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Abstract: Single-cell clustering facilitates the identification of different cell types, especially the
identification of rare cells. Preprocessing and dimensionality reduction are the two most commonly
used data-processing methods and are very important for single-cell clustering. However, we found
that different preprocessing and dimensionality reduction methods have very different effects on
single-cell clustering. In addition, there seems to be no specific combination of preprocessing and
dimensionality reduction methods that is applicable to all datasets. In this study, we developed a
new algorithm for improving single-cell clustering results, called SCM. It first automatically searched
for an optimal combination that corresponds to the best cell type clustering of a given dataset. It
then defined a flexible cell-to-cell distance measure with data specificity for cell-type clustering.
Experiments on ten benchmark datasets showed that SCM performed better than almost all the other
seven popular clustering algorithms. For example, the average ARI improvement of SCM over the
second best method SC3 even reached 29.31% on the ten datasets, which demonstrated its great
potential in revealing cellular heterogeneity, identifying cell types, depicting cell functional states,
inferring cellular dynamics, and other related research areas.
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1. Introduction

Single-cell sequencing technology refers to the sequencing of single-cell genomes
or transcriptomes to obtain genomic, transcriptomic, or other multiomics information to
reveal cell population differences and cellular evolutionary relationships [1]. By mapping
the cells of different organisms at the resolution of a single cell, this technology has made
significant contributions to better exploring cellular heterogeneity across various organisms
and has played an important role in research fields such as oncology, developmental biology,
microbiology, and neuroscience [2]. Traditional bulk RNA sequencing technology detects
the average expression levels of cell populations, ignoring the gene expression of individual
cells, which leads to the inability to study cell heterogeneity [3]. In contrast, single-cell RNA
sequencing (scRNA-seq) technology acquires transcriptome information at the resolution
of single cells, enables the observation of cells with higher precision and better identifies
rare cell types, which is helpful to stimulate new ideas for disease treatments [4].

A common strategy used to study the identification of cell types is unsupervised
clustering, and various single-cell clustering methods have been developed. For instance,
Xu et al. [5] introduced the SNN-cliq algorithm, which used a quasiclique-based clustering
algorithm to cluster cells on a shared nearest neighbour (SNN) network constructed from
single-cell scRNA-seq datasets. Seurat [6] combined the shared nearest neighbour graph
with the Louvain community detection algorithm to identify cell types. Based on the con-
sensus clustering strategy, the popular SC3 [7] algorithm integrated the k-means clustering
results with different distance and different dimensionality reduction methods to carry out
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the “consensus” identification of cell types. Yang et al. [8] designed the SAFE algorithm
for ensemble clustering based on the hypergraph model. Semisoft clustering was adopted
in SOUP [9] to identify both pure and intermediate cell types. CIDR [10] improved the
accuracy of clustering by imputing the distance matrix. PcaReduce [11] combined PCA and
hierarchical clustering to classify cell types. SIMLR [12] performs clustering by generating
a similarity matrix based on multikernel learning.

Although great efforts have been made to develop clustering methods, biological and
technical noise, redundant information and the high dimensionality of scRNA-seq data
greatly discourage the accurate identification of cell types [13,14]. Therefore, effective data
preprocessing and dimensionality reduction before cell type clustering are two basic and
essential steps for downstream analysis [15,16]. For example, SC3 and CIDR apply the
log transformation for data preprocessing before cell type clustering. Both SCANPY [17]
and Seurat preprocess the expression matrix via the z-score transformation. SINCERE [18]
normalized gene expressions using the z-score method. For data dimensionality reduction,
various methods have been designed based on specific issues. The most popular principal
component analysis (PCA) [19] approach reduces the dimensionality by extracting principal
components while reducing the loss of data information as much as possible. The Laplacian
eigenmap [20] approach is a manifold dimensionality reduction algorithm that preserves
the structure of local sample points in the low-dimensional space. The combination of these
two dimensionality reduction methods was employed in SC3. Becht et al. [21] developed
the UMAP method, which was designed based on Riemannian geometry and algebraic
topology to perform dimension reduction and data visualization. In contrast to linear
dimensionality reduction methods, such as PCA and LDA [22], UMAP can map structural
information from high-dimensional space directly into low-dimensional space, and it pays
more attention to preserving the topology structure with neighbouring samples. SOUP
utilizes nonnegative matrix factorization (NMF) [23] to reduce dimensionality, and multidi-
mensional scaling (MDS) [24] is applied in ascending [25] for dimensionality reduction.

