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Abstract: This paper presents a new nonlinear control scheme for a pulse-width modulated dc-dc
Zeta converter operating in buck and boost modes. The averaged model of the dc-dc power converter
is derived, based on which a robust control law is developed using a simplified sliding-mode control
technique. The existence and stability conditions are introduced to select proper controller gains that
ensure fast output voltage convergence towards reference voltage. A detailed design procedure is
provided to realize the control scheme using low-cost discrete components. The proposed control
method handles large disturbances, accommodates the non-minimum phase property, and maintains
regulated output voltage during step-up and step-down operation modes. The control system
also maintains constant switching frequency, improves the transient response, and eliminates the
steady-state error at the output voltage. A MATLAB/SIMULINK model is developed to simulate the
closed-loop dc-dc Zeta converter in continuous conduction mode and investigate the tracking and
regulation performance. The simulation results confirm the robustness and stability of the nonlinear
controlled power converter under abrupt line and load variations.

Keywords: analog control design; dc-dc Zeta converter; pulse-width modulated; robust tracking;
simplified sliding-mode control

MSC: 93C10

1. Introduction

Energy efficiency has become a key objective in power system design. Pulse-width
modulated (PWM) dc-dc converters play a crucial role in electrical power systems via
providing an efficient energy conversion between different dc voltage levels. High efficiency
results in high power density and low cost. In this scenario, dc-dc Zeta converters have
garnered significant attention due to their numerous applications in various areas, including
low-power systems, electric vehicles, renewable energy, and many others.

The dc-dc Zeta converter is a non-isolated power converter that offers significant
advantages over traditional configurations. The main feature of this type of power converter
is the ability to provide regulated output voltage while maintaining a variable conversion
ratio between input and output. This makes it particularly suitable for applications where
precise output voltage regulation is required, such as battery-powered systems or solar
applications, where the photovoltaic array voltage can vary considerably.

To ensure reliable dc-dc Zeta converter operation in buck and boost modes under
large disturbances, it is essential to employ an advanced and efficient control technique.
This is because the classical linear control methods are only effective around a local op-
erating point. In this context, the sliding-mode control (SMC) method has proven to be
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an excellent choice for power converter control system design. The SMC method is char-
acterized by the robustness against the system parameters’ variation. Hence, this feature
is advantageous when the power converter operates in buck and boost modes under line
and load disturbances. The SMC technique has widely been used to control several power
converter topologies such as buck [1,2], boost [3], quadratic boost [4], buck-boost [5,6],
H-bridge [7,8], and multilevel converter [9]. SMC technique is a nonlinear control technique
that offers inherent robustness against variations in system parameters, external distur-
bances, and modeling uncertainties. This technique is particularly suitable for applications
that require fast transient response, precise tracking performance, and large disturbance
rejection capability.

Table 1 summarizes the previous research work that has been introduced in the
literature [10–20], which has focused on advanced control techniques of dc-dc Zeta con-
verters. For instance, hyper-plane SMC [10], robust SMC [11], indirect SMC [12], adaptive
SMC [13,14], and proportional-integral (PI) SMC [15] have been proposed for Zeta con-
verters in various applications. Other control methods such as Lyapunov redesign-based
control [16], pole placement via state-feedback control [17], peak-current control with
ramp compensation [18], current-mode control [19], and adaptive control [20] have also
been presented.

Table 1. Research endeavors in advanced control techniques of dc-dc Zeta converters.

Control Technique Merits Drawbacks References

Hyper-plane sliding mode control - Suitable for non-minimum phase
power converters.
- Robust reference tracking and
large-signal stability.

- Complexity of control system structure.
- Hardware implementation cost of nonlinear control
system.
- No systematic design procedure for electronic control
circuit.
- The operation is limited to buck or boost modes.

[10]

Robust sliding mode
current control [11]

Indirect sliding mode control - Rejection of line, load, and
reference variations. [12]

Adaptive sliding mode control
- Unknown system parameters
estimation.
- Large-signal stability

[13,14]

PI sliding mode control - Robust reference tracking.
- Rejection of line and load
disturbances.

[15]

Lyapunov redesign-based
nonlinear control [16]

Pole-placement via
state-feedback control

- Achieve the desired transient
response for local operating point.

- Control performance is deteriorated under large
disturbances.
- The operation is limited in buck or boost modes.

