasks. It can be seen that the model using VGG16 as the basic
network performed better in both regression tasks, compared to the other two models. In
the leaf number regression task, the R2 of our method was 33.92% and 28.32% higher than
those of the models based on ResNet50 and Xception, respectively; and the R2 value of our
method in the leaf area regression task was 61.46% and 22.43% higher than those of the
other two models, respectively.
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Figure 7. Histogram of R2 values obtained by different basic networks.

3.4.3. Weighted Loss Function Results

Based on the above parameter settings, the values of σ associated to the loss functions
were continuously updated to balance the relationships between the tasks. The logarithmic
values of σ2 (log σ2) for each task during the training process are shown in Figure 8. The σ2

is used as the denominator to balance multiple tasks, with smaller values representing a
larger proportion of the total loss for that task.

Figure 8. Variation of the logarithmic value of the squared weighting relationship factor for each task
during the training process.

In Figure 8, it can be seen that the value of σ for the classification task gradually
increased in the first 50 iterations, then gradually decreased, while the σ value for the
leaf number regression task gradually increased in the first 200 iterations and then slowly
became smaller. Finally, for the leaf area regression task, σ kept increasing. In the early
stage of model training, each task may dominate the training of the model and, thus, σ
increased for all three tasks.
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By adjusting the proportion of loss in each task during the training process, the tasks
are balanced and individual tasks are prevented from dominating the training process,
which can allow the optimal solution for all tasks to be obtained.

(1) Classification task

Table 7 provides the optimal classification results with the weighted and unweighted
loss models. It can be seen that, for the classification task, the weighted accuracy and recall
of the weighted loss model increased by 6.25%, the weighted precision increased by 3.75%,
and Fw increased by 5.78% over the unweighted loss model.

Table 7. Results comparison for unweighted loss and weighted loss models in the classification task.

Accuracy Rw Pw Fw

Unweighted loss 0.9063 0.9063 0.9375 0.9096
Weighted loss 0.9688 0.9688 0.9750 0.9674

(2) Regression tasks

The regression results for the unweighted and weighted loss models are provided in
Table 8. The comparison indicates that, for the leaf number regression task, the R2 of the
weighted loss model increased by 7.73%, the value of MSE decreased by 22.17%, and the
value of MAE decreased by 13.92% compared to the unweighted loss model. For the leaf
area regression task, the MSE value of the weighted loss model was reduced by 11.80% and
the MAE value was reduced by 9.14% compared to the unweighted one. Results showed
that the task-dependent uncertainty to weigh the loss function achieved better results in
both classification and regression tasks.

Table 8. Results comparison for unweighted loss and weighted loss models in the regression tasks.

Task
Unweighted Loss Weighted Loss

R2 MSE MAE R2 MSE MAE

Leaf number regression 0.7171 0.8109 0.7238 0.7944 0.5892 0.5846
Leaf area regression 0.9703 0.4209 0.5465 0.9787 0.3029 0.4551

3.5. Comparison with Previous Works

Dobrescu et al. [27] constructed a multi-task learning model with ResNet50 as a hard
parameter sharing network, trained using the Ara2013 dataset, and obtained the optimal
multi-task prediction model when η = 1× 10−4. In the case of the size of the dataset used
in this paper, the model proposed by Dobrescu et al. (denoted as DMWL) was trained with
300 epochs, a batch size of 1, and η = 1× 10−4. Their model was compared with the best
model obtained in this paper.

(1) Classification task

The classification accuracy results for DMWL and our method on the training set are
shown in Figure 9. As can be seen from the figure, our method performed better than
DMWL, with higher classification accuracy, in the first 140 iterations, while both models
achieved 100.00% classification accuracy on the training set in the latter 160 iterations.
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Figure 9. Classification accuracy comparison with DMWL on the training set.

The classification accuracy results for DMWL and our method on the test set are shown
in Figure 10. From Figure 10, it can be seen that our method outperformed DMWL on the
test set, with its classification accuracy after each iteration almost always being higher than
that of DMWL.

Figure 10. Classification accuracy comparison with DMWL on the test set.

DMWL achieved the best classification effect at 278 iterations, which was compared
with the best values of the classification evaluation metrics achieved by our method. The
comparison histogram is shown in Figure 11. In the classification task, the values of each
classification evaluation metric for our method were higher than those obtained by DMWL.
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Figure 11. Histogram comparison of classification evaluation metrics with DMWL.

(2) Regression tasks

For the leaf number regression task, the best R2 values achieved by our method
against those of DMWL are shown in Figure 12. As can be seen from the figure, the R2

value obtained with our method was higher than that for DMWL.

Figure 12. R2 comparison with DMWL in leaf number regression task.

For the leaf area regression task, a comparison of the two models in terms of MSE
is shown in Figure 13. Figure 13 indicates the MSE values obtained by our method were
lower than those of DMWL.

In summary, the best model obtained in this paper demonstrated improved accuracy,
recall, and other metrics in the classification task, as well as outperforming a state-of-the-art
model in both regression tasks on the considered dataset.
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Figure 13. MSE comparison between with DMWL in leaf area regression task.

4. Conclusions and Future Work

In this study, we used VGG16 as a base network and implemented hard parameter
sharing and task-dependent uncertainty trade-off loss functions for genotype classification,
leaf number counting, and leaf area estimation tasks to enable phenotypic analysis of
Arabidopsis thaliana. Our method demonstrated better prediction results, with a classification
accuracy of 96.88%, precision of 97.50%, and Fw of 96.74%, while also obtaining optimal R2

values of 0.7944 and 0.9787 in the leaf number and leaf area regression tasks, respectively.
The multi-task learning models using task-dependent uncertainty trade-off loss functions
improved the phenotypic result.

The dataset used in this paper was small, in the future, the dataset can be added. For
the acquisition of leaf area labels, methods for obtaining leaf area information directly
through images without manual annotation. For the leaf number and leaf area tasks, the
task-specific layers can be re-defined to segment each leaf with target detection to obtain
the leaf number and leaf area information without requiring manually labeled images.
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