In practice, existing single-cell clustering methods usually apply fixed preprocessing
and dimensionality reduction methods across datasets rather than applying a flexible ap-
proach. Nevertheless, different datasets actually have different requirements for preprocess-
ing and dimensionality reduction. In summary, determining the appropriate preprocessing
and dimensionality reduction methods for different datasets is an urgent problem to be
solved, and the solution will greatly improve the clustering accuracy.

In this study, we developed a novel SCM algorithm by first searching for the optimal
preprocessing and dimensionality reduction methods based on a given dataset by using a
newly designed f-value approach. Based on the selected optimal combination of preprocess-
ing and dimensionality reduction methods, the optimal consensus matrix can be generated
accordingly. Since the cell-to-cell distance metric is also a crucial step in cell type clustering,
we developed a flexible distance measure with data specificity in this study. Based on the
optimal consensus matrix and the flexible distance, a hierarchical clustering was employed
to complete the final cell type clustering step (see Figure 1). The clustering accuracy of SCM
was evaluated on ten benchmark datasets, and the results showed that SCM performed
much better than all the compared clustering methods.
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Figure 1. Overview of SCM. SCM is composed of two main parts: (A) Given a single-cell gene
expression matrix, nine consensus matrices are then constructed and the optimal one is determined
with the largest f-value. (B) A flexible distance measure termed SCM-tom is defined with data
specificity. Based on the distance matrix, hierarchical clustering is applied to complete the final cell
type clustering step.

2. Results
2.1. Effects of Different Combinations of Preprocessing and Dimensionality Reduction Methods on
Cell Type Clustering

In this study, the commonly used log transformation, no transformation and z-score
transformation were employed as the candidates for the preprocessing methods. Three
popular techniques, PCA, Laplacian Eigenmaps (LE), and UMAP, were applied as dimen-
sionality reduction methods. The combinations of preprocessing methods and dimension-
ality reduction methods are shown in Table 1. Then, based on the framework of SC3, nine
consensus matrices and the corresponding clustering results were generated with the nine
combinations in Table 1.

Table 1. Summary of the nine combinations of preprocessing and dimensionality reduction methods.

Method Labels Preprocessing Method Dimensionality Reduction Method

x1 log transformation PCA + UMAP
x2 log transformation LE + UMAP
x3 log transformation LE + PCA
x4 no transformation PCA + UMAP
x5 no transformation LE + UMAP
x6 no transformation LE + PCA
x7 z-score transformation PCA + UMAP
x8 z-score transformation LE + UMAP
x9 z-score transformation LE + PCA

Based on the SC3 framework, the nine combinations of preprocessing and dimension-
ality reduction methods (Table 1) were run on all ten datasets (see the Methods section).
Considering the instability of SC3 clustering, each combination was run 50 times, and the
average of the 50 ARI values was used to evaluate the performance of the clustering results.
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From the running results, different preprocessing and dimensionality reduction meth-
ods were found to have quite different effects on cell type clustering (Figure 2). Taking
the Buettner dataset as an example, when the preprocessing method was set to the log
transformation, the ARI values corresponding to x1, x2, and x3 in Table 1 are 0.77, 0.35, and
0.05, respectively. For the Usoskin dataset, if the dimensionality reduction method was set
to PCA + UMAP, the ARI values corresponding to x1, x4, x7 in Table 1 were 0.85, 0.06, and
0.82, respectively. The best combination of preprocessing and dimensionality reduction
for the Buettner dataset was x7; however, on the Zeisel dataset, the x7 combination had
the worst performance. Therefore, it is apparent that different datasets exhibited large
differences in sensitivity to different combinations of preprocessing and dimensionality
reduction methods.
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Figure 2. ARI values of the clustering results with different combinations of preprocessing and
dimensionality reduction methods (Table 1). The rows represent different combinations and the
columns indicate different datasets.