[17]

Peak-current control with ramp
compensation Suitable for non-minimum phase

power converters. - No systematic design procedure for electronic
control circuit.
- The operation is limited to buck or boost modes.
- Complexity and implementation cost of
adaptive control.

[18]

Current control [19]

Adaptive control
- Unknown system parameters
estimation.
- Robust reference tracking.

[20]

As shown in Table 1, the main advantages of the previous control methods include the
robustness against large disturbances and accommodation for system parameters variation.
Such feature allows the dc-dc Zeta converter to have a wide operating range and large-
signal stability. However, a systematic design procedure using a simple electronic control
circuit has not been reported. Moreover, previous control methods of dc-dc Zeta converters
in step-up and step-down modes have not been considered. In [21], an efficient dc-dc Zeta
converter has been introduced to operate in buck and boost modes. However, the design of
robust control circuit has not been provided to handle the large disturbances and maintain
precise tracking performance.

A systematic design procedure of a simplified sliding-mode voltage control circuit
has been proposed in [22,23] for buck converters. In [24,25], a simplified sliding-mode
current control method has also been proposed for non-minimum phase power converters,
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such as buck-boost and Cuk converters. Since the dc-dc Zeta converter is a non-minimum
phase system, the nonlinear sliding-mode current control scheme is recommended to
achieve a fast and robust dynamic response. Hence, motivated by the design approach
in [25], a new sliding-mode current control circuit for dc-dc Zeta converters has been
developed in continuous conduction mode (CCM). The main research contributions can be
summarized as follows. (1) A new nonlinear control scheme is introduced to regulate the
output voltage of dc-dc Zeta converters during step-up and step-down operation modes.
(2) The system modeling, control law derivation, controller gains selection criteria, and
design procedure of a simple control circuit have been provided. (3) The design approach
of the nonlinear controlled power converter circuit has been simulated in MATLAB R2022b
during abrupt line and load disturbances. (4) The tracking performance and transient
response characteristics of the closed-loop PWM dc-dc Zeta converter has been analyzed.

The rest of the paper is organized as follows. The nonlinear model of the dc-dc Zeta
converter in CCM is introduced in Section 2. Section 3 presents the design of the robust
sliding-mode control circuit. Section 4 includes the results and discussion. Finally, the
conclusions are covered in Section 5.

2. Nonlinear Model of Zeta Converter
2.1. Ideal Switched Zeta Converter Model

The dc-dc Zeta converter circuit typology is given in Figure 1. The switching elements
are presented by the MOSFET switch S and the diode D. The energy storage elements
are L1, L2, C1, and C2. For CCM, the ideal switched state-space model of the dc-dc Zeta
converter can be written as [17]

diL1
dt = − 1

L1
vC1
−
u + 1

L1
vIu

dvC1
dt = 1

C1
iL1
−
u − 1

C1
iL2u

diL2
dt = 1

L2
vC1u− 1

L2
vC2 +

1
L2

vIu
dvC2

dt = 1
C2

iL2 − 1
rC2

vC2.

(1)
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⎨⎪
⎪⎪⎧ diL1

dt = − 1
L1

vC1uത + 1
L1

vIu            
dvC1

dt = 1
C1

iL1uത − 1
C1

iL2u                 
diL2

dt = 1
L2

vC1u − 1
L2

vC2 + 1
L2

vIu

dvC2

dt = 1
C2

iL2 − 1
rC2

vC2.                   
 (1) 

 
Figure 1. Dc-dc Zeta converter circuit. Figure 1. Dc-dc Zeta converter circuit.

The state variables of the state-space model given in (1) are iL1, iL2, vC1, and vC2,
which represent the large-signal quantities of inductor currents and capacitor voltages,

respectively. The switching control input u and its complement
−
u take the values 0 or 1.

In addition, vI , vO, and r represent the large-signal quantities of the input voltage, output
voltage, and load resistance, respectively.

Since the parasitic components are neglected in (1), the output voltage vO is equal to
the capacitor voltage vC2.
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2.2. Averaged Zeta Converter Model

In order to derive the equivalent control law based on the sliding-mode control method,
the control-oriented model of the dc-dc Zeta converter in CCM should be derived [25]. The
control state variables of the sliding-mode current controller can be defined as

x1 = Ir − iL1
x2 =

∫
(Vr − βvO)dt

x3 =
∫

x1dt
x4 =

∫
x2dt.

(2)

where Ir, Vr, and β are the reference inductor current, reference output voltage, and output
voltage sensor gain, respectively. It should be noted that the control state variables in (2) are
constructed based on the error signals of input inductor current iL1 and output voltage vO.

As reported in [25], the current-mode control scheme is recommended for non-
minimum phase power converters to improve the dynamic response of the sliding-mode
controlled PWM dc-dc converter. Hence, for the SMC of dc-dc Zeta converter, a reference
current can be defined by

Ir = K(Vr − βvO), (3)

where K is a positive constant gain. Moreover, the fourth control state variable in (2)
contains the double-integral term of the error signal (Vr − βvO), which has been included
to track the reference voltage Vr precisely.

The time derivatives of the control state variables in (2) give the following dynamic
equations: 

.
x1.
x2.
x3.
x4

 =


− uvI−

−
uvC1

L1
− KβiC2

C2
Vr − βvO
Ir − iL1∫

(Vr − βvO)dt

 (4)

where (4) reflects the dynamics of the dc-dc Zeta converter in CCM. The term iC2 represents
the instantaneous current through the capacitor C2.

Next, the averaged control-oriented model of the dc-dc Zeta converter can be derived
according to the averaging technique [22], which gives

.
−
x1.
−
x2.
−
x3.
−
x4


=


− ue

−
v I−

−
ue
−
vC1

L1
− Kβ

−
i C2

C2

Vr − β
−
vO

Ir −
−
i L1∫ (

Vr − β
−
vO

)
dt

 (5)

The averaged control-oriented model in (5) contains the averaged quantities of the

capacitor current
−
i C2, inductor current

−
i L1, input voltage

−
v I , output voltage

−
vO, and

averaged control input ue that varies between 0 and 1. The term
−
ue, on the other hand, is

the complement of ue.

3. Sliding-Mode Current Control Design of DC-DC Zeta Converter
3.1. Equivalent Control Method

The equivalent control law is a continuous function that is derived based on the
invariance conditions and mapped onto a duty cycle to generate the control input of the
sliding-mode controlled PWM dc-dc converter [26].
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In order to derive the equivalent control law, a switching control input should be
defined to satisfy the hitting condition [26], which can be written as

u =
1
2
[1 + sign(ψ)]. (6)

The parameter ψ is the sliding surface that is defined by the following equation:

ψ = α1x1 + α2x2 + α3x3 + α4x4, (7)

in which the constants α1, α2, α3, and α4 define the sliding coefficients of the sliding-mode
current controller.

The time derivative of (7) yields the sliding surface dynamics
.
ψ, which can be ex-

pressed as
.
ψ = α1

.
x1 + α2

.
x2 + α3

.
x3 + α4

.
x4 = 0. (8)

It should be noted that (8) is equated to zero based on the invariance conditions [26].
Now, substituting (5) into (8) gives

α1

−ue
−
v I −

−
ue
−
vC1

L1
− Kβ

−
i C2

C2

+ α2

(
Vr − β

−
vO

)
+ α3

(
Ir −

−
i L1

)
+ α4

[∫ (
Vr − β

−
vO

)
dt
]
= 0. (9)

In (9), the averaged capacitor current
−
i C2 is zero at steady state [22]; therefore, this

term can be neglected, which gives

α1

−ue
−
v I −

−
ue
−
vC1

L1

+ α2

(
Vr − β

−
vO

)
+ α3

(
Ir −

−
i L1

)
+ α4

[∫ (
Vr − β

−
vO

)
dt
]
= 0. (10)

Hence, substituting (3) into (10) and solving for the term ue yields the equivalent
control law

ue =

−
vC1

−
v I +

−
vC1

− KL
−
v I +

−
vC1

−
i L1 +

Kp
−
v I +

−
vC1

(
Vr − β

−
vO

)
+

Ki
−
v I +

−
vC1

∫ (
Vr − β

−
vO

)
dt, (11)

where the sliding-mode controller gains are defined by
KL = α3

α1
L1

Kp = (α2+Kα3)
α1

L1

Ki =
α4
α1

L1

(12)

The proportional gain, integral gain, and inductor current gain of the SMC system are
Kp, Ki, and KL, respectively.