2.2. Performance of the f-Value for the Selection of the Optimal Combination

In this study, we developed an f-value approach (see the Methods section for details)
to automatically determine the optimal combination of preprocessing methods and di-
mensionality reduction methods with data specificity. In practice, the ARI value of the
optimal combination selected by the f-value may be slightly lower than that of the real best
combination. In addition, although the selected optimal combination was not the best, its
ARI value was ranked highly. To fully evaluate the effectiveness of the f-value, we first
defined and calculated a so-called optimal ARI interval with an error range of e, termed
OAI(e), for a given dataset as follows.

For each dataset, the largest ARI value under the nine combinations was recorded
as MARI, and then OAI(e) was defined as [MARI − e, MARI]. Based on the definition, if the
ARI value under a combination belongs to the interval OAI(e) and ranks at the top p value
among the nine ARI values, it was considered that the combination is the optimal one with
an error range of e and a rank of p. Due to the instability of SC3, the nine combinations
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were run 50 times on each dataset. Then, the accuracy of the selected optimal combination
is defined by the following formula.

ACC =

50
∑

i=1
count(i)

50

where count(i) = 1 if the selected optimal combination belongs to the interval OAI(e) and
ranks at the top p value, and count(i) = 0 otherwise.

We evaluated the performance of the f-value in selecting the optimal combinations on
the ten datasets under different error ranges e (0.05, 0.03, and 0.01) and top ranks p (3 and
2). The results showed that the f-value demonstrated high accuracy within a small error
range on most datasets (Figure 3). For example, when the error range e was set to 0.01 and
p was set to 2, the accuracies of the f-value on the Darmanis, Buettner, and Baron-mouse
datasets were 100%, and they were very close to 100% on the Usoskin, Biase, and Lake
datasets. When p was set to 2, as error range e increased from 0.01 to 0.03, the accuracy of
the f-value on some datasets showed a significant upwards trend. For example, the accuracy
on the Zeisel dataset increased from 50% to 86%. Moreover, the accuracies on the Biase
and Lake datasets reached 100%. When the error range e was set to 0.03 and p was set to
3, the accuracies on the Zeisel, Usoskin, and Muraro datasets increased to 100%. It can be
seen that a slight increase in error range e may significantly increase the accuracy of the
f-value on some datasets, which, to some extent, indicates that the difference between the
combination with the highest f-value and the combination with the highest ARI may be
very small and imperceptible. Based on the above results, the combination with the highest
f-value obtained excellent performance on most datasets and can help to accurately select
the optimal combination of preprocessing and dimensionality reduction methods within a
small error range.
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2.3. Accuracy Comparison between the Selected Optimal Combination and the Nine
Other Combinations

In this section, a comparison of the ARI values of the selected optimal combination of
preprocessing and dimensionality reduction methods with the nine other combinations is
performed. The model was run on each dataset 50 times separately, and the error bars of
the ARI values were drawn accordingly (Figure 4). For a fair comparison, the Euclidean
distance measure was applied to all the combinations.
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Figure 4. The performance of SCM among the nine combinations is shown in Table 1. The first bar
represents the ARI value corresponding to the optimal consensus matrix with SC3’s default distance
calculation method. The bars x1–x9 symbolize the nine combinations (Table 1). Specifically, the blue
bar (x3) depicts the results of SC3 with default parameters. Each panel represents a dataset. The last
panel shows the average ARI value over the ten datasets.

As shown by the comparison, the f-value can always identify the best combination on
most datasets (Figure 4). In comparison with the default SC3 framework corresponding
to x3, the selected optimal combination was more conducive to improving the clustering
efficiency. For example, on the Baron-mouse, Biase, Buettner, Darminis, Lake, and Usoskin
datasets, the average ARI values of the selected combinations were or approached the
highest among all nine combinations. On the Muraro dataset, although the selected
combination was not the best one, its rank was high, and its ARI value was higher than
those of all the others except for the best one. On the other datasets, such as the Deng,
Romanov, and Zeisel datasets, the ARI values of the selected combination were only slightly
lower than those of the best one, and its rank was high. In summary, the f-value effectively
improved the accuracy of cell type clustering, which could facilitate novel discoveries in
scRNA-seq analysis. In addition, we showed the heatmaps of selected optimal consensus
matrices on the ten datasets (see Supplementary Figures S10–S19).