In order to implement the equivalent control law ue via a pulse-width modulator, the
relationship among the control equation ûe, the duty cycle d, and the peak ramp voltage VT
should be utilized.

0 < d =
ûe

VT
< 1 (13)

The relationship in (13) maps (11) onto a PWM-based SMC equation, yielding
ûe = γ

[
−
vC1 − KL

−
i L1 + Kp

(
Vr − β

−
vO

)
+ Ki

∫ (
Vr − β

−
vO

)
dt
]

VT = γ
(−

v I +
−
vC1

) (14)

Note that (14) has been scaled down by a factor γ, where 0 < γ < 1. The factor γ is
utilized to adjust the controller parameters and the peak ramp voltage to suitable values
that fit the practical implementation of the SMC circuit.
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3.2. Existence and Stability Conditions

As reported in [26], the existence and stability conditions set the criteria of the sliding
mode controller gains selection, which ensure a proper sliding-mode control operation.

3.2.1. Existence Condition

The local reachability condition lim
ψ→0

ψ
.
ψ < 0 yields the existence condition [26]. If this

condition is satisfied, the state trajectories of the switched-mode power converter are kept
within the sliding surface vicinity. Considering the dc-dc Zeta converter model given in (5),
the local reachability condition yields the following existence condition:{

−KLiL1 + Kp(Vr − βvO) + Ki
∫
(Vr − βvO)dt < vI

KLiL1 − Kp(Vr − βvO)− Ki
∫
(Vr − βvO)dt < vC1.

(15)

The relationship given in (15) depends on the inductor, proportional, and integral
gains KL, Kp, and Ki, respectively. However, the existence conditions cannot guarantee
the stability of the closed-loop system dynamics. The stability conditions should also
be derived to guarantee the convergence of all the state trajectories towards the desired
equilibrium point [26].

3.2.2. Stability Conditions

It is worth noting that the stability analysis of the proposed nonlinear current-mode
controlled Zeta converter is complicated. Therefore, the stability of the linearized closed-
loop Zeta converter model should be analyzed to derive the required stability conditions.
If the time derivatives of the dc-dc Zeta converter model are set to zero, the steady-state
inductor currents become {

IL1 = V2
o

VI R

IL2 = Vo
R

(16)

The equilibrium point in (16) includes the steady-state quantities of the input voltage
VI , output voltage Vo, input inductor current IL1, output inductor current IL2, and load
resistance R.

The ideal sliding-mode controlled dc-dc Zeta converter is given in (17), which has
been derived via substituting (11) into (1), thus

diL1
dt = − 1

L1
vC1
−
ue +

1
L1

vIue

dvC1
dt = 1

C1
iL1
−
ue − 1

C1
iL2ue

diL2
dt = 1

L2
vC1ue − 1

L2
vO + 1

L2
vIue

dvO
dt = 1

C2
iL2 − 1

rC2
vO.

(17)

The parameters ue and
−
ue are the equivalent control law and its complement, respectively.

The ideal sliding-mode controlled dc-dc Zeta converter model in (17) can be linearized around
the equilibrium point (16), which yields the following linearized model:

.
∼
x1.
∼
x2.
∼
x3.
∼
x4.
∼
x5


=


j11 j12 0 j14 j15
j21 j22 0 j24 j25
j31 j32 0 j34 j35
0 0 j43 j44 0
0 0 0 1 0





∼
x1
∼
x2
∼
x3
∼
x4
∼
x5

. (18)
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In (18), the state vector elements
∼
i L1,

∼
vC1,

∼
i L2,

∼
vO, and

∫ ∼
vOdt are defined as

∼
x1,
∼
x2,

∼
x3,
∼
x4, and

∼
x5, respectively. Assumptions that have been made to obtain the linearized

model are Vi = vI , R = r, Vr = βVo, Ir = IL1 = K(Vr − βvO), VC1 =
∼
vC1, and VO =

∼
vO.