2.4. Performance Evaluation of the Reconstructed Flexible Distance

After determining the optimal combination of preprocessing and dimensionality
reduction methods, we redefined a new cell-to-cell distance (termed SCM-tom) for the
optimal consensus matrix to replace the default Euclidean distance of SC3. To evaluate
the performance of SCM-tom, we made a comparison between the two distance measures.
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Each distance measure was run 50 times, and the average ARI value was calculated for the
accuracy comparison.

The comparison showed that the new SCM-tom distance measure performed much
better than the Euclidean distance, named SCM-eu, and the average accuracy improvement
of SCM-tom over SCM-eu was 4.77% on the ten datasets (Figure 5). On the Muraro,
Baron-mouse, Deng, and Romanov datasets, the improvement even reached 11.79–27.89%.
Based on the ten datasets, we found that the Euclidean distance consistently performed
worse, possibly because it was unable to effectively capture differential patterns between
cells. Overall, the new distance metric demonstrated great advantages over the traditional
Euclidean distance in improving cell type clustering, possibly because it overcame the
information loss problem experienced by the Euclidean distance metric, thereby further
enhancing the clustering performance.
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2.5. Performance Comparison between SCM and Other Popular Clustering Algorithms

To evaluate the performance of SCM and other state-of-the-art cell type clustering
methods, we compared SCM with seven popular single-cell clustering algorithms on the
ten datasets, including SC3, Seurat, Soup, CIDR, pcaReduce, SIMLR, and tSNE + kmeans
(see Supplementary Notes for parameter setup and versions of the clustering methods).
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Due to the instabilities of SCM, SC3, and pcaReduce, each of them was run 50 times, and the
average ARI value of the 50 clustering results was utilized for the performance comparison.

After comparison, the results showed that SCM had the best performance on all
datasets, and the average accuracy improvement of SCM over the second best method
reached 29.31% (Figure 6). In particular, the accuracy improvements of SCM over the other
compared methods on the Baron-mouse, Darmanis, Muraro, Deng, and Romanov datasets
were 21.95–145.40%, 10.17–171.05%, 27.79–325.79%, 8.02–129.16%, and 37.63–99.35%, re-
spectively. Specifically, SCM largely improved SC3 on all ten datasets by optimizing the
framework. For example, on the Buettner dataset, the ARI value of SC3 was no more than
0.01, while the ARI value of SCM reached 0.89. On the Muraro dataset, the ARI value
of SCM was 0.93, whereas that of SC3 was only 0.73, and most of the other clustering
algorithms were concentrated at approximately 0.4. As a whole, the SCM algorithm effec-
tively selected the optimal combination of preprocessing and dimensionality reduction
methods and then utilized a reliable cell-to-cell distance measure, which greatly improved
the clustering performance.
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2.6. Visualization of the Clustering Results

For the purpose of illustrating the clustering results more intuitively, we used tSNE
to visualize the clustering results of each clustering algorithm. The clustering results of
the Zeisel dataset are displayed in Figure 7. Visualizations of the remaining datasets are
provided in Supplementary Figures S1–S10. Each point in the figure represents a cell, and
the cells were labelled by a clustering method and marked by different colours. From the
visualizations, it was clear that the clustering results of SCM highly overlapped with the
real labels. Focusing specifically on the circled results in the figure, SCM provided clearer
boundaries than the author’s true labels. However, cells in the circle were erroneously
clustered in one cell type by SC3, SIMLR, and tSNE + kmeans. Compared with the
clustering results of other algorithms, SCM exhibited high accuracy in the partitioning
of cell populations. In conclusion, SCM can accurately distinguish cell types and greatly
improve the clustering efficiency.
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Each panel represents a clustering algorithm. The first panel represents the true labels annotated by
the author of the dataset. Cells are colored according to their true cellular labels.

3. Discussion

The clustering of cells, as a common analytical approach, plays an increasingly power-
ful role in single-cell studies. Therefore, achieving accurate clustering of single-cell data
is very important for research in the field of bioinformatics. In this study, we proposed a
novel single-cell clustering algorithm by scoring consensus matrices and redefining a more
reliable cell-to-cell distance measure. Experiments on ten benchmark datasets showed that
SCM performed much better than all the compared clustering algorithms, which demon-
strates its great potential in revealing cellular heterogeneity and identifying new cell types.
The work and innovations in this paper were mainly based on the following two points.

First, we designed the f-value scoring mechanism to achieve the flexible selection of
the optimal combinations of preprocessing and dimensionality reduction methods based
on data specificity. The experimental results confirmed the strong effectiveness of the
f-value in identifying the optimal combination. Second, a flexible distance measure named
SCM-tom was reconstructed with data specificity by calculating both the direct and indirect
distances of cells and fully capturing the topological structure information among cells.
The experimental results again confirmed the great advantages of SCM-tom over the most
used Euclidean distance.

Although the great advantages of SCM in single-cell clustering have been demon-
strated, further improvements to SCM can still be made in the future. For example, the
current version of SCM only considered three preprocessing methods and three pairs
of dimensionality reduction methods, which may limit the optimal selection of SCM. In
addition, the current version only utilized gene expression data, which may also limit its
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performance in some cases. In the future, more preprocessing methods and three pairs
of dimensionality reduction methods and multiomics data will be added to achieve more
accurate cell type clustering.

The software was developed to be user-friendly and is expected to play a crucial role
in new discoveries of single-cell clustering using scRNA-seq, especially in complex human
diseases, such as cancers, and in the discovery of new cell types.

4. Methods
4.1. Datasets

A total of ten public scRNA-seq datasets were used to evaluate the performance of the
clustering methods, and the true cell types in each dataset were validated in previous stud-
ies. The ten datasets were Biase [26], Deng [27], Darmanis [28], Muraro [29], Usoskin [30],
Romanov [31], Zeisel [32], Lake [33], Buettner [34], and Baron-mouse [35]. The numbers of
cells (ranging from 56 to 3042) and genes (ranging from 8989 to 25,734) in these datasets are
presented in Supplementary Table S1.

4.2. Evaluation Metrics

The clustering accuracy in this study was measured by the adjusted rank index
(ARI) [36]. Here, U = {u1, u2,..., up} was the true partition of the cells into P clusters,
and V = {v1, v2,..., vk} was the partition calculated by a clustering algorithm. The ARI of
these two partitions is defined as follows.

ARI =

∑
i,j

(
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2

)
−
[

∑
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(
ni
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)
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(
n j
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)]
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)]
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(
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)]
/
(
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ni =
K

∑
j=1

n j

where nij is the number of objects that are in both class ui and cluster vj; ni and nj are the
numbers of objects in class ui and cluster vj, respectively. The value of ARI belongs to
[−1, 1], and a larger ARI value represents a better clustering result.

4.3. Preprocessing of the Gene Expression Matrix

Three commonly used preprocessing methods, including a log transformation, no
transformation, and a z-score transformation, were employed to analyse the effects of
different preprocessing methods on cell type clustering. Given a gene expression matrix
XG×N = {xij} with G genes and N cells, data preprocessing is performed as follows.

log transformation : x′ij = log2(xij + 1)

no transformation : x′ij = xij

z− score transformation : x′ij =
xij − ui

σi

where ui and σi represent the mean and standard deviation of the i-th row of XG×N, respectively.
As illustrated in Figure 8, three processed gene expression matrices were obtained

after the above three preprocessing methods. Afterwards, the Euclidean distance, Pearson
distance, and Spearman distance between two cells were calculated for each processed
expression matrix. Consequently, three distance matrices can be obtained for each processed
expression matrix.
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4.4. Data Dimensionality Reduction

After preprocessing of the gene expression matrix, each pair of the three dimensionality
reduction methods (PCA + UMAP, LP + UMAP, and LP + PCA) was applied to each distance
matrix. Based on the pipeline of SC3, each combination of a preprocessing method and a
pair of dimensionality reduction methods can yield a consensus matrix (Figure 9).