The Jacobian Matrix elements j11, j12, j14, j15, j21, j22, j24, j25, j31, j32, j34, j35, j43, and j44 are
defined as follows:

J =



−KL
L1

− Vi+VC1−1
L1(Vi+VC1)

0 −Kpβ

L1
−Kiβ

L1

1+
KLVo

R

(
Vo
VI

+1
)

C1(Vi+VC1)
−

Vo
R

(
Vo
VI

+1
)

C1(Vi+VC1)
0

KpβVo
R

(
Vo
VI

+1
)

C1(Vi+VC1)

KiβVo
R

(
Vo
VI

+1
)

C1(Vi+VC1)

−KL
L2

1
L2

0 −Kpβ+1
L2

−Kiβ
L2

0 0 1
C2

− 1
RC2

0

0 0 0 1 0


(19)

The stability of the linearized model can be analyzed based on the characteristic
equation obtained from the determinant of (19), where

λ5 + P1λ
4 + P2λ

3 + P3λ
2 + P4λ+ P5 = 0 (20)

is the characteristic equation of the Jacobian Matrix. Note that the parameters P1, P2,
P3, P4, and P5 are represented by

P1 = −(j11 + j22 + j44)
P2 = j11 j22 − j12 j21 + j11 j44 + j22 j44 − j34 j43
P3 = −j35 j43 − j11 j22 j44 + j12 j21 j44 + j11 j34 j43 − j14 j31 j43 + j22 j34 j43 − j24 j32 j43
P4 = −j15 j31 j43 + j11 j35 j43 + j22 j35 j43 − j25 j32 j43 − j11 j22 j34 j43 + j11 j24 j32 j43
+j12 j21 j34 j43 − j12 j24 j31 j43 − j14 j21 j32 j43 + j14 j22 j31 j43

P5 = −j11 j22 j35 j43 + j11 j25 j32 j43 + j12 j21 j35 j43 − j12 j25 j31 j43 − j15 j21 j32 j43
+j15 j22 j31 j43

(21)

Hence, if all the Eigenvalues of the Jacobian Matrix have negative real parts, then the lin-
earized model of the closed-loop dc-dc Zeta converter is stable around the equilibrium point.

Thus, the stability conditions of the closed-loop dynamics of the dc-dc Zeta converter
can be derived using the Routh–Hurwitz stability criterion [25]

P1 > 0
P2 > P3

P1

P3 > P1P4−P5

P2−
P3
P1

P4 >
P4

[
P5
P1

+P2

(
P2−

P3
P1

)]
2P5−P1P4+P3

(
P2−

P3
P1

)
P5 > 0.

(22)

Hence, if (22) is solved numerically, one can solve for the sliding-mode controller gains
that ensure the system stability around the equilibrium point. It is worth noting that the
gains KL, Kp, and Ki must be selected according to the existence and stability conditions
so that the state trajectories remain within the vicinity of the sliding surface and converge
towards the desired equilibrium point [26].

3.3. Control System Structure

In order to select proper controller gains that meet both existence and stability con-
ditions, the dc-dc Zeta converter parameters must be known. First, it has been assumed
that the input voltage VI = (18–30) V, output voltage VO = (12–48) V, load resistance
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R = (20–100) Ω, and switching frequency fs = 100 kHz. Using the design equations in [27],
the dc-dc Zeta converter parameters can be calculated, which are summarized in Table 2.

Table 2. Parameters of dc-dc Zeta converter.

Description Parameter Value

Inductors L1, L2 22 µH
Capacitors C1, C2 33 µF

Load resistance R (20–100) Ω
Input voltage VI (18–30) V

Output voltage VO (12–48) V
Switching frequency fs 100 kHz

According to the conditions in (15) and (22), the control law parameters KL, Kp, and
Ki can be chosen to be 0.03, 413.6, and 455000, respectively. In addition, a scaling factor
γ of 0.5 can be selected to scale down the control law and the peak ramp voltage VT to a
practical range. Hence, the proposed equivalent control law of the dc-dc Zeta converter is
given by ûe = 0.5

[
−
vC1 − 0.03

−
i L1 + 413.6

(
Vr − β

−
vO

)
+ 455 × 103

∫ (
Vr − β

−
vO

)
dt
]

VT = 6 V.
(23)

The sliding-mode current controlled PWM dc-dc Zeta converter in CCM has been
constructed in MATLAB/SIMULINK as shown in Figure 2.
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Figure 2. MATLAB/SIMULINK model of simplified sliding-mode control scheme of PWM dc-dc
Zeta converter.