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 16 
 

 

As illustrated in Figure 8, three processed gene expression matrices were obtained 

after the above three preprocessing methods. Afterwards, the Euclidean distance, Pearson 

distance, and Spearman distance between two cells were calculated for each processed 

expression matrix. Consequently, three distance matrices can be obtained for each pro-

cessed expression matrix. 

 

Figure 8. Overview of data preprocessing. 

4.4. Data Dimensionality Reduction 

After preprocessing of the gene expression matrix, each pair of the three dimension-

ality reduction methods (PCA + UMAP, LP + UMAP, and LP + PCA) was applied to each 

distance matrix. Based on the pipeline of SC3, each combination of a preprocessing 

method and a pair of dimensionality reduction methods can yield a consensus matrix 

(Figure 9). 

As mentioned above, each processed gene expression matrix can generate three dis-

tance matrices. Dimensionality reduction was performed on the three distance matrices 

via each of the three pairs of dimensionality reduction methods. After each dimensionality 

reduction process for each distance matrix, d1, d2,…, dD dimensions were retained (4–7% 

of the original dimensions). Then, each distance matrix generated 2 × dD dimensionality 

reduction results under the pair of dimensionality reduction methods. Therefore, three 

distance matrices under a pair of dimensionality reduction methods can generate a total 

of 3 × 2 × dD dimensional reduction results. Then, SCM utilized k-means clustering for each 

dimensional reduction result and fused them into a consensus matrix using consensus 

clustering (see Supplementary Methods). Thus, nine consensus matrices were finally gen-

erated under the nine combinations of preprocessing methods and dimensionality reduc-

tion methods in Table 1. 

 

Figure 9. The process of calculating a consensus matrix from a pre-processed gene expression matrix.

As mentioned above, each processed gene expression matrix can generate three dis-
tance matrices. Dimensionality reduction was performed on the three distance matrices
via each of the three pairs of dimensionality reduction methods. After each dimensionality
reduction process for each distance matrix, d1, d2,. . ., dD dimensions were retained (4–7%
of the original dimensions). Then, each distance matrix generated 2 × dD dimensionality
reduction results under the pair of dimensionality reduction methods. Therefore, three
distance matrices under a pair of dimensionality reduction methods can generate a total
of 3 × 2 × dD dimensional reduction results. Then, SCM utilized k-means clustering for
each dimensional reduction result and fused them into a consensus matrix using consensus
clustering (see Supplementary Methods). Thus, nine consensus matrices were finally gener-
ated under the nine combinations of preprocessing methods and dimensionality reduction
methods in Table 1.

4.5. Selection of the Optimal Preprocessing and Dimensionality Reduction Methods

After preprocessing and dimensionality reduction, a total of nine consensus matrices
were constructed; hence, nine corresponding clustering results were obtained. In this study,
the F-statistic [37] was utilized to quantitatively measure the quality of a consensus matrix.
In detail, given a consensus matrix YN×N = {Yij}, Yij ∈ [0, 1] and its corresponding clustering
result R, the f-value F(Y) of consensus matrix Y was calculated as follows.
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Step 1. Calculating the f-value of each row of the consensus matrix.

Suppose that each column of a consensus matrix represents a cell and that the rows
denote the different states of the cells. Then, the quality of a consensus matrix should be
determined by all the states, and therefore, we first calculate the f-value of each row of a
consensus matrix to measure its cell type discrimination intensity. Then, the f-values of all
the rows are effectively fused into the f-value of the whole consensus matrix.

First, the between-cluster variance of the i-th row of consensus matrix Y is calculated
by the following formula:

var_b(i) =
k

∑
j=1

nj(Yi −Yij)
2,

where nj is the number of cells (columns) in the j-th cluster of R; k is the number of clusters
in R; Yi is the mean of the i-th row of Y, and Yij is the mean of the i-th row of Y in the j-th
cluster of R.