3.4. Design of SMC Circuit of DC-DC Zeta Converter

The equivalent control Equation in (23) can be implemented using any MATLAB-
based control system, such as dSPACE. Alternatively, the control law can be converted to a
low-cost control circuit based on the design procedure given in [25] as follows:

• Inductor current gain KL: The gain value is chosen as 0.03, where KL = RL2/RL1. If RL1
is assumed to be 33 kΩ, then RL2 is 1 kΩ.

• Summing amplifier: The values of the resistors RS1–RS4 of the summing op-amp can
be set to 5.1 kΩ.
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• PWM generator: The switching frequency and the ramp voltage VT are chosen to be
100 kHz and 12 V, respectively.

• Scaling factor γ: The factor γ is chosen as 0.5, where γ = RI2 /RI1. Hence, if RI2 is
5.1 kΩ, then RI1 yields 10 kΩ. In addition, VT can be scaled down from 12 V to 6 V to
reduce the peak ramp voltage.

• Proportional gain Kp: The gain is defined as Kp = R2/R1 [25]. Thus, if Kp is set to 413.6
and R1 assumed to be 2.2 kΩ, then R2 becomes 910 kΩ.

• Integral gain Ki: The gain is defined as Ki = 1/(R1C) [25]. If Ki is set to 4.55 × 105, then
C is 1 nF.

3.5. Practical Design Considerations

Prior to the hardware implementation, extensive simulation under various operating
conditions should be conducted to validate the proposed control design methodology.
The tracking performance and disturbance rejection capability of the nonlinear controlled
Zeta converter should be investigated in both step-up and step-down operation modes.
The parasitic components, non-idealities of switching elements, and limited bandwidth of
operational amplifiers should also be considered during the simulation of the closed-loop
Zeta converter.

From a practical point of view, one of the most complex aspects can be the digital
implementation of the control law as the quantization errors and delays degrade the control
performance. To overcome this issue, an analog solution using operational amplifiers and
discrete electronic components has been suggested in this research. However, it should
be noted that the analog control circuit parameters may require tuning and adjustment to
enhance the transient response characteristics of the power converter.

Another critical aspect of the practical implementation is the possible lack of exact
knowledge of the components and their parasitic elements. Therefore, the use of a robust
sliding-mode control technique considerably simplifies the experimental phase since the
nonlinear control technique provides precise tracking performance despite the external
disturbances and modeling uncertainty.

4. Results and Discussion
4.1. Validation of Control Design Approach

The control design approach of the simplified nonlinear control circuit of PWM dc-dc
Zeta converter in CCM has been validated based on MATLAB R2022b simulation. The
circuit in Figure 3 has been constructed using Simscape Electrical, and the power converter
parameters are given in Table 2. The closed-loop power converter has been simulated
under normal operating conditions, where the input voltage and load resistance are set to
24 V and 40 Ω, respectively.
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Figure 3. Schematic of simplified sliding-mode control circuit of PWM dc-dc Zeta converter.

The steady-state waveforms have of the ramp voltage, control voltage, gate-to-source
voltage, and output voltage in buck and boost modes are depicted in Figure 4a,b, re-
spectively. It can be seen that the dc-dc Zeta converter operates at a constant switching
frequency of 100 kHz, while the duty cycle of the gate-to-source voltage in buck and boost
modes are approximately 12% and 49.5%, respectively.
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Figure 4. The ramp voltage VT, control voltage u, gate-to-source voltage VGS, and output voltage
VO of the nonlinear controlled PWM dc-dc Zeta converter for (a) step-down and (b) step-up modes
under nominal operating condition (24 V input voltage and 40 Ω load resistance).
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In addition, the averaged output voltage is 48 V, which confirms the regulation per-
formance of the nonlinear controlled dc-dc Zeta converter. The peak-to-peak ripple at
the output voltage during step-down and step-up operation is about 150 mV and 370 mV,
respectively.

It is worth noting that the proposed control circuit has been simulated taking into
account parasitic components, non-idealities of switches, and limited bandwidth of opera-
tional amplifiers.

4.2. Rejection of Large Line and Load Disturbances

The proposed sliding-mode current controlled PWM dc-dc Zeta converter has been
simulated in MATLAB R2022b under large line/load disturbances in step-up and step-
down modes to investigate the large disturbance rejection capability and tracking per-
formance. The control objective is to maintain the desired output voltage under large
deviation from the nominal operating condition and acceptable transient characteristics.

4.2.1. Boost Mode

The closed-loop power converter circuit shown in Figure 3 has been simulated in boost
mode using Simscape Electrical, where the dc-dc Zeta converter parameters are defined as
given in Table 2. Figure 5a,b show the transient response of the output voltage under step
increase and decrease in load current at t = 7 ms, respectively. It has been observed that
under large load disturbance, the maximum percentage undershoot and longest settling
time are 6.7% and 3 ms (1% criterion), respectively.
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Figure 5. Transient response of nonlinear control of PWM dc-dc Zeta converter in boost mode under
load disturbance. (a) The system response during step change in load current from 1.2 A to 2.4 A at
t = 7 ms. (b) The system response during step change in load current from 1.2 A to 0.48 A at t = 7 ms.

In addition, Figure 6a,b exhibit the transient response of the output voltage during
step increase and decrease in input voltage at t = 7 ms, respectively. Obviously, under
large line disturbance, the maximum percentage undershoot and longest settling time are
2.3% and 2.5 ms (1% criterion), respectively. The transient characteristics of the closed-loop
power converter in boost mode have been summarized in Table 3.
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t = 7 ms. (b) The system response during step change in input voltage from 24 V to 18 V at t = 7 ms.

Table 3. Dynamic response characteristics of proposed nonlinear control of PWM dc-dc Zeta converter
in buck and boost modes.

Operation Mode Step Line/Load Change Percentage Peak
Overshoot (%) Settling Time (ms) Output Voltage (V)

Buck Mode

∆iO → 0.3 A to 0.60 A 2.5 2.0 12

∆iO → 0.3 A to 0.12 A 1.7 2.0 12

∆vI → 24 V to 30 V 0.8 1.3 12

∆vI → 24 V to 18V 1.0 1.3 12

Boost Mode

∆iO → 1.2 A to 2.40 A 6.7 3.0 48

∆iO → 1.2 A to 0.48 A 4.8 2.8 48

∆vI → 24 V to 30 V 1.7 2.0 48

∆vI → 24 V to 18V 2.3 2.5 48

It can be seen that when the dc-dc Zeta converter is operated in boost mode, the
proposed nonlinear control circuit rejects the large step change in input voltage and load
current and maintains regulated output voltage at 48 V. Moreover, the maximum per-
centage overshoot/undershoot and settling time during large disturbances are within
acceptable range.

4.2.2. Buck Mode

The robustness of the simplified nonlinear controlled dc-dc Zeta converter circuit
against large disturbances has also been tested in step-down mode. Figures 7 and 8 exhibit
the transient response of the output voltage under load and line disturbances, respectively.
As shown in Figure 7a, when the load changes from 0.3 A to 0.6 A at t = 7 ms, the maximum
percentage undershoot and the longest settling time are 2.5% and 2 ms (1% criterion),
respectively. On the other hand, the step decrease in input voltage in Figure 8b results in
the maximum percentage undershoot of 1% and 1.3 ms settling time (1% criterion). The
transient characteristics of the closed-loop dc-dc Zeta converter in buck mode have been
summarized in Table 3.
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Figure 7. Transient response of nonlinear control of PWM dc-dc Zeta converter in buck mode under
load disturbance. (a) The system response during step change in load current from 0.3 A to 0.6 A at
t = 7 ms. (b) The system response during step change in load current from 0.3 A to 0.12 A at t = 7 ms.
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Hence, it can be confirmed that the simplified nonlinear control circuit tolerates the
large disturbances, regulates the desired output voltage, and provides wide operating range.

4.3. Comparison with Proportional-Integral Controller

The proposed sliding-mode current control scheme has been compared with the
conventional PI controller under large disturbances in step-up and step-down modes. The
proportional and integral gains of the conventional PI controller have been selected based
on the Ziegler–Nichols method to operate the dc-dc Zeta converter in buck and boost
modes, where the PI control law u∗ is defined as

u∗ = 0.1(Vr − βvO) + 650
∫

(Vr − βvO)dt. (24)
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Figure 9a,b exhibit the tracking performance of the proposed and PI controllers when
the dc-dc Zeta converter operates in boost mode during line and load disturbances. The
transient response characteristics of the two controllers are summarized in Table 4. As
shown in Figure 9a and Table 4, under load disturbance conditions, the PI controller
response exhibits longer settling time as compared to the proposed controller. However, in
Figure 9b, the PI controller shows the largest percentage undershoot.
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Figure 9. Tracking performance of proposed and PI control methods of PWM dc-dc Zeta converter in
boost mode during abrupt changes in (a) load current iO and (b) input voltage vI.