Then, the in-cluster variance of the i-th row of consensus matrix Y is computed as follows:

var_a(i) =
N

∑
j=1

(Yi −Yij)
2,

var_i(i) = var_a(i)− var_b(i),

where N is the number of cells, Yij is the value of the i-th row of Y and var_a(i) denotes the
entire variance from both the between-cluster and in-cluster distances.

Finally, the f-value of the i-th row of consensus matrix Y is generated by the following formula:

F(i) =
var_b(i)/d f1

var_i(i)/d f2

d f1 = k− 1, d f2 = N − k

where df 1 and df 2 are the degrees of freedom of var_b(i) and var_i(i), respectively.

Step 2. Generating the f-value of a consensus matrix.

After the calculation of f-value F(i) for each row of consensus matrix Y, the mean and
standard deviation of the f-values F(1), F(2),..., F(N) are, respectively, calculated and denoted
by mean(FY) and dev(FY). In this study, we proposed a hypothesis that a higher quality
consensus matrix has larger row f-values with smaller variance. Therefore, the final f-value
of consensus matrix Y is calculated by the following formula.

F(Y) = α

√
mean(FY)− λ α

√
dev(FY)

where λ and α are set to 0.5 and 5, respectively, by default.
Based on the definition of the f-value for each row of a consensus matrix, the larger the

F(i) value is, the smaller the in-cluster cell-to-cell variance and the larger the between-cluster
variance, which leads to higher quality values in the i-th row. Accordingly, the larger the
F(Y) value is, the higher quality the whole consensus matrix is. After computing the f-value
of the nine consensus matrices, the one with the largest f-value is determined as the optimal
consensus matrix.

4.6. Definition of a Flexible Cell-to-Cell Distance SCM-Tom

The SC3 method applies the fixed Euclidean distance on the consensus matrix. In
this paper, a flexible distance measure termed SCM-tom was developed to reconstruct
more reliable distances between cells with data specificity. The new distance measure
was improved from the weighted correlation network analysis (WGCNA) approach [38]
as follows.
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(1) Since the value Yij in consensus matrix Y represents the probability of the i-th and
j-th cells belonging to the same cell type, the original consensus matrix is defined as the
initial correlation coefficient matrix S:

Sij =
∣∣cor(i, j)

∣∣= Yij

(2) The β index is introduced to increase the variability between the correlation coeffi-
cients by constructing a new adjacency matrix A = {αij}.

αij = Sβ
ij

where αij redefines the association strength of the two cells i and j, and the default value of
β in this study is set to 8.

(3) The connectivity strength kj of each cell j with the other cells is obtained by the
following formula.

k j =
n

∑
i=1,i 6=j

αij

In this study, the relationship between two cells i and j was determined not only by
their direct association strength αij but also by their indirect connections via their common
neighbours. For example, if both cells i and j have strong association strengths αiu and αuj
with cell u, it is assumed that cells i and j have a close relationship. Based on the above
assumption, the topological overlap matrix TOM Ω ={ωij} is generated as follows.

ωij =
∑
u

αiuαuj + αij

min
{

ki, k j
}
+ 1− αij

The topological overlap matrix focuses on primary and secondary associations and
describes the connection relationship between two cells. Based on the above definition,
the value ωij indicates the similarity between the i-th and j-th cells at the level of both
direct and indirect associations. The larger the value ωij is, the closer the two cells are to
each other.

Finally, the new flexible distance matrix D = {dij} is obtained by the following formula.

dij = 1−ωij

Therefore, dij represents the distance between the two cells i and j and is in the range
of 0 and 1, and a larger value indicates a greater difference between two cells. Based on the
SCM-tom distance measure, hierarchical clustering is performed to complete the final cell
clustering step.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math11173785/s1, Supplementary Materials.pdf. This file contains
Supplemental Methods: Consensus clustering; Supplementary Table: Table S1 (11 Datasets used for
validations); Supplementary Figures: Figures S1–S9 (Visualizations of the clustering results on nine
datasets); Figures S10–S19 (Heatmaps of optimal consensus matrices on the ten datasets).
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