Table 4. Comparison of PI and proposed control methods of PWM dc-dc Zeta converter in boost
mode under line and load disturbances.

Control Technique Load/Line Disturbances Percentage Peak
Overshoot (%) Settling Time (ms) Output Voltage (V)

PI Control
∆iO → 2.4 A to 1.2 A 7.3 3

48
∆iO → 1.2 A to 0.48A 6.3 4

Proposed Control
∆iO → 2.4 A to 1.2 A 7.3 3

48
∆iO → 1.2 A to 0.48A 4.8 2.8

PI Control
∆vI → 30 V to 24 V 2.9 2

48
∆vI → 24 V to 18V 5 3

Proposed Control
∆vI → 30 V to 24 V 1.7 2

48
∆vI → 24 V to 18V 2.3 2.5

In Figure 10a,b, the tracking performance of the two controllers has been compared in
step-down mode during line and load disturbance. The transient response characteristics
of the two controllers are summarized in Table 5.
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Figure 10. Tracking performance of proposed and PI control methods of PWM dc-dc Zeta converter
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Table 5. Comparison of PI and proposed control methods of PWM dc-dc Zeta converter in buck
mode under line and load disturbances.

Control Technique Load/Line Disturbances Percentage Peak
Overshoot (%) Settling Time (ms) Output Voltage (V)

PI Control
∆iO → 0.6 A to 0.3 A 7.5 3.5

12
∆iO → 0.3 A to 0.12A 6.3 5

Proposed Control
∆iO → 0.6 A to 0.3 A 3 2

12
∆iO → 0.3 A to 0.12A 1.7 2

PI Control
∆vI → 30 V to 24 V 3.3 2.5

12
∆vI → 24 V to 18V 4.5 3

Proposed Control
∆vI → 30 V to 24 V 0.6 1

12
∆vI → 24 V to 18V 1 1.3

Figure 10a,b along with the transient characteristics given in Table 5 show that the
PI controller response exhibits longer settling time and the largest overshoot as compared
to the proposed controller. Hence, the comparison results confirm the superiority of the
proposed sliding-mode current control circuit over the conventional control method.

5. Conclusions

A systematic design procedure of a robust nonlinear control scheme of a PWM dc-dc
Zeta converter operating in buck and boost modes has been introduced. The power con-
verter modeling and control design approach have been developed based on the simplified
sliding-mode current control method. The equivalent control law has been derived based
on the invariance conditions, while the existence and stability conditions have been pro-
vided to select proper sliding-mode control parameters. The nonlinear control equation has
been realized in a simple electronic circuit, which is suitable for various industrial applica-
tions. For instance, photovoltaic and micro-mobility charging systems require low-cost and
robust control schemes to improve the dc-dc Zeta converter dynamics, accommodate the
modeling uncertainties, and tolerate the line and load disturbances. Thus, the proposed
control circuit can be implemented as an alternative for complex and high-cost control
platforms, such as dSPACE, OPAL-RT, and other real-time operating systems.
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The closed-loop power converter circuit has been built and simulated in MAT-
LAB/SIMULINK using Simscape Electrical to validate the control design approach
under abrupt line and load disturbances. The desired output voltage has been deter-
mined based on the reference voltage that operates the power converter in buck or boost
mode. The simulation results have shown that the nonlinear controlled PWM dc-dc Zeta
converter tracks the desired reference voltage and provides (12–48) V regulated output
voltage within (18–30) V input voltage and (20–100) Ω load resistance. It has also been
confirmed that the proposed closed-loop power converter exhibits consistent transient
response and robust tracking capability. It has been observed that the maximum per-
centage overshoot and longest settling time under large load disturbance were 6.7% and
3 ms, respectively. Under large line disturbance, however, the maximum percentage
overshoot and longest settling time were 2.3% and 2.5 ms, respectively. This research
can be extended in the future with PCB prototype designs and experimental validation.